NOTICE: This document contains references to Agilent
Technologies. Agilent’s former Test and Measurement
business has become Keysight Technologies. For more
Information, goto www.keysight.com.

KEYSIGHT

TECHNOLOGIES

Genesys - Users Guide

Agilent Technologies

Genesys 2010
2010
Users Guide

Genesys - Users Guide

© Agilent Technologies, Inc. 2000-2010

3501 Stevens Creek Blvd., Santa Clara, CA 95052 USA

No part of this manual may be reproduced in any form or by any means (including
electronic storage and retrieval or translation into a foreign language) without prior
agreement and written consent from Agilent Technologies, Inc. as governed by United
States and international copyright laws.

Acknowledgments

Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other
countries. Microsoft®, Windows®, MS Windows®, Windows NT®, and MS-DOS® are U.S.
registered trademarks of Microsoft Corporation. Pentium® is a U.S. registered trademark
of Intel Corporation. PostScript® and Acrobat® are trademarks of Adobe Systems
Incorporated. UNIX® is a registered trademark of the Open Group. Java™ is a U.S.
trademark of Sun Microsystems, Inc. SystemC® is a registered trademark of Open
SystemC Initiative, Inc. in the United States and other countries and is used with
permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc.. HISIM2
source code, and all copyrights, trade secrets or other intellectual property rights in and to
the source code in its entirety, is owned by Hiroshima University and STARC. Drawing
Interchange file (DXF) is a trademark of Auto Desk, Inc. EMPOWER/ML, Genesys,
SPECTRASYS, HARBEC, and TESTLINK are trademarks of Agilent Technologies, Inc. GDSII
is a trademark of Calma Company. Sonnet is a registered trademark of Sonnet Software,
Inc.

Errata The ADS product may contain references to "HP" or "HPEESOF" such as in file
names and directory names. The business entity formerly known as "HP EEsof" is now part
of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality and
to maintain backward compatibility for our customers, we did not change all the names
and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject to
being changed, without notice, in future editions. Further, to the maximum extent
permitted by applicable law, Agilent disclaims all warranties, either express or implied,
with regard to this manual and any information contained herein, including but not limited
to the implied warranties of merchantability and fithess for a particular purpose. Agilent
shall not be liable for errors or for incidental or consequential damages in connection with
the furnishing, use, or performance of this document or of any information contained
herein. Should Agilent and the user have a separate written agreement with warranty
terms covering the material in this document that conflict with these terms, the warranty
terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are
furnished under a license and may be used or copied only in accordance with the terms of
such license. Portions of this product include the SystemC software licensed under Open
Source terms, which are available for download at http://systemc.org/ . This software is
redistributed by Agilent. The Contributors of the SystemC software provide this software
"as is" and offer no warranty of any kind, express or implied, including without limitation
warranties or conditions or title and non-infringement, and implied warranties or
conditions merchantability and fitness for a particular purpose. Contributors shall not be
liable for any damages of any kind including without limitation direct, indirect, special,
incidental and consequential damages, such as lost profits. Any provisions that differ from
this disclaimer are offered by Agilent only.

With respect to the portion of the Licensed Materials that describes the software and
provides instructions concerning its operation and related matters, "use" includes the right
to download and print such materials solely for the purpose described above.

2

http://systemc.org/
http://systemc.org/

Genesys - Users Guide

Restricted Rights Legend U.S. Government Restricted Rights. Software and technical
data rights granted to the federal government include only those rights customarily
provided to end user customers. Agilent provides this customary commercial license in
Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212
(Computer Software) and, for the Department of Defense, DFARS 252.227-7015
(Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial
Computer Software or Computer Software Documentation).

Genesys - Users Guide

The Genesys Environment i i i e e e e 16
CoNteNES L . o e e e e e s 16
Starting GeNESYS . . . o i i e e e e e e e e e 16
Genesys Design Environment (User Interface) 18

Setting Global Options for GENESYS v v v v i e e e e e e 36
To set Global Options i e e e e e e 36
General Options Tab i i e e e e e e e 36
Startup Options Tab o e e 37
Graph Options Tab e 38
Schematic Options Tab i e e e 39
Layout Options Tab it e e e e e e e 40
Directories Options Tab i i e e e 41
Language Options Tab e e e 41
Default Units Options Tab o e e e e 42
Appearance Options Tab i e e e 43

USING GBNESYS . v it i i e e et e e e e e e e e e e e e e e e e e 45
CoNteNtS . L e e e e e e 45

ANAlY SIS . . o e e e e e e e 46

ANNOTAtIONS . . o v o e e e s 47
CoNteNES L . e e e e 47
Creating Annotations i i e e e e e e 47
Line ANNOtations e e e e e 48
Text ANNOtations o e e e e e e e 48
Button Annotations (Widgets) o i i e e e e 49
Slider Annotations (Widgets)t i i ittt i e e e e e e e e e 50
Variable Selector e e 51

DESIgNS . . i e e e e e e e 53
Specific Types of DeSIgNS v it e e e e e e e e e 53
CoNteNES L . o e e e 54
Design Properties o i e e e e e e e e e 54
Modifying @ DeSign . . . o vt e e e e e e 54
Creating @ Design . . . o i i e e e e e e e e e e e e 56
Using the Design Wizard it e e e e e e e e e e e e 56

EQUatioNs . .. o e e e e e e e 58
CoNteNtS . L e e e e e 58
Using Engineering Language o i i i it e e e e e e e e e 58
Using Math Language it e e e e e e e e e e e 58
Engineering Language Function Reference i 59
ADS L e 64
ADSSUM . L e e e e e 65
AC0S « 4ttt e e e e e e e e e e e 65
ACOSh . . e 66
= 1 T 66
ANG360 . L. e e e e e e e e e e 66
= 1= Y/ 67
=] 67
ASINN L e e 68
ALAN . L e e e e e e e 68
AtANh L . e e 69
beta . . . e 69
betacdl e e 69
betaine e e 70
betainy . . e e 70
betaln . . . e e e e e 71
betapdl . .. e e e e e e 71

Genesys - Users Guide

CeIl o e e e e e e e e e e e 72
COlUMIN L L e e e e e e e e e 72
COMID X . ot e e e e e e e e e 73
CONCALCOIUMNS . . o . o e e e e e e e e e e e e e e e 73
(o0] 2 [73
0001 74
COSh L e 74
D it e e e e e e e e e e 75
1 0] 75
(675 I 11T 76
(6715] (15 o = 76
A o 77
o o 3 77
DM L e e e 78
ADMEOW . . e e e e e e e e 78
Abpolar . . 78
derivative e e e e 79
dev_lin_phase e e e e e 79
o = o 79
0 8= 80
UNWEAD 4 ottt e 80
=] 80
=] o 81
L2 o 81
B i e e e e e e e e e e e e e e e e e e 82
L1 82
1T 83
[1= .11 2 = 84
[1= .1 .= 11 84
GaMMAIN L L e e e e e e e e e 84
GAMMATOZ . . vt e e e e e e e e s 85
getdbunit e e e e e e e e e e 85
gelindep . . . o e e e e e e e e e e e 86
getindepvalue e 86
GEEUNIES o e e e e e e e e e e e e 87
D gain . . e e e e e e e e e 87
Wb _getspComp e e e e e e 88
hb_getspcompdbm e e e e e 89
Y T 15 X 90
o T 1o 91
D LargesS . . . e e e e e e e e 92
D Large o miX . . . i s e e e e e e e e e e 93
] 1o ¥ o T 94
D SPUIIOUS . . . e e e e e e e e e 95
b _totalsp e e e e e e e e 96
b transgain e e e e e e e e e 97
hb_transgaindb e e e e e 98
hermitian e e e 98
RistOgram e e e e e e e 99
dentity .o e e e e e e e e 99
1 100
1 100
21 101
1= 101
INtegrate e e e e e e e e e e 101

Genesys - Users Guide

INtErPOlate e e e e e e e e 102
INEEIrSECE . . . e e e e e e e e e e 103
L NV Z=] 1T 104
QL 01 1= 104
= Lo 1= 105
ArgES CONVY . o i e e e e e e e e e 106
ArgE O MIX . . o o e e e e e e 107
17 =T o o 109
o 109
0 o 110
0= 110
At X . o e e e e e e e e e e e e e 111
TAX v v v e e e e e e e e e e e e e e e e e 111
1 == 111
g 1= 1= o 112
10T 112
100 o 1 113
10 .01 o 113
o 1o 114
NFtOVNI(NF, RS, TempC) . . ottt i e e e e e e e e e e e e e e e e e e 114
7o) o 115
[o 1 (ol | 115
10 o 0 /2 116
e .0 o T | 116
MUMICOIS & vttt e e e e et et et e e e e e e e e e e e e e e e 116
UM OWS . ottt s s e s e 117
0] T 117
POrtVOIES . . o e e e e e e 118
0 1S3 =T o) 118
POSEWAINING . . . o o e e e e e e e e e e e e e 119
510 1 119
Pretile o e e e e e e e e e e 119
9] Yo 120
qUANtIlE . . e e 121
7= 2 T 121
7= o o T 122
= 122
T | 123
TSNP . . . it e e e e e e e e 123
=] = 124
SNV =T T 124
(Lo T = o 0 o 1 = 125
1o 7 125
(0] 1=) o= 126
RsCoNdTOThiCK . . . i it e e e s s e e e e e e e e e 126
RSRESTOThICK . . . it e s e e e e e e e e 127
RSRhOTOThiCK . . . i e s s e s e e e e e e e e e e e e e 128
FUNANAIY SIS . o i et e e e e e e e e e e 130
SEUINAED . . . i i e e e e e e e 130
SelPIOttYPE & . L e e e e e e e e e 130
SEEUNIES . . . i i e e e e e e e e e e 131
SN . . L e e 131
L= 1 132
=] 1 132
SINMN e e e e e e e e e 133

Genesys - Users Guide

(=] 7.4 = 133
SKEWNESS & o . i it i e e e e e e e e e e e 134
Lo] o 134
£ | 135
SO ot i e e e e e e e e e e e e e e e e e e 135
] 1o 136
153 1 136
L] 10 137
L] 10 137
L U 01 o = (== 137
SUbStrateh e e e e e e 137
SUDSErAatarNO . . . o i e e e e e e e e e e e e 138
substraterough L 138
substratetand e e e e e e 138
SUbStratemet e e e e 139
L= T 2 139
1= 140
1= o T 140
o | 141
L0 2 = 141
BIMES . . e e e e e e e e e 142
LM EVECEOr . . . o e e e e e e e e e e e e e e 142
£ 0 143
L0 | 143
ErANSPOSE . . . e e e e e e e 144
1 o o 144
L8 =Y o 144
1] o T 145
1721 145
1Y =01 (o Y 146
=] o 1 146
Math Language Function Reference it e e e e e e 146
= | 01 151
= L0001 151
= [o0 = [152
= 100 1= o X 152
= 1o | 153
= o0 153
= o0] o T 154
= 1o o 154
ACSCA . .t e e e e e e 154
= 1ot ol o 155
= | 155
ANGIE L e e e e e e e e 156
= 156
= 1= 156
ASECA . . i i e e e e e e e e e e e e e 157
= 1Yo 157
= 1= 1 157
= 1= 1 o 158
= 1= 1 1 o 158
= 1=] o 159
AtAN 2 . . e e e e e e e e e e e 159
= 1= o 160
= 1= 160

Genesys - Users Guide

0= o = o 161
blackman e e e e e e e 162
0 11 1o o 163
Il Lt e e e e e e e e e e e e e e e e 164
Cell e e e e e e e e e 164
ChebY L & o e e e e e e e e e 165
Cheby 2 . . 166
oL 1= 17 167
oL 168
Clear o e e e e e e e 168
{000 1 168
(o0] 1 1Y/ 169
o0 1= 169
000 1T 170
0001 o 170
{00] 171
000 o 171
000 o 171
01T o 171
CSCA & v it i e e e e e e e e e e e e e e 171
CSCR . o e e e e e e e e e 172
({81 oo o Yo 172
CUMISUM &t v v e e e e et et e e e e e e e e e e e e e e e e e e 172
(o] 0T 1 o 1 0| 173
dbg_ShOWVar . . o e e e e e 174
BCONV . o .t e e e e e e e e e e e e e e 175
o = o 175
o L 175
=] 176
Bl o e e e e 177
=] 0 178
=] 178
=T 179
(= o 179
LS 1= 180
L o 181
B i i e e e e e e e e e e e e e e e e e e e 181
LS VZ= T L= T 181
FClOSE & v i i e e e e e e e e e e e e e e e 182
I L e e e e e e e e e e e e e 183
10 1 184
0 =] 184
Lo =0 185
10 185
11T 186
1 186
B ot s e e e e e e e e e e e e e 187
I DAIM o e e e e e 188
DI . o e e e e e e e e e e e e e 188
Lo 10 ' 189
00 T 189
oD N . . o 189
L1 1 190
(1= o 191
FSCaANT & o o e e e e e e 192

Genesys - Users Guide

WL . L L o e e e e e e e e e e 193
GAUSSWIN &t i i e 194
getindep e 195
getindepvalue e e 196
GetUNIES . . . e e e e e e e e e e 196
getvariable e e e e e e e 197
hamMMINg . . . e e e 197
hanKel . . e e e e e 198
AN e e 199
T 5= o 200
1) 201
1 202
1101 1 203
10 1= 203
N e e e e 203
L= oo 3 204
PEINUEE . . o o e e e e e e e e 204
ISCRI o v i e e e e e e e e e e e e 205
1=l = 206
SBMIPLY & o i e e e e e e e e e e e e e 207
ISEaUAl . . . e e e 207
isequalwithequalnans e e e e e 207
ISFiEld . o o e e e 208
1S3 11 = 208
13 1 o = | 209
ISINT L o e e e e e e e e e 209
1S3 =T = 210
ISI0giCal . . . e e e e e e e e e e e 210
1= 1 1= o 211
1= 1 101 1= o 211
1= /== 1 212
[£S3Yor=] = 212
=] 213
=] o 214
ISVECEOr . . . e e e e e e e e e e e e e e e e e e 214
KUFEOSIS & o o it e e e e e e e e e e 215
=] T o o 216
11 1= .= L oL 216
[Og ot e e e e e e e 217
[0G2 & o e e e e e e e e e e e e e e e e e 217
10910 . . e e e e e e e e e e e 218
[0 e =] oY= Lol 218
OOKUD . ot i e e 219
U L e e e e e e e e 219
1=) G 220
1= = o 221
1= 7= o 222
0 222
012 o 223
1010 223
10100 = 224
10 T 10T) 225
NaN . e e e e e e e e e e 225
NAIMS L . ot e e e e e e e e e e e e e e e e 225
7= 7= 226

Genesys - Users Guide

NEX P OW 2 . . o o e e e e e e e e e e e 226
NUM 2SSt . L ot et e e e e e e e e e e e 226
1T 2] 227
(0] 1= 227
9 1 o 228
PEIMULE . . . o o e e e e e e e e e e e e 229
POIY ot e e e e 229
POIYVaAl . o o e e e e e e 230
POlYValmM o e e e e e e e 230
L= 231
97917 | 231
PrClile . o e e 232
PrOd . o e e e e e e e e e e e e e e 232
qUaNtile . .. e e e e e e e e 233
7= o 234
7= 2 o o T 234
1= | 235
FECEWIN . o e e e e e e e e e e e e 235
=T 2 0 235
=T 0] . = | 236
PSP . . . i e e e 236
(00 o= 237
FOEO0 . . . i e e e e e e 238
0 T T o 238
FUNANAIY SIS & o o ot e et e e e e e e e e e e e e 239
BB i i i e 239
SECA & v i e e e e e e e e 239
7T o 239
L=l Vo =T o1 240
SEEUNIES . . . i i e e e e e e e e e e e e e e e e e 240
Setvariable e e e e e e e e e e e e e e 241
Shiftdim . . o e e e e e e e e 241
=] o 242
L= 1 T 242
L= 1 242
=] 1 o 243
L] 12 244
SIZE L i e e e e e e e e e e e e 244
SKEWNESS & o i it it e e e e e e e e e e e e e e 244
=70 o 245
SPIINE & . i e e e e e e e e e e e e 246
SO . e e e e e e e e e e e e e e e 247
SSCANT . L e e e e e e e e e e e e e e e e 248
L o 248
SEr2NUM L L o e e e e e e e e e e e 249
L] ol o o 0 o 249
L] ol o ol 0o 250
(] o T 0 251
L] ol T o 251
SErUCE . . L o e e e e e e e e e e e e e e e 252
£ 252
SVA e e e e e e e e e e e e e e e 253
1= 254
1= [255
1= 255

Genesys - Users Guide

0] 10 256
o 256
BOC . o e e e e e e e 257
0PItz . . . o e e e e e e e e e e 257
UNMK DD & ot e it e e e e e e e e e e e e e e e e e e e 258
USING & vt i e 259
172> 1 260
170 2= L .11 T 260
010 o 261
D] 262
4= o 1= 262
Using Engineering Language o i i it e e e e e e e e e e 262
StatemeEntS e e e e e 263
(5= = (o = 267
Vectors, Matrices, and Multidimensional Arrays i it e 267
Shortcuts, and FUNCLIONS o it i i s e e e e e e e e e e 270
Measurement FUNCLIONS o o e e e e e e e e 270
Variables in Datasets and other Equations e e 272
Using Math Language o i e e s e e e e e e e e e 274
Statements e e e e e e e 274
(707 = (o = 278
Vectors, Matrices, and Multidimensional Arrays i i i e 279
Cell AMTaYS & i v i i e e e e e e e e e e e e e e e 282
SErUCEUNES . . e e e e e e e e e e e 283
Network Communication and Instrument Control 283
Hierarchy in EQUAtioNs e e e e e 284
Automatic Calculation e e e e 285
Debugging EQuations e e e e e e 286
Tips for Effective Equation Writing i i e e e e 288
Equations User Interface i e e e 289
Examining Datasets i e e e 293
CoNtENtS . . e e e e e e 294
Creating Datasets i e e e e e e e 294
Creating Variables e 295
Importing Variables e e e e 296
Using Dataset Variables e e e e e 299
Using Datasets it e e e e e e e 300
Variable Properties i e e e e e e e e e 302
GrapS o e e e e e 303
ConNteNtS . L L e 303
Types of Graphs e e e e e e e e 303
Rectangular Graphs o i i e e e e e e 303
3D Graphs . . . e e e e 304
Antenna Plots e e e e 305
Polar Charts e e e e e e e e e e 306
Smith Charts e e e e e e e e e 307
Creating Graphs o i e e e e e e e e 308
Graph Properties i e e e 310
Graph Series Wizard e e e e e e e 316
Using Markers on Graphso it i e e e e e e e e 319
Annotating Graphs L e e e e e e e 325
Zooming Graphs e e e 326
Measurement Wizard e e e e 327
Using the Measurement Wizard i e e e e e e et 328
Limit SWweep Range e e e e e e e e 329

Genesys - Users Guide

Show Measurements for all graph types i e 330
Antenna Measurement OptioNs i i i i e e e e e 330
Importing and EXpOrtingot e e e 331
CoNtENES . . o e e e e e e e e e e e e e 331
Importing Data Files Using GenesysS i ittt et e e e e e e 331
Toimport a file e e e e e e e e e 331
Exporting Files USINg GENESYS i it e e e e e e e e 360
LayoUut DeSIgNS . . . o v i e e e e e e e e e 368
Using Files From Earlier Genesys VerSiONS v vt i it et e e e e e e e et et e e e 383
Using the ADS LinkK i e e e e e e e e e e e e 384
LAy OULS . . . o e e e e e e e e e 386
CoNteNtS . . e e e 386
Creating Layouts ot e e e 386
Changing Layout Properties it e e e e e e e 388
Manipulating Layouts i e e e e e e e 396
Changing an Association Table 402
Adding Text and Changing FONts i e e e e e e 402
Reviewing Nodes and Rubber Band Lines it 404
USiNg Layers . . oo i it et e e e e e e e e e e e e e 405
Adding Footprints to Layouts i i e e e e e 407
Using the Footprint Editor e e 412
Using Pads in Layouts e 422
Adding Polygons, Pours, and Ground Planesttt e 424
Importing and Exporting Layout Files i e e 426
Using Gerber Files e e 426
LIVEREPOIS o e e e e e e 428
CoNtENtS . L L e 430
Creating @ LiveRepOrt i e e e e e e 430
Supported LiveReport Object Types i i i i i e e e e 430
Adding a View Window to a LiveReport e 430
Removing a Window from a LiveReport ittt ettt 431
ArranNging ViEWS . . ot e e e e e e e e e e e 432
LiveReport Properties o i e e e e e e e e e 433
Managing Libraries e e 436
CoNtENES . . o e e e e e e e e e e 437
Using the Library Manager i e e e e e e e e e e 437
Creating Custom Libraries i i e e e e e e e e e e 444
Adding Library Items to Your Workspace ittt i e e e 445
Optimization e e e e e 447
ConNteNtS . L L e 447
Creating an Optimization e e e e e e e 447
Cost FUNCHION . . o o o e e e e e e 453
Optimization Methods e e 455
Gradient e e e e e e e 455
Pattern . . . e e 456
RaNAOM . . . e e e 456
Using Optimization e e e e e e e e e e 458
Optimization Methods e 458
Cost FUNCLIONS . . o o e e e 460
Optimization OUtpUL e e e e 460
Parts, Models and Symbols e e e e e 462
CoNtEeNtS L . e e e e e e e 462
PartS . . e e e e e 462
MOdelS . . . e e e e 471
SYMDOIS & . o e e e e e e e e e e e e 473

Genesys - Users Guide

Mapping Symbols to Models in Parts i i e e e 478
Finding Symbols and Models during Simulation i 479
Symbol Reference oo e 484
Commonly used Symbols e e e 484
EXtra Symbols e e e e e e e 487
Net BloCK . . o o e e 488
Standard wire CONNECLION o e e e 489
Ports, Connection Lines, and Nets o i i i e e e e e e 490
CoNtENtS . . . e e e 490
Part Ports (Terminals) i it i e e e e e e e e e e e e 490
Connection TermMinNology v i v it i et e e e e e e e e e 490
Connection Line Net Labels 490
Connection Lines and Ports e e e e 490
Mapping Nets to POrtS i e e e e e e 491
Connecting Parts in GENESYS v i it it e e e e e e e e 491
RUNNING SCripES . . o e e e e 492
CoNtEeNtS . . e e e e e e 492
Add @ SCript . . e e e e e e e 492
Creating Script Objects i e e e e e e 492
Example: Running a Script from Microsoft Excel iy 493
SCHIPE PrOCES SO . . o o it e e e e e e e e 494
SCHiPt Verbs . . . e e e e e 495
Using SCripts in Programs o i i e e e e e e e e e e 501
VB BIOWS Bl . o o e e e e e 503
SChemaAticS . . . o e e e 507
CoNtENES . . e e e e e e 507
Creating a Simple Schematic e 507
Placing Parts on @ Schematic i i e e e e e e e 508
Manipulating Parts o e e e e 510
Changing the Schematic View e e e e e 512
Title BlOCKS . . . o o e e e e e e e e 514
Annotating Schematics i e e e e e 517
USIiNG DisCOS . & v v vt e it e et e e e e e e e e e e e e e 518
UsSiNg Substrates e e 520
Substrate Parameter Tables i e e 522
LOSS TanNgeNt o e e e e e e e e e e e 522
Metal Thickness o e e 522
Relative Dielectric Constants e e 523
Relative Permeability e e 523
RESISLIVILY . . o i e e e e e e e e 523
Surface Roughness e e e e e e 524
Substrate Parameters for Microstrip and Stripline e 525
MICroStrip OVerVIEW . . . o o e e e e e e e e e e 525
SEHIPliNE OVEIVIEW . . o e e e e e e e e e e 525
Parameter List e e 526
Using S-Parameters in GENESYS v i i it it et et et et et e e e e e e 527
CoNtENES L . e e e e s 527
Creating S-Parameter Data e e e 527
Displaying S-Parameter Data it e e e e 527
Files with No Noise Parameters i e e e e e 527
File Based S-Parameters e 527
Physical S-Parameters e e 528
Sub-Network Models e e e e e e e 530
ConteNtS . . . e e 530
Creating a Parameterized Sub-Network Model i 530

Genesys - Users Guide

Roles of Sub-Network Model Attributes 536
Run-time Hierarchy - How Parametersget passed 536
S EEDS . i i i i i e e e e e e e e e e e e e e 538
CoNtENES . . o e e e e e e e e e e e e e 538
Understanding Swept Data i e e e e e e 539
Getting Started with Parameter SWeeps it i i e e e e 540
Parameter Sweep Properties i e e 545
1= 0 = 547
CoNtENtS . . . e e e 547
Creating Tables e e e e e 547
Templates . . . e e e e e e e 549
Selecting a Genesys Template e 549
Reviewing the Genesys Templates i i e e e e e 550
TestlinK . . e e 551
CoNteNES L . o e e e s 551
Testlink Hardware Interface e e 552
Testlink Registration e e 553
Getting Started with Testlink e e e 555
Text Netlists o e e 559
CoNteNES L . e e e e s 559
Importing Genesys Netlists e 559
Seeing Text Equivalents for Schematics 559
Shunt-C Coupled Netlist Example i e e e e e e e e 560
SUbStrates e e e 561
Units In Netlists o e e 561
Tuning Variables e e 562
CoNtENtS . L L e 562
GaNg TUNING & . ot e e e e e e e e e e e e e e e e e e e 562
Making a Part Parameter Tunable i e e e 563
TuNiNg OpPLiONS o e e e e e e 565
Reverting Tuned Values i e e 567
CheCKpOiNtS . . . o e e e e e e e e e e e e 567
Using X-Parameters in GENESYS . . . v v i v it it i it et et e et et e e e e e e e 569
CoNteNtS L L e e e e 569
CONVEIgENCE ISSUBS . . . o it i e e e e et e e e e e e e e e e e e e 569
Getting X-Parameters into the Workspace et 569
Theory of Operation o i e e e e e e e e 569
Using X-Parameters in @ Design o i ittt i et e e e e e e e e 573
Using DC Bias Voltage ot e e e e e e e e e 576
Using X-Parameters in the Circuit Link i i e e e e e e e e 577
Using X-Parameters in Spectrasys i i it e e e e e e 577
Validation Limits e 577
Performance Limits o e e e 578
Operational Limits oo e e e 578
Yield/Monte Carlo o ot e e e e 580
CoNtEeNES L . o e e e e 580
Creating a Monte Carlo Analysiso i i i i e e e e e e e e e 580
Creating a Yield Analysis e e 583
Monte Carlo EXample e e e e e e e e e 585
Process Capability e e e e e e 588
Targels . o e e e e e e e e e e e 590
Yield Optimization e e 591
Appendix A - Keystroke Commands it e e e e e 593
General Keystroke Commands ottt i i e e e e e e 593
Graph Keystroke Commands oottt e e e e e e e 594

Genesys - Users Guide

Layout Keystroke Commands ittt e e e e e 594
LiveReport Keystroke Commands i ittt e e e e e e e 595
Schematic Keystroke Commands i e 595
AppendixX B - MENUS e e e e e e e e 596
ACHION MENU . . . o e e e e e e e e e e 596
DeEsSigN MeNU i e e e e e e e e e e e e e 596
Edit MenU e e e e 597
EQUations MenU o e e e e e e 597
File MenU . . o e e e 598
Graph MeNU . . .o e e e e e e e e e e e 599
Help MeNU . . . e e e e e e e e 600
Layout MenuU o e e e e e e 601
LiveRepOrt MeNU o e e e e e e 602
NOtES MENU . . . e e e e e e e e e e 603
PartList MenuU e e e e e e e e e 603
Schematic MenU e e e 603
SCHIPES MENU o e e e e e 604
TOOIS MEBNU . . o ot e e e e 605
VW MEBNU . . o s e e e e e e e e e e e 606
WiNdoW MENU . . .o it e e e e e e e e e e 607
Appendix C - ToOIbars o e e e 609
Annotation Toolbar e e e e e 609
BasiC Toolbar e e e e e e 610
Coax Toolbar e e e e e e 611
Co-Planar Toolbar e e 612
Dataset Toolbar oo e e 612
Equations Toolbar e e e e e e 613
Graph Toolbar e e e e e e e e e 613
Layout Toolbar e e e e e e e 614
Linear Toolbar o e e e e e e 615
LiveReport Toolbar e e e e e 617
Lumped Toolbar e e e e e e 617
Main Toolbar e e e e e e 619
Microstrip Toolbar e e 619
Nonlinear Toolbar e e e e e 621
NOtes ToOIbar o e e e e e e e e 623
Part Groups Toolbaro e e e e e e 623
Schematic Toolbar i e e e e e e e e 624
Script Toolbar e e e e e 625
Slabline Toolbar e e e 625
Spectrasys Toolbar o e e e e e e e e 625
Stripline Toolbar e e e e e e 628
Table Toolbar e e e 629
T-Line Toolbar e e e e e e 630
Wave Toolbar e e e e e e e e 631

15

Genesys - Users Guide

The Genesys Environment

This section will familiarize you with the user interface of Genesys. These sections include
introductions of various components of the Genesys software screen. To get more detailed
information about using these features, read Using Genesys (users) section.

Contents

e Starting Genesys (users)
e Getting Started Dialog Box (users)
e Design Environment (users)

Starting Genesys
To start Genesys:

Click Start > Genesys. Loading Genesys screen opens. After a while Genesys main
window opens launching the welcome dialog:

Welcome to Genesys by Agilent [x]
Welcome to Genesys!
Existing users
Click on the What's New button to see a summary of what's -
new in this latest version, I 2 What's New?
New users
' Tutorial - }) _
Eﬂ r: the Tutorial button to view a simple getting-started [@ Tutoria]
Please consider watching the following short tutorial videos
on basic functionality.
Select a file below and dick 'Play Video' to watdh it (or simply —
double-dlick the fie), (B Peyvieo
Convert IntrolinearAnalysis ModelImport Tuning
CustomPart IntrolinearAnalysisFast Optimization Tutarial
CustomSymbol IntroPlacingParts ParameterEntry UserModel
DataEntry IntroUsingSData Parts
DataSets Intro_GUI_overview Schematics
Equations_A LicensingModelocked Scripting
Graphs LiveReport SpiceModel
< il &
Ihﬁ Additional Videos on the Web I

[[Joon't show me this again. (Use the Tools menu Options command Startup tab
to re-enable this dialog.)
[Close] |@ Help]

This window is also called the splash screen.

16

Genesys - Users Guide

D Note
You might want to view some of the videos listed in the New Users section, even if you're an experienced

user. They are typically short and cover some of the most useful convenience and quick-start topics.

To close the window, click Close. The control automatically shifts to the Getting started
screen with the title - Getting Started with Genesys - Please Select an Action.

Getting Started with Genesys - Please Select an Action £

Open a recently used workspace =1
Select a workspace from the kst on the right or
More Workspaces below,
(Click OK to continue.
= Fiore Workspacas... | e—— 1 ;I
Create a NEW workspace from a template Mﬂ
Select a temolate from the it on the right as the |-°> Smuaten
; ‘onlinear Smulation
starting point for & new workspace. Oscllator Temolate ll
SR BRI < Make This My Default Template |
Synthesize design ghve Filter Passive Fiter
el <= Froedance Match . 3 Signal Control
Select & synithesis from the list on the right. [Microwave Filter WhatlF Frequency Planner
fizcer
Click O to continue., [oscillator

Tutorials & Examples g 4

Click on the Tutorial Videos button to view some short butorials: © Tuonslydess.. |
Click the Open Example button to open one of our many examples: L% OpenExample... |
[Don't show me this again. {Use the Tools menu Options -
command Startup tab to re-enable this dalog.) oK I Cancel I @ bep I

Getting Started with Genesys Dialog

17

Genesys - Users Guide

Getting Started with Genesys - Please Select an Action =

Open a recently used workspace El

Select a workspace from the kst on the right or
More Workspaces below,

Je—+—— ¢ =

Create a NEW workspace from a template

L Trinkig

Lirear Simulation
Nenlinear Simulation

Select a template from the ist on the right as the

starting pont for & new workspace. Oscillator Template LI

Cack K20 contese s Make This My Defauit Template |
Synthesize a new desi -+ Active Filter 3 Passive Fiter
e mpedance Match Signal Control

Select & symthesis from the st on the right, [icrowvane Filbar WhatlF Frequency Planner

Vixer

Click O to conbinue., [Iscillator
Tutorials & Examples -———— 4

Click on the Tutorial Videos button to view some shart tutorials: @ Tutorial Videos... |

Click the Open Example button o open one of our many examples: = QOpen Example,.. |

I Don't show me this again, (Use the Tools menu Options -

command Startup tab to re-enable this dalog.) ok | cocel | @ b |

The following are the options that you can exercise with your Getting Started dialog box:

1. Open a recently used workspace

You can select a recently used workspace from the list on the right. If the recent
space is not listed, click More Workspaces to locate a workspace on your computer
system.

. Create a NEW Workspace from a template

You can select a template frOom the list on the right. Select Default to start withe
the default template or you can select any template and click Make This My Default
Template to make the selected template as default one.

. Synthesize a new design

Select a synthesis from the list on right to synthecize a new design.

. Tutorials and Examples

There are two buttons available to access help for videos and examples.

There is "Don't show me again" button on this page as well, but it is recommended not to

select it (for new users).

If you simply close this window, you get to the default workspace.

 Note

Click the Start Page button : =% , (the first button in the main toolbar) to open this dialog anytime.

Genesys Design Environment (User Interface)

The Genesys design environment consists of menus, windows, toolbars, and standard
editing options. It is easily integrated with other programs, and you can use it to view

multiple projects, schematics, and simulations at the same time.

18

.

Woriscace Trex
{EE) il mop P T

= 5 deel_po

N T
1 il ariers_Dakn

IR = sl 1Y

o] tom i b

FE0 8-E-e

E] e ¥ i
] Emgrugie
o Fishiamer NEFH

@ e crePrsiCamia
Lo e Feaasie_Daa
P (md_Cssdloon
i Co B drake

P o _Operleco
o FhasehonediCamiers
e LT

SZA Frwves Spesct vl aviere

PEPRIE EjEa

O BX Yo Guph flion Took fondes len
EFET- IR SR,

-

Genesys - Users Guide
The environment is versatile. It can look like this...

e (Al a4

I § = PorlWmedaem

om
]
3 T
bR PR b g 224 22
L = - -
R T B
e B A i s |l [O
| BN — e i
< e
iin “
et) e] &t

Al AR) D I el

L q |

W YPORT

| £
Y

fl
i fa
il

5

i

5

S FRAF 1 F eelE LR SRR RE R]
o B

.....................................

i
i
&
Iy

v

]

Fraguaray iG]

—— b

or

like this...

Fie [F e Coutoy &chion Tosk Wndw 190k
aEE saoc ae BEBDEENLD pe 0B
Wobcar e = U. H o . I: : I;lu Fast Sederbon & LI
Y. S0 H- @ Curent LEsary
1 s s nal |eagimams -
& B ouagn Epentral byrme
& rrr il -
- Analysis Example li:l —
Ciwa e et | | A comparisen of HARBEC [
P B R (v i i
- output with the FFT of [[
Tmeo®
BT trarcsni e CAYENNE output Rae ~
Fue Eouation of1 ves Eqkn Tachrobgne GEMESVE Exanipe LAt doeny [
5| actec F_AT Sl phertnd]
d I Adiprar (Wea g
= B B
; = B (20
= Lquaton g (P C
g (gl D]
1 a g (Varaie Gl
a i1 » 2 'Epecieal Apalysis af CRTEMNE W er (Varmbie Yal
T — 3 =TT Ll - 2048 Iy S (Yolnge!
TueWirkw o« 8 8 || deb_eneian 1 & 1 11} i BirgHgh Coe |
8 E FTT_ k=334] time_wovedorm = PO0ub, %2 0 ke B T r g e
+ 8 B- 8- B Wl e snv-rewin| @ EimE_VEUIEIEH - Tibe WEWEGER i y J'f + - srdswra Faih
= o 1 rime_mester - BT Cgam o T o ; = [
=]N . | mpecrun = st cor] duie_len = prod|sipeTiee_vec Jam 1 m.m
Nt wFui[8n | 3 mrimemten m Fiws weererrTl - ey = h Tis frrm—
— oo = b 12 x| 0w f 3 Aty gt [0
Tceral 3 bmasine=30ne =T . 8 L Bitwrudar [Feag
s ’ - L SR | L B stz
____________ Barsdems FlaE
% e L — — B FlenE
e
Bl . @ x ey _...; =
§
| | e | tarm Lo i | | e =
1 T 318 T GVOAE OF wTwge
| Flinorssticatly Disuley Ences Ko B reors:
Errorn | GvintonLog | Equson Catreg Ubraryal... | Pt Satare..
Py

We show you the second environment by default so you know what is available and what
it looks like. In the design area, an un-maximized window can be re-sized by clicking on a
boundary and dragging it. Three buttons on the right of the title bar control a design

window's viewability. Click on B to minimize the window. Click on E to maximize the

window. Click on

Also, it's easy to switch to a tabbed window view, by using the Window Menu (users).

to remove the window.

Note the view window tabs at the top of the araph:

19

Genesys - Users Guide

Dl L e Gach dcton Tock fndos flep
SEE s oc 3¢ BEBIG F=e b ea eEEleF AE st 20
MobweceTree = B W | Foustion | Wobss | Thmslut | 11T w ¥ Feticmio s = B X
-l el Bl O : CurentLbsary:
| specd fin shyinal o.7 TImEO Ut |Engimamra -
=i 3§ Dot ! e
%’:a' B 0.5 1. | LV bl Pl o -
L 155 L - -1 -
1 61Dk TS :i :1 t PRV ‘s 0 F e
£ b (Sownad i e - Rt Ny
B RoCut (eaaerd | t i ; 2 L 4t
2 Teeoa TR] b ¥
[T variu] (Ror o : (S | + o [=
B Eaution] ke s E 'l IEET &7 It b
| vokee s D14 " . 1 — = AL AT St ahertect)
S I N A i il o
. oF B e
= . r : ' ; = B R (L0
: » P | ol | - frermanic
EEnTiEsy senn Tl 1
b » n - i i Ber varmbie Vel
" 5 - o g (Voltuge}
Ture Wirkon - aH £ 1 " J b [_'.~ Eerg g Cother |
v8E-8-K |0y T S
L " = - T Ardgan o Pl
i K 5.5¢ l"l"l' ilf % 1. 1Y aeame
w ¥ 1 L
T e |] : b oo
Varube | W | } dgtorumar ([C
Fie = - - ! e,
== 0 340 080 1020 1360 1700 2040 2380 3730 3060 3400 Ry
Tuma (ns}y S Baredoas Flen®
—— W2 —=— HE1_Date W _WFORT[Z] Barckums Fla®
— — r BH.Q'\.H.'FMIC"'
EiVOES - 3 o= s e
£ 3
| e | Parm | [| |
1 Wiy O T A0S OF T e
[l tasorwaticnly Dsilay Enes K OewHimer |
Errors | BwsibionLog | Equadion Deheg

The default Genesys design environment consists of the following:

e« Menu (users) - Contains all of the commands used in Genesys.

e Toolbars (users) — Contains buttons that are shortcuts for commonly used
commands.

o Workspace Tree (users) - Displays a hierarchical list of items in your project.

o Part Selector (users) - Lists the electrical parts in a specific library.

o Library Selector (users) - Lists all of the designs in a specific library.

o Tune Window (users) - Contains settings that let you modify variables for a circuit
in your design.

o Simulation Status Window (users) — Displays the status of the running
simulation.

e Error Log (users) - Displays error information.

o Status Bar (users) - Displays useful information at the bottom of the Genesys
window.

« Design Windows (users) — where all the real work takes place, are placed within
the gray workspace area.

o Simulation Log (users) - Information regarding any running simulation.

Click on the page to read more.
Menus

The Genesys menus are located on the menu bar at the top of the Genesys window. There
are several menus that appear automatically whenever Genesys is started. These are
called default menus.

File Edit Wew Action Tools ‘Window Help

The other Genesys menus are called object menus. They are specific to the windows in a
design and appear only when that window is active. For example, the Schematic menu is

20

Genesys - Users Guide
visible only when the Schematic window is active.

The top is the main Genesys menu like the Windows menu. It contains the basic menus
alongwith a Schematic menu which is dedicated to Genesys schematic.

File Edit “iew Schematic Action Tools wWindow Help

The schematic menu is used for modifying the schematics in the workspace.

add Title Block, ..
Center Schematic

Fit Page to Schematic. ..

Reapply Auto-Designators...
Renumber Modes., ..

Keep Connected
v Show Grid
3nap bo iarid

Corrvert bo Subcircuit. ..
Corwert Using Advanced TLIME. .

Schematic Properties. ..

List of common icons

Most of these are common Windows icons itself.

DEH 403 00 G BEBE >

Run Analysis

Errors Window

For more information about all of the Genesys menus, see Appendix B Menus (users).
Toolbars

There are many toolbars in Genesys. The main Genesys toolbar is referred to as a default
toolbar (users). The main Genesys toolbar is shown below:

205 e | & O 3 3¢ HHBA> O
Genesys also has a number of other toolbars called object toolbars. They are specific to
the windows in a design and appear only when that window is active. For example, the
Schematic toolbar is visible only when the Schematic window is active.
To reposition a toolbar:

o Drag the toolbar to the new location.

To re-size a toolbar:
21

Genesys - Users Guide
e Drag a corner of the toolbar until it changes to a different size.
To create a floating toolbar:

o Drag the toolbar to the desktop.

© Note
If you do not want the toolbar to dock to the sides or top of the Genesys window, hold down the
CTRL key while dragging.

Using a Default Toolbar

You can use the main Genesys toolbar to perform basic editing commands, such as
opening, saving, or printing designs.

To show or hide a default toolbar:

o Click View on the Genesys menu and select the toolbar you want to show or hide
from the Toolbars menu.

© Note
Toolbars that are currently open have a check mark next to them.

To display the default toolbars on startup:
1. Click Tools on the Genesys menu and select Options.
2. Click the Startup tab.
3. Click the Use Default Toolbar Settings on Startup button.
4. Click OK.
Using an Object Toolbar
The object toolbars let you perform actions for specific windows.

To show or hide an object toolbar:

e Click View on the Genesys menu and select either Show All Object Toolbars or
Hide All Object Toolbars from the Toolbars menu.

Example of schematic toolbar

This is specific to the window that is opened in the workspace area. The icons specific to a
schematic window are:

tspEleoi A &Q /s B

Show/Hide Part Selector

Show/Hide Part Groups Toolbar

Showi/Hide Annotation Toolbar

22

Genesys - Users Guide

& Tip
Dock your toolbars in 2 rows, so that the inner window area doesn't change size every time you switch
active windows (from a graph to a schematic, etc.).

For more information about all of the Genesys toolbars, see Appendix C Toolbars (users).
Workspace Tree

The Genesys Workspace Tree displays a hierarchical list of items in your project such as
designs, analysis, data sets, and graphs. With it, you can add, delete, or rename items. To
use an item right-click the item and select from the menu or click and highlight the item
and then click the item menu button shown below.

Workspace Tree

e 8 ErE-@

t_ﬂ Timy Armp Harmonic Distartian Opk
=i Designs
{:} armp
= DCL
[] DCL_Data
=1= HE1
[§ HB1_Data
4 HE1_Data_Pz
= Maodels
¥ q25C57ET _vas_lcl0m
¥ q2SC57ET_va26_Ic15m
§,‘2 Harmaonics
er Motes For this sample
i@ OptimizeR3

Default Workspace Tree

‘\Workspace Tree w 0 X
N —_—— - New Item lcon
T B e

@ Defaulk Workspace name
(=-{23 Designs Foldername

{Z Schi {Schematic)
g,‘z Equation [E)) sfe——————tee Equations page
:'_J Mokes sf— Motes paze

The default workspace tree has one schematics page, one equations page and one
notes page. Workspace name can be changed using the Save As option from the main
menu. Folder name can also be changed in the same way.

Very important icon is the New items icon which is used to add anything you wish to add
to your workspace.

You can use the Workspace Tree toolbar to perform the following tasks:

23

Genesys - Users Guide
Click this To do this

button
Add a new item such as an analysis, design, or graph. Or, add an item from a library.
Open the currently selected item.
Open the properties window for the currently selected item.
- Pull down the menu of the currently selected item.
Elw Pull down the Workspace Tree menu to adjust the Tree appearance by letting you show/hide
datasets, change the sorting order, show additional information, etc.

Get Help.

To add an item to the Workspace Tree:

1. Click the New Item button () and select the item you want to add.
2. Type a name in the Name box.

3. Type a description in the Description box, if any.

4. Enter any other parameters in the properties window.

5. Click OK.

To delete an item from the Workspace Tree:
1. Right-click the item you want to delete and select Delete from the menu.
2. Click Yes.

To rename an item in the Workspace Tree:

1. Right-click the item you want to rename and select Rename from the menu.
2. Delete the current name, and then type a new name in the box.

3. Click OK.

or slow double-click and type then click elsewhere when done

To copy an item to a library:
1. Right-click the item and select the Copy To sub-menu. Pick a library to copy to or use
New Library to create a new library.

To Remove Information Pop Up Bubbles From Workspace Tree (shown below)

24

Genesys - Users Guide
File Edit Mieww Mote Action Tools Mindow Help
25d 4nBd 90 3 HEHE
. Times Mew Roman = 3 = :5, B F O ¢
M5 B B B
(58 Amplifier IPn Ca -
B E] Analyses
= DCL(DUT)

4 IhnPin) and OIPn

1=

1824 e

mz

153
HLATT =L LT)

5 15.
J=LE HB1 (Armplifie £
p

L
ztes |

. 3 HEBL (Harmonic Balance &nalysis) = =1

Design: Srmplifier
1 Dataset: HEL Data

: Arnplifier (Sch D
i DUT (Schermat o

E19 Evaluations M o e el
-l SweepFreq (2-L - =g e

- £ SweepFreq_Da il

A SweepPower? + 1 HB1 Data
; [] SweepPower?, H Variable ,—A-. ‘>
&l Graphs i Frac | M

1. Click the Options button and uncheck Show Long Tooltips

] Workspace Tree @
19~ 5 &8 B~

i
* Sork By Mame

@ Drefault Sart By Type

B =45 Designs

] 1:} achl {Schemat

§x2 Equation (E) MKS v Show Datasets
g’j MNakes v Show Long Enkries

Show Long Tooltips

v Folders First

Part Selector

The Part Selector is a toolbar that lets you add parts to a design. It displays a list of parts
from the currently selected library. A library is a collection of objects that can be used in
Genesys. The Part Selector only displays libraries of parts. The Library Selector is used to
display libraries of other types. Eagleware is the default library. You can use the Category
and Filter By features to display a subset of parts from the current library. When you
select a part, detailed information about it is displayed in the information window at the
bottom.

Genesys provides two part selectors: A and B. Part Selector A is the default, but you can
display both part selectors at the same time. The options for viewing either part selector
are found in the View Menu (users). Having both Part Selectors open lets you work with
two libraries at once. Building a custom library of parts is easier with both Part Selectors
open, because you can set one to view the custom library of parts as you build it.

25

Genesys - Users Guide

Part Selector &

Current Library:

Eagleware A
Cateqgory:
<= A
8 [l T @
Filker By:
Mamne Description ~
_Jl 4T stublopen) Cpen 4 Terminal ...
fl 47 stub(shorted) Shorted 4 Termin...
~3 | adapter (wWaveguid-... ‘Waveguide-to-T...
<=} ADC (Basic) Basic ADC Using ...

=i Admitkance (GLOSS) Freguency depe...
‘[:-'" amp (2nd & 3rd Order) RF Amplifier

‘[:-'" amp (High Crder) High Order RF &...
& Amp (variable Gain) ‘ariable Gain Am...

& Amp (Yariable Voltag.., Wariable volkage ...
‘[:>' armp (Molkage) RF amplifier (Yolt, ..
= Amp High Srder (valt... High Order RF 4.,
‘[::?' armp Indep Harm (Yol RF Amplifier Inde. ..
J--T_Antenna Path Ankenna Path
-ﬂ AntennalDipole) A dipole ankenna...
-ﬂ AntennalMonopole) Monopole Anken, ..
‘Eﬂ' atkenuatar Attenuator
-m- Attenuator (DC Cont,,, Attenuator
‘@' Attenuator (Frequen,., Attenuator - Fre, .,
‘E‘ Aktenuatoriyariable) Aktenuator - Yari,.,
Bandpass Filker(Bessel) Bandpass Bessel ...
Bandpass Filker(Butt... Bandpass Butter. ..
T '
v A
Amp (Znd & 3rd Order)LibPartIRFAmp
RF amplifier
» 0 X

You can use the Part Selector toolbar to perform the following tasks.

Click this button To do this
Get reference information for the currently selected part.

Select options to change the way parts display in the Part Selector window.
Manage the part libraries. Click this button to open the Library Manager.

Get online Help.

To place a part:

1. Click a part in the Part Selector list. Notice the part details that display in the
information window.

2. Click in the Schematic window to place the part.

To view a subset of a part library:
1. Select a subset of parts to view from the Category list.

© Note
The All category displays all available parts in the selected library.

26

Genesys - Users Guide
To change part libraries:
1. Click the Current Library pull-down and select a library name to display all of the parts
in that library.

To add a part library:

1. Click the Library Manager button () and select Library Manager to get a dialog
allowing you to add existing libraries.

To search for specific parts:
1. Type the text for the parts you want in the Filter By box. For example, type cap to get
capacitors or any parts whose names or descriptions contains that text.

2. Click the Go button () to display the parts in the Part Selector window.

To copy parts to a library:
1. Right-click the part you want to copy, and then select the name of a library from the
Copy To menu. A copy of the part is automatically placed in the new library.

To change which columns are displayed:
1. Right-click the column heading and check on or off the columns you want to see. Click a
column heading to sort by that column.

To change the way the selector shows parts:
1. Right-click the white area in the selector and select from the View sub-menu.

Library Selector

The Library Selector is a toolbar that gives you quick access to libraries of archived
workspace items(datasets, designs, equations, substrates, etc.). The light-yellow
background of the Library Selector distinguishes it from the Part Selector and other
toolbars. It is used to display libraries of item types such as datasets, designs, or
equations.

A library is a collection of one type of object found in Genesys. For example, a library of
equations contains a collection of Equation Blocks, and only other Equations Blocks can be
added to this library of equations. Schematic, Models, and Symbols are all considered to
be a design, and so a library of designs can contain all three of these. Libraries of parts
cannot be displayed in the Library Selector and must be viewed in the Part Selector.

The Library Selector operates for other objects much like the Part Selector operates for
parts. The Library Type sets the type of object library you want to view and the Current
Library sets to the particular library you want to display. The Filter By feature can be used
to display a subset of the Current Library. When you select an item, detailed information
about it is displayed in the information window at the bottom.

27

Genesys - Users Guide

Library Selector x
Library Type:
= Substrate A
Current Library:
Eagleware W
Gl & @
Filter By:
12
Mame ~

£ GE GETEK 0.010 ML 200D 1,2 oz
= GE GETEK 0,012 ML 200D 1/2 oz
£ GE GETEK 0.014 ML 200D 1/2 oz
& GE GETEK 0.018 ML 200D 1/2 oz
= GE GETEK 0,021 ML 200D 1/2 oz
= GE GETEK 0.028 ML 200D 1,2 oz
= E GETEK 0,058 RG200D 1/2 oz
— ;Roagers RO3003 1/2 oz ED 10 mil
=Rogers RO3003 1/2 oz ED 20 mil
=Fogers RO3003 1/2 oz ED 30 mil
—@Rnnere ROINNT 1/7 a7 FN G mil

Rogers RO3003 12 oz ED 10 mil{Substrate)

Library Selector | Part Selector A

To edit a workspace item:

1. Double-click an item in the Library Selector list. The object is placed into your
workspace and available for editing. Note that if this is a model or symbol you are
currently using in your workspace then the in-workspace version of the model/symbol will
override the library version.

& Hint
This is a great way to send self-contained workspaces to your coworkers, by embedding any custom
models or symbols (or vendor models or symbols) into the workspace itself.

To set the library type:
1. Click the Library Type pulldown and select a library type to find.

To change libraries:
1. Click the Current Library pulldown and select a library to switch to. The Current Library
pulldown only contains libraries of the type set in Library Type.

To search for specific objects:

1. Type the text for the items you want in the Filter By box. For example, in the library
shown above type 1/2 to find the 1/2 oz substrates or any objects whose name or
description contains that text. The filter is applied to the part name and description.

2. Click the Go button () to display the updated list.

To copy an object into a library
1. Right-click the item in the workspace tree and select the Copy To menu to copy the
object to a library.

To change which columns are displayed:
1. Right-click the column heading and check on or off the columns you want to see. Click a
column heading to sort by that column.

28

Genesys - Users Guide

To change the way the selector shows parts:
1. Right-click the white area in the selector and select from the View submenu.
Tune Window

It is a tool used for Tuning Variables (users). It is one of the most powerful features of

Genesys. You can use tuned variables(real time) almost anywhere in Genesys, including
part parameters.

Tune Window * O3 X
v & Hv A @
Variable | Value

Marmal ﬂ 3%

C1.C 47

L1.L 120

R1.R 50

R2.R 50
Saved Tune States -

']

55 % K
Analyses To Run (AutoRecalc) -
sij Frequencdes

T HB1

W system1

Any numeric parameter in a part can be made tunable. To get more information on how to
tune variables, see Tuning Variables (users).

29

Genesys - Users Guide

Tune Window Purpose

Component

% Accept Tuned |Applies the current Tune settings to the graphs, etc.
Settings

%' Refresh Scans for currently tunable variables

El+ variable Sets Tune Window Variable settings

Options

e Hide Name Prefix - Omits the name prefix, so the name is as short as possible
(overrides Long Names too). Duplicate variable names are common in this mode,
which is confusing, so the recommended setting is OFF.

e Long Names - Display the full name of the tunable variables
e Select Variables - Displays a window which allows several variables to be selected

at once.
[~l» Graph Enables graph checkpoints
Checkpoints
& Help Brings up help on tuning. (This page of documentation)
Variable Grid Contains the tunable variables
Variable Tuning Mode (dropdown)
¢ Normal - tune (increment / decrement) by a percentage value, usually 5 or 10%
e Step Size - tune by adding or subtracting the step size
e Standard - Use Standard part values. (Limits tuning to specified "standard"
values, which is useful for physical "lumped" parts i.e. resistors, capacitors, etc.)
Tuning Value Amount to tune variables by (in conjunction with tuning mode)
Variable - The name of a tunable variable, with optional info as set by the Item Menu
above.

Value - The value of a tunable variable. Click grid cell to activate tuning this variable.
Saved Tune States |Caches the current variable settings
e |7 Use These Settings - Opens saved settings
e Settings Name - Name of the current settings
o X Checkpoint the Graphs - Places checkpoint traces on the graphs

o K Remove All Graph Checkpoints - Removes checkpoint traces from all the
graphs (but does not delete nhamed settings)

Analysis To Run Provides easy access to the Automatic Recalc settings of all the Analysis in your
(AutoRecalc) workspace
e Check an analysis to enable its AutoRecalc mode, so that the analysis will run
when a variable is tuned
e Uncheck an analysis to disable its AutoRecalc setting, so the analysis will NOT
automatically run
The Tune Window is collapsible so as to reduce screen clutter, the Saved Tune States
and Analysis To Run panels can be hidden, via the "Fold" ~ button on the right of each
panels titlebar. (Click the "Unfold" = button to restore the panels to full height.)

Tune Window * 0 X
v & B Ry @

Variable | Value |
Step Size ﬂ 1
1 1
Saved Tune States -
Analyses To Run (AutoRecalc) -

The Tune Window also has a horizontal display mode, which is automatically triggered
30

Genesys - Users Guide
when the Tune Window is wide:

Tune Window v 0 X
& EH B @

Variable |Step Sizﬂ O3.H D4.H G2.Gain G3.Gain Ga.Gain
“alue 1 g 7 1 5 -1
Saved Tune States o
Analyses To Fun (AutoRecalc) -

0 1f you are tuning more than one variable which have the same name, you may notice duplicate nhames in
the list if you have selected the option to "Hide Variable Prefix" which shows shortened variable names.
The "Hide Variable Prefix" option is available by clicking the Variable Options [El~ toolbar button.

Simulation Status Window

When a simulation is running, various output will be shown in this window, including the
type of simulation being run and the status of the simulation. You can press the Stop
button to stop the calculations at anytime. You can also press the Hide button to hide the
status window, this will hide the status window and continue running the simulation. The
details of the active simulation are shown in the main box of the simulation status
window.

An example sweep

B Mix1_SweepRF Simulation Status

ERRRRRRRRERR Stop

Running Sweep, press the Stop button ko end calculations

Hide:
Miz1_SweepRF:
Sweeping RF.PAC at -3

Running Mixl_HB on Mixl _Schematic:

MaxResid= 1.42e-005, NormResid= 4.82e-006, NormCalcCount=22

Ampl= 100.0%, AmplSaved= 0.0%:

Method=DiagonalJacobian, Diag=z2, Chord=10, Full=0, Tatal=12

Ackivity=50lvels 100,0%:

Jacohian Memory: Jmem=908KE, Jspars=10.0%(Mon3parse), SizeFFT[1]:512=512
nBalFreqs=17, nModes=7, nUnknowns=238, nhonZeros=19, nkonLin=%

An example optimization

31

Genesys - Users Guide

M }Filter1_Goal Simulation Status

Running Optimization, press the Stop butkon to end calculations

Running MFilker1 _Goal:

Round: 9, Step: 271, Pattern Search:
Etrar Best=20.0195 Current=21.1972

Funning MFilter1 _Analysis on MFilker1 _Schematic:
Analysis MFilker1 _Analysis is 1.247% Complete

Click the Stop button to stop the simulation run.

Click the Hide button to hide the status window but continue the simulation. There is also
a Global option that always hides the status window. See the global options section.

Hiding the Simulation Status Window

The Hide button on the Simulation Status Window allows you to hide the currently running
simulation's status window. There is also a global option that can be set to never show the
simulation status window. There are two ways to turn the "Never Show Simulation Status

Window" option on or off:

« Use the Global Options Page. See General Global Options (users) for information on
making the setting this way.

« Use the toolbar start (‘%7 or stop ® - putton drop down.

To set the "Never Show Simulation Status Window" option from the toolbar:

Fid= Edit Wiew Schematic Action Tool Window Help

e [EE [E]
SN R S be =) @' .EII_SLDD Fuunining Analyses Evaluations

v Mever Show Simulation Status Window
Workspace Tree w+ 8 X

1. Click the drop down arrow beside the start = or stop ® - button on the main
toolbar. The stop button will only be visible when a simulation is running.
2. Toggle the "Never Show Simulation Status Window" menu entry.

When toggled on from the toolbar when a simulation is running the status window will
immediately be shown.

Error Log

The Error Log displays near the bottom of the Genesys window and alerts you to potential
problems in your design. You can display the Error Log whenever you open Genesys. Or,
you can have Genesys display the Errors window only when higher-level error messages
are generated.

32

Genesys - Users Guide

Type | Error | Location |
1 Warning Measurement ‘SignalPlusiolseFitered_Spectrum_Power' calculation faled: Error on line |RF Specira (Rectangular Graph) ST
1: Undefined function or varishle SignalPlushoiseFitered_Spectrum_Power'.
__Errar anline 1: Undefined function or variable 'SignalPlushaiseFitered_Spectrum_Power'. Egns (Equation) | Show
Warning Meazurement 'SignalPlusioise_Spectrum_Power' calculation failec Error on line 1 RF Spactra (Rectangular Graph) Showe
Unclefined funclion or variable "SignalPlushoise_Specirum_Power',
4 L Error on ine 1; Undefined function or variable ‘SignalPushoise_Spectrum_Power' Eqns (Equation) [__Show

Automaticaly Display Errors
click figure to enlarge

To open or close the Error Log:

1. Click View on the Genesys menu and select Error Log, or

2. If the window is open, click the close button (the x on the upper left) of the Error Log to
close the window, or

3. Click the Errors Button in the main toolbar.

To automatically display the Error Log for higher-level errors:
1. Click the Automatically Display Errors check box.

To clear out the messages in the error window
1. Click the Clear All Errors button.

Reviewing Error MessagesThe Error Log displays informational, warning, error,
and critical messages. The messages are color-coded by message type.

Informational Message - Green indicate a potential problem in your design.
Warning Message - Yellow indicate a minor problem in your design.

Error Message - Red indicate a problem in your design.

Critical Message - Black indicate a critical problem in your design.

Messages always have a Show button. Click to bring up a schematic showing the
highlighted error or a dialog showing the error line. If you have an undefined error, the
Show button may do nothing.

More than one error message can come from the same part. Look at the last error in the
list (the first to get thrown) to view the root error.

An instantiation error in a model during a simulation usually means that a parameter was
bad (invalid or out of range). It might also imply the model couldn't be found or has
changed since it was last used.

Using the Errors Window Button

You can also check for messages by viewing the Errors Window button on the Genesys
toolbar. The color and image on the Errors Window button show the highest-level message
in the Error Log.

Button Symbol Meaning
White Indicates there is no message.

Green Indicates an information message.

Yellow Indicates a warning message.

Red Indicates an error message.

Black Indicates a critical message.

33

Genesys - Users Guide
Using the Status Bar

The status bar is located at the bottom of the Genesys window.

Ready

It spans the width of the window and contains useful information or messages regarding
your current task. If there is no information, the default message is Ready. When an
action successfully completes, the default message is Done.

You should read the information in the status bar on a regular basis for assistance in using
the program.

Design Windows

All working windows in the workspace area are called Design Windows.

To show or hide any of the windows:
« Click View on the Genesys menu and select the window.

As you click inside each design window, the toolbar for that window will appear and may
replace toolbars from the previous design window. You can move or dock toolbars
anywhere in Genesys by grabbing the bar on the left and moving it (if docked) or grabbing
the title bar (if floating). If a desigh window is active (selected) among several windows,
its title bar becomes dark blue. The above examples show different toolbars to the left of
the main toolbar.

If you re-size or maximize a window, the contents will grow (or shrink) adjusting to the
new window size. Notes will reformat. Graphs print full-page and schematics print
according to their defined physical sizes (using shrink to fit if the page will not fit on the

paper).
Design windows are special in that they can show multiple views of itself, so you can see

the partlist in one tab, the schematic in another and the layout in yet a third tab. Right
click on the window and select the tab option to get another view of the design.

Workspace Area

The background of this area is gray and it holds any windows that are opened i.e.
schematic window, graph, notes window,smith chart etc.

Genesys - Users Guide

Schematic Window

Workspacs Area

You can open as many windows as you want in this area. The default schematic menu
icons are listed because that is the default window opened for any new workspace. This
menu icons list is changed with the window that is selected. If you open up a graph
window, the "schematics icons list" will give way to the "graph icons list".

Special Operations
Several operations that you can work out on the windows in your workspace area:

Tile them vertically or horizontally

Close all the open windows

Make the windows opened as tabbed

Show/Hide all other docking windows (so that only the opened window is visible)
Show all output windows

mulation Log

RN E

S

By default, the Simulation Log shows near the bottom of the Genesys window. However, it
is a docking window that can float or be docked in the Genesys window.

The content of the simulation log will depend on the simulation or evaluation that is run.
Each will show different information that ranges from a date and time run with execution
time to an output for each frequency simulated.

|Gmm_mew 'l

Swneep : GAMMa_Sweep -
3f22/2010..1:38 P

Execution time: 33.485 sac

10 rounds at about 3. 348 sac per round

L .3

To open or close the Simulation Log:
Click View on the Genesys menu and select Simulation Log

OR

If the window is open click the close button (the X on the upper left) of the Simulation Log
to close the window.

To select the analysis or evaluation you want to view:
1. Click the pull-down and select the desired analysis or evaluation.

35

Genesys - Users Guide

Setting Global Options for Genesys

Customize your working environment to best suit your needs using the global application
options. You can set options for things such as how numbers are formatted for, which
windows to display at startup, and which directories to use. The global options are saved
when the application ends and are restored the next time you run it.

Language Units Appearance
zeneral Skartup Garaph Schematic Laryout Directaries

To set Global Options

1. Click Tools on the Genesys menu and select Options.
2. Click any of the following option tabs:
General (users)
Startup (users)
Graph (users)
Schematic (users)
Layout (users)
Directories (users)
Language (users)
Default Units (users)
Appearance (users)
3. Select the options you want.
4. Click OK.

General Options Tab

Use the Global Options General window to select general environment options not specific
to any one area of the program.

Mumber Formatting

Exponential nokation above: | 28RS
P = Drop trailing zeros

Exponential notation below: | 0,01 Use engineering natation

Digits right of decimal; | 3 (powers of 3)
Simulation
[] pisable simulation caching {advanced) O short resiskance; | 1e-3 Chms

Walues
Auto-replace tuned values
[CIFillin parameter walues with default

LiveRepart: Scrall an Mause \Wheel
Allow compack File Farmat

] allow multiple open workspaces
\Warnings

Autornatically show Errars | Warnings
[]pisable out of date warnings
[]wvarn if model is not supported in ADS

[IMever show simulation status window

[assume 1:1 aspect ratio {advanced)

[Hi Factary Defaults]

To change general global options:

1. Click Tools on the menu and select Options.
2. Click the General tab.
3. Adjust the settings:

36

Genesys - Users Guide
Number Formatting - Specifies how the program should display numbers. This
format is used uniformly throughout (tables, graph axes, dataset displays).
Simulation - These settings control the simulation engines.
o Disable simulation caching: Turns off caching of simulation data (runs
slower when disabled).
o DC short resistance: Sets the DC resistance of a short.
Values - These settings control parameter values
o Auto-replace tuned values keeps the tuned values up-to-date.
o Fill in parameter values copies default values into blank parameter settings
(instead of leaving them empty).
Warnings - These settings control the display of Errors / Warnings
o Automatically show: Instructs the program to show the Errors window
when there are errors in the workspace and to hide the window when there
are no errors remaining.
o Disable out of date warnings turns off those warnings.
o Warn if model is not supported in ADS: When checked, an error will be
issued when a non-ADS model is placed on a schematic.
LiveReport: Scroll on Mouse Wheel - Option to control the mouse wheel
behavior on a Live Report. "Ctrl-Mouse Wheel" will zoom and "Shift-Mouse
Wheel" pans right or left. If this is not checked, it will zoom on scroll wheel.
Allow compact file format - Allows you to save compressed data files, which
are not compatible with version 2005.11 and earlier.
Allow multiple open workspaces - Allows more that one workspace (at a
time) to be open, so that items may be easily copied from one workspace to
another.
Never show simulation status window - Never show simulation status
window during simulations or evaluations.
Assume 1:1 aspect ratio - Ignhores incorrect video device information and
assumes that the video display has square pixels. Enable this setting if Smith
charts are oval, instead of circular.
Factory Defaults - When clicked, this button resets all of the settings on this
page of the dialog box.

4. Click OK.
Startup Options Tab

Use the Global Options Startup window to customize start up.

Ak Skartup

{*) Do a File New, as indicated below

) Load the workspace from the previous session

) Display the Welcome Page

2 File Mew

) Start with a blank workspace
(*) Display the Start Page

{1 Use the Defaulk Template workspace as a starting point:

Default wesx

|:| Ak skart-up run this scripk:

Ll

[[Juse default toolbar and docking pane settings on start-up

Ask ko visit web site at start-up (every 30 days)

[j Reset "Ask Again” Options [ﬂ Eactary Defaulks

37

Genesys - Users Guide
To change the startup global options:

1. Click Tools on the menu and select Options.
2. Click the Startup tab.
3. Adjust the settings:
o At Startup - Specifies the action taken each time the program is run.
« On File New - Specifies the action taken whenever a File / New action is
initiated.
« At startup run this script - Allows a custom startup action.
« Ask to visit web site at start-up - Will cause a dialog box to be shown every
30 days asking if the user wants to check the web for updates.
o Use default toolbar settings on startup - Forces the program to reinitialize
the toolbars at startup.
o Factory Defaults - When clicked, this button resets all of the settings on this
page of the dialog box.
4. Click OK.

Graph Options Tab

Use the Global Options Graph window to set global (shared) options for graphs.

em | Color s
1 Default Background Color | I—
2 Default Chart Background Color (center) I—
3 Default Grid Colar I -
4 Default Minor Grid Color | —
5 Default Series 1 Color I |~
& Default Series 2 Colar I -
7 Default Series 3 Colar I -
Show value tooltips (toagle with ALT) Autoscale Minimum for dB units:| -200
Draw Graphs in stages Anti-Aliasing (initial new graph settings)
= th Graph Ti
Automatically add a kitle bo new graphs MOOLh faraph Traces
Smiooth 30 Traces

Autornatically thicken series traces
[]smooth 30 Graph Background

[]smocth Polar Chart Background
[smoath Smith Chart Background

[] pefault to Logarithmic scale on %-Axis
Show Floating marker kext (18, "2, ...

[] shows vertex symbols on new graphs

[]Restore defaul: graph settings on load {advanced) [ﬂ Factory Defaults]

To change the graph global options:

1. Click Tools on the menu and select Options.
2. Click the Graph tab.
3. Adjust the settings:

« Item colors — These colors are used whenever a new graph or series is created.
To apply these colors to an existing graph, right-click inside the graph window
and select "Set All Colors To Defaults".

+ Show value tooltips - Shows the data value in a tool tip window when the
cursor is placed over a trace data point.

« Draw Graphs in stages - graphs can draw in stages. A simple graph is drawn
first and details are progressively added. This will help with optimizations and
sweeps where graphs redraw over and over.

o Automatically add a title - Places a simple title at the top of each new graph.

« Automatically thicken series traces - This setting will widen the lines used to

38

Genesys - Users Guide
draw the series (trace) line, when a graph is fairly large.

« Default to Logarithmic scale - Switches the X-axis from linear to logarithmic
scale.

 Show floating marker text - Enables short marker labels of the form '1a' or
'2'. If not checked, no floating marker text will be shown, when graph markers
are drawn in the margin on the right.

« Show vertex symbols - Marks series trace vertices with a dot or other symbol
(to help distinguish traces on a black & white printout).

« Restore default graph settings - This option is rarely used, but can recover a
graph from a damaged workspace file.

e Autoscale Minumum - The lower auto-scale boundry (prevents scaling all the
way down to -600dB).

o Anti-Aliasing - These check-boxes enable a smoothing effect to be used when
drawing graphs. This gets rid of the stair-stepped, jagged edges when graphs
are drawn. When enabled, the graph is drawn with a slightly fuzzy look, which is
actually sub-pixel accurate and can accentuate the slight ripples in a trace.

« Factory Defaults - When clicked, this button resets all of the settings on this
page of the dialog box.

4, Click OK.

Schematic Options Tab

Use the Global Options Schematic window to set options for all schematics.

Shiow
D Yaolkages Model Labels (such as "R=")
Designators |:| Parameters exactly as byped

Part parameter text

Met names: Default net prefix:

Flace Parts Grid

[]Place multiple parts {until Esc kevpress) Shiowe grid
[| Display Part Dialog when creating new park Snap ko grid
Symbals

[use 150 Symbals *
[use 14 grid symbols *

Rotation constrain angle: | 45

* (requires product restart to update Part Selector)

Cannections

Allow dragging wires Fram terminals Scroll On Mouse Wheel

Keep parts connected [ﬂ Factory Defaults]

To change the schematic global options:

1. Click Tools on the menu and select Options.
2. Click the Schematic tab.
3. Adjust the settings:

« Show - DC Voltages, Designators, Part Parameter Text, etc. Check to enable
the specified information to be displayed on a schematic.

« Place Parts - Multiple parts allows parts to be placed each time you left-click
on the schematic. Press the Esc key to stop dropping parts. Display Part Dialog
will bring up the part dialog each time a part is placed on a schematic, so that
the parameters may be entered.

e Grid - Show the background grid and snap the mouse cursor to the grid (if
enabled).

39

4. Click

Genesys - Users Guide
Symbols - Use ISO symbols: When checked, ISO standard symbols will be
placed. (The ISO standard resistor is a box, instead of a zigzag.) Use Vs grid
symbols: When checked, it will place ADS-compatible parts that have terminals
spaced on Y of the standard part length (which i the length of a resistor).
standard parts are on a 1/6th grid spacing. These settings will not take full
effect until you have exited and restarted. Rotation constrain angle: Sets the
F3-key rotation increment (usually 45 or 90 degrees).
Connections - Allow dragging wires enables schematic parts to be easily
connected; just place the mouse cursor over a part terminal, press the left-
button, and drag the newly-created connector to another node. Keep parts
connected ensures that schematic parts retain their electrical connections, by
inserting new wires (as necessary) when dragging parts. The Alt-key acts as a
toggle for the keep connect setting.
Scroll On Mouse Wheel - When checked, the mouse center wheel scrolls the
schematic window; when unchecked, the wheel zooms the window instead.
Factory Defaults - When clicked, this button resets all of the settings on this
page of the dialog box.
OK.

Layout Options Tab

Use the G

lobal Layout Options window to specify options for every layout you create.

R.akation

Part con

Show grid

Layout Mesh Resalution: | 0.001000 i

Scroll on Mouse Wheel

strain angle: | 45

[ﬂh Factory Defaults

To change the layout global options:

1. Click
2. Click

Tools on the menu and select Options.
the Layout tab.

3. Adjust the settings:

4. Click

Rotation / Part Constrain Angle - Specifies the allowable incrementatal
rotations (usually 45 or 90) for parts on a layout.

Layout Mesh Resolution - The default mesh resolution, which is used by
MomentumGX.

Show Grid - When checked, a grid will be displayed in all layout windows.
Scroll On Mouse Wheel - When checked, the mouse center wheel scrolls the
layout window; when unchecked, the wheel zooms the window instead.

OK.

40

Genesys - Users Guide
Directories Options Tab

Use the global options directories window to set the default directory paths.

Directory Path |
Temporary Starage Path CProgram FilesWsERNESY 52005 07\ Temp
Fitter [G-value) Protatypes CPragram FilesSENESY 52005 07 BinPrato
Z-Parameters Data Files COPragram FilesENESY Z2005 07 1=Data
Eaglersveare Fort Filez CProgram FilesWENESY 52008 07 Font
U=zer Likrary Filez CProgram FilesWENESY 52008 .07 Likb
U=zer Model Files ChDocuments and Settingzneswhite'hWy Documentst
GEMESYS Licenze File CWProgram FilesWsERNESY 52005 07 'License
Irternal Settings Files CPragram FilesWSENESY 52005 .07
Example Files COPragram FilesENESY Z2005 07 Examples
Momentum Files ChDocuments and Settingznesawhite'hWy Documentst

-_:?' Browse, .,

To set the global directory paths:

1. Click Tools on the menu and Select Options.
2. Click the Directories tab.
3. Click on Directory Path or label to see a description of what it's used for.

To change a path:

1. Click a Directory Path
2. Click Browse

3. Select the correct path
4. Click OK

© Note
You can edit the path directly.

Language Options Tab

Use the Global Options Language window to select a different language in which to run.
The default language is pre-selected for your computer and is listed as Automatic in this
window. Other choices include Chinese, Korean, and Japanese. You must restart your
computer before any language changes can take effect.

41

Genesys - Users Guide

Pick the language below,

Language: | Aukomatic

effect,

Although GEMESYS will automatically skart in the language selected For vour
compuker, vou may wish bo run GEMESYS in a different language.

‘au must restart GEMNESYS in order Far any changes to wour language seleckion to take

To change the language global options:

1. Click Tools on the menu and select Options.
2. Click the Language tab.
3. Select a language from the Language list.

4. Click OK.

Default Units Options Tab

Use the Global Options Units window to make global changes to the default units in a
schematic. Changing the default units has no bearing on any of the parts that are in the
schematic. Only the initial units of parts placed after the default unit changes are affected.

© Note

Physical length is unique. For layout dimensions, the units are specified in the General tab of the Layout
Properties window for each layout.

The global default units used are listed in the table below.

Quantity
Angle
Capacitance
Conductance
Current
Frequency
Inductance
Physical Length, Width, Height
Power
Resistance
Temperature
Time
Voltage

Units

Degrees

pF (picofarads)

mhos (1/ohms or Siemens)
Amps

MHz (Megahertz)

nH (nanohenries)

mm (millimeters), or based on substrate for netlist
dBm (referenced to a milliwatt)
ohms

C (Celsius)

ns (nanoseconds)

V (volts)

42

Genesys - Users Guide

© Note
Additional default units are available for non-linear models. They all begin with NL_. The default units for
these parameters are the industry standard units, and you should not need to change them.

Defaulk units for graphs, tables, new schematic elements and substrates

Parm | Units | Description | s
FREZ hMHz Freguency
RES ohim Resistance
COMD mhio Conductance
IMD rH Inductance
AP pF Capacitance
LG mim Lencth
TIME nz Titme
AMG " Al
oL W “oltage
CUR A Current
PChER dBm Pavver
TEMP i Temperature w

Moke: Metlists use the defaulk global units and the units specified in the substrate,
Chanaging these parameters will only affect new objects; existing schematics will nak
be modified,

Factory Defaults |

To change the global default units:

1. Click Tools on the menu and select Options.

2. Click the Units tab.

3. Change the units you want by clicking the Units grid cell next the parameter type
and selecting the desired unit from the pop-up combo box.

4. Click OK.

Appearance Options Tab
Use the appearance options window to see the default directory paths.

Wig Windows

") Tabbed with splitters [TPlace close butkon on kabs

() overlapped

[ﬂh Eactory Defaults

To change the appearance global options:

43

WN B~

Genesys - Users Guide
Click Tools on the menu and select Options.
Click the Appearance tab.
Adjust the settings:
« Tabbed with splitters - Specifies the use of tabbed view windows, with
splitter bars.
« Overlapped - Specifies the use of multiple document interface (MDI)
overlapping windows.
« Place close button on tabs - When checked, the tab close button will be
placed on the tab button itself (instead of being placed on the right).
« Factory Defaults - Restores the original factory values to these settings.
Click OK.

Genesys - Users Guide

Using Genesys

Contents

e Analysis (users)
Annotations (users)
Designs (users)

Equations (users)
Examining Datasets (users)
Graphs (users)
Importing/Exporting (users)
Layouts (users)

LiveReports (users)
Managing Libraries (users)
Optimization (users)

Parts, Models, and Symbols (users)
Ports, Connection Lines, and Nets (users)
Running Scripts (users)
Schematics (users)
S-Parameters (users)
X-Parameters (users)
Sub-Network Models (users)
Sweeps (users)

Tables (users)

Templates (users)

Testlink (users)

Text Netlists (users)

Tuning Variables (users)
Yield/Monte Carlo (users)

45

Genesys - Users Guide

Analysis

Circuits and systems can be analyzed in many different ways. When you simulate a circuit,
the settings for the analysis determine how the simulation runs. The analysis creates a
dataset with the simulation results. If an analysis is set to automatically recalculate, it will
re-simulate each time you make a change to the schematic design and then click a graph
or table dependent on the analysis.

Genesys provides the following analysis engines:

DC Analysis (sim) - Determines the circuit DC operating point.

Harbec Harmonic Balance Analysis (sim) - Checks the steady-state performance of
nonlinear circuits and oscillators with excellent frequency resolution.

Linear Analysis (sim) - Calculates S-parameters and noise parameters of a circuit,
substituting resistive ports for sources.

Empower Planar 3D EM Analysis (sim) - Performs a linear analysis based on a layout
using an electromagnetic simulation.

RF Design Kit Spectrasys (sim) - Performs a system-block-level non-linear analysis
on the entire system to determine if all system-level requirements are met.

Testlink (users) - Imports data from instruments to allow measurement comparison
with models used to develop the network being tested.

Cayenne Transient Analysis (sim) - Calculates a circuit response using the SPICE time
domain method.

For more info on theses analyses see the Getting Started with Genesys Simulation (sim)

To add an analysis

1.

2.
3.

Click the New Item button () on the Workspace Tree toolbar and select an
analysis from the Analyses menu. A new analysis of the selected type will be

created.

Workspace Tree

Ny E By B @
| 4 From Library. .. —|

A #Fndd RF Swskem Analvsis, ..
Ei::a;;ons ' = Add DC Analysis, ..
Graphs E3Add Empower Analysis, ..
e T Add Harmonic Balance Analysis. ..
i add Data., . @ Add Harmonic Balance Oscillator Analysis. ..
%2 Add Equation... S5 Add Linear Analysis, ..
I“_I Add Falder. . %7 add Momenturn GX Analysis...
5] Add Note... ™ Add Sonnet Analysis, ..
I Add LiveReport... = add Swstem Analysis, ..
£ Add Script... +{add TESTLINE™ Analysis,. .
._.-.a.rh-l o i &dd Transient Analysis, ..

Fill in the desired analysis parameters.
When you click OK or Calculate, the analysis will run and create a data set.

46

Genesys - Users Guide

Annotations

Annotations include text boxes, arrows, shapes, and controls (widgets) that can be placed
on a schematic, graph, or LiveReport to help document a workspace, highlight items of
interest, etc.

Tools Purpose

Rectangle |Draw a square or rectangle.

Ellipse Draw a circle or ellipse

Polygon Draws a filled polygon or unfilled polyline.

Arrow/Line Draw a line or arrow. Change the arrow style by selecting a line and picking an arrow type from
Arrows button menu.

Arc Draw a circular arc.

Picture Insert a picture. Use this annotation to add a company logo to a graph, for example. Double-
click the new object and select a JPG, GIF, or BMP image file to be displayed. (To allow all users
to see the image, the bitmap file should reside on a network server.)

Text Place text. Text has a number of settings. Double-click a text annotation to set the horizontal
and vertical justification (text alignment). The name of the text item can be changed and shown
on-screen, which simplifies building a schematic title block.

Text Draw a text balloon. This annotation has a "tail" which can be anchored to a data point on a

Balloon graph, to the page, or not anchored (using the right-button menu).

Button Draw a user button. This annotation can be "clicked" to run a custom script, which is specified
by double-clicking the outer EDGE of the button control. (The middle of the button runs the
script.)

Slider Draw a slider control. This annotation is linked to a tunable parameter and functions much like
the Tuning Window (users).

Settings Purpose

Fill Color Sets the annotation fill color. Use the 3 color buttons to change the colors of the selected
annotation(s). New annotations will be created using the current colors. The bottom-right color
swatch (with a diagonal slash) is transparent, which specifies an unfilled object.

Line Color |Sets the annotation line / border color. The bottom-right color swatch (with a diagonal slash) is
transparent, which specifies a object with no outline.

Text Color |Sets the annotation text color.

Line Set the width of borders and lines.

Thickness

Line Style |Set the drawing style of borders and lines (dash pattern, etc.).

Arrows Set the arrow style of lines.

Properties |Display the properties window for the selected annotation.

Contents

Creating Annotations (users)

e Line Annotations (users)

Text Annotations (users)
Button Annotations (users)
Slider Annotations (users)
Variable Selector (users)

Creating Annotations

The Annotation button on the Schematic, LiveReport, and Graph toolbars toggles the
display of the Annotation toolbar.

47

Genesys - Users Guide
hklmesw " wED@m 3 & -4 -A-==20

The toolbar provides tools like lines, circles, and text that you can use to point out details
of interest on a schematic, draw a box around a group of components, etc.

To place an annotation:

1. Click the various settings buttons (colors, line style, etc.) to adjust the settings for
newly created annotations

2. Click an annotation tool button (box, arc, text, etc.) on the Annotation Toolbar.

3. Click in a schematic, LiveReport, or graph window to place the new annotation.

4, Use the annotation setting buttons to change existing, selected annotations. (More
than 1 annotation can be adjusted at a time).

5. To set the Font for annotations with text, right-click the object and pick Font... from
the pop-up menu.

Line Annotations

Lines have many drawing options: Line Thickness, style, color, arrowheads, etc., which
are controlled via the Annotation toolbar and by the object's right button menu. Lines can
have arrowheads and ends. Simply select a line and pick an arrow type:

Arrow Heads Arrow Ends

Mone ® None
— >
" — 3= T
—> »>—
—= =
—> —
e —
—== -—
B>
—= -_
—< <
—== =
—< <
—=] =1—
—< <+—
— s
E— =}=C1—
O T = =

Text Annotations
A text annotation is a filled rectangular box with text inside.
To change the properties of a text annotation:
1. Double-click any text object.

2. Make the changes you want.
3. Click OK.

48

Genesys - Users Guide

Text Properties @

Mame: | Annotatel [5how Mame

Enter 1 or mare lines of text:

This iz some sample text.

Font: ’g} Arial: 14.0pt
Justification: | Center 4
Vertical Justification: | Vertically Centered “

Huorizontal Margin: | 50
(tempoararily in page coords - no units yet)
Vertical Margin: | 50

Property Purpose

Name The name of the Text object.

Show Name Displays the name of the text item, which simplifies building a adding a title
block or other "labeled text".

Enter Lines of Text Specifies the test to be displayed.

Font Click the button to set the font.

Justification Sets the horizontal justification (alignment) of the text: Left, Right, or Center.

Vertical Justification Sets the vertical alignment of the text: Top, Bottom, or Vertically Centered.

Horizontal and Vertical Sets the margins (border gap) of the text. Specified in page coordinates

Margins (1/1000ths of an inch).

Tips for advanced users

Text annotations can use equations. For example, if your workspace contains an equation
block with a text variable named CompanyName, you can place =CompanyName in the
Text field. (The leading = sign indicates that the text string is actually an expression.)
When the annotation is drawn, the equation will be evaluated and the result displayed.

Text annotations can display model and parameter info when used within a custom
symbol . This is implemented via macro-text-substitution. When symbol text is drawn on
a schematic, the displayed text is modified prior to output. For example, Name=%Model%
would be displayed as "Name=Resistor" on a symbol using a resistor model. The
recognized macro strings are:

% Des% - Displays the part's designator.

% Model% - Displays the name of the model attached to the part.

% MODEL% - Displays the model name in UPPERCASE.

% ParameterName®%bo - Displays the value of the specified model parameter
attached to the part. E.g. R, C, L, QL, MODE, etc.

Button Annotations (Widgets)

A button annotation is a control which runs a script when clicked. Buttons and other

DwnNR

49

Genesys - Users Guide
widgets are initially created using "stock Windows colors"; the controls' colors can easily
be changed using the Annotation toolbar, as can line thickness, etc.

To change the properties of a button:
1. Double-click the EDGE of any button object.

2. Make the changes you want.
3. Click OK.

Button Properties

Caplion:

Run Linear1

Enter script commands:

' get the workspace

w = theApp, GetWarkspaceByIndex(D)
' run the analysis

w.Project.Linear 1.RunAnalysis ()

Font: | g Arial: 20.0pt

Shape: |Rounded Rectangle W

[pisabled {grayed)
Property Purpose
Caption The title text displayed on the button.
Script Commands Specifies the script to be run, when the button is clicked.
Font To set the font.
Shape Buttons can be a rectangle, a rounded rectangle, or an ellipse.
Disabled Grays and inactivates the button.

Slider Annotations (Widgets)

A slider annotation is a control which adjusts a tunable equation variable, part parameter,
etc. Sliders and other widgets are initially created using "stock Windows colors"; the
controls' colors can easily be changed using the Annotation toolbar, as can line thickness,
etc.

To change the properties of a slider:
1. Double-click the EDGE of any slider object.

2. Make the changes you want.
3. Click OK.

50

Slider Properties

X|

Genesys - Users Guide

Variable: | LLL |
Qrientation: |Hu:urizu3nta| w |
Max: | 250
Slider Labels
4 Show Al
Number of Tics: |:| 3 Hide Al
Run simulation(s) when tuned Show variable name
[pisplay long variable name e
[JHide name prefix
[Jpisabled (grayed) Show min and max
[]snap to integer values Show units
[O] [Cancel]
Property Purpose
Variable The variable to be tuned.
'..." Button Brings up a selector to pick the variable.

Specifies the limits of the tuning range. These can be set to the names of equation
variables, for adjustable limits.

Min and Max

Units Displays the units of the tune variable.
Number of Tics The number of slider division marks.
Orientation Sliders can be horizontal or vertical.
Slider Labels

Show / Hide All

Run simulations

Specifies what text (if any) to display on a slider.
Check or uncheck all the Show checkboxes.
Runs enabled simulations on left-button up.

Display long variable |Displays the tune variable's long name (Eg: Project\Sch1\L1.L).
name

Hide name prefix Omits the part or equtaion name (Eg: L instead of L1.L).
Disabled Grays and inactivates the slider.

Snap to integer
values

Variable Selector

Limits the tuning to integer values.

This is displayed via the '..." button.

51

Genesys - Users Guide

Select a Variable X
Bitter byr ||
variable Path Ve Tured
L1L Project\Sch 111358 rH E
MyCap Project\sch LiEquations 42,05 pF X
MumEmulztiorPaints Project\Equation 1 4 X

[[] Part pararmmters onby | |

[2] Show huned variables grly L S

Property Purpose

Filter by Limits the variables displayed to only those that include the specified
text.

Variable Displays the variable's name.

Path Displays the full pathname of the variable.

Value Displays the current value of the variable.

Tuned Displays an X, if the variable is tunable.

Part parameters only Limits the variables displayed to only part parameters.

Show tuned variables only Limits the variables displayed to only tunable variables.

52

Genesys - Users Guide
Designs

A design is an abstract term used to define a collection of related items that fully
characterize a simulatable circuit. A design generally contains a schematic and parts list.
However, notes, equations, scripts, user defined parameters, substrate, and a layout can
also be added to any given design. The schematic is a visual representation of the parts
being simulated and their connectivity with each other. The schematic is generally the
heart of the design. Each tab at the bottom of the design window contains its
characteristics that complement and influence the design. Many of these tabs and their
added affects are optional. A design is the generic simulatable object. A schematic is a
design as well as a schematic symbol, model, user model, layout, footprint, sub-circuit,
etc. Designs are often contained in designs. The most common names for a design are
schematics, models, or parts. Throughout the documentation the term Schematic will be
generally synonymous with Design.

Designs contain the following characteristics:

e Parts List (this is required)

e Schematic (optional but is generally the preferred method of entering part
connectivity)

Notes (optional)

Equations (optional)

Scripts (optional)

Parameters (optional)

Substrate (optional)

Layout(optional)

The following figure has all attributes available to a design:

EEX

7
W= 40 1 03
L-225mil [

o

< >
ﬁ Partlizt DSchematic | ;‘mr Lot] E,Z Ecjuations] = Substrates I S}“ﬂNo‘tes] g Scripts] @Parame’cers J
S ——

Specific Types of Designs
A design is an abstract term used to define a collection of related items that fully

characterize a simulatable circuit. Specific types of designs contain a specific set of these
related items. All of the following items are specific types of designs:

53

Genesys - Users Guide
Schematic
Schematic Symbol
User Model
Footprint
Layout

Contents

Creating a Design (users)
Modifying a Design (users)
Design Properties (users)
Using Design Wizard (users)

Design Properties

General Tab

Use the General Properties tab page to change the general properties of a Design.

Design Properties

General | Schematic

Name: | S8

Description:

Symbal [£F Change Symbel

Intended Use

ﬂ {C) General Purpose
1> (®schematic

- OLayout

= Oivode

»

fiz= (O schematic Symbol

[Ok][Cancel] Help

« Name - The name of the Design.

« Description - The Design description (optional).

« Intended Use - What kind of Design is it? This setting controls the Design's icon on
the workspace tree and Genesys' interpretation of how the design is intended to be
used. (If it's a symbol, you can select it for a schematic part's symbol, if it's a model,
you will be able to select it as a model, etc.)

Modifying a Design
The following attributes can be added to a design:

Notes
Equations
Scripts
Parameters

Genesys - Users Guide
e Substrate
e Layout
Here is a brief overview of these attributes.

Notes

A note can be added to help document different aspects of the design.

Equations

An equation block can be added to a design so that variables can be based on equations.
These variables can be used for various design parameters. An equation block is generally
the link between the parameters a user would see and the parameters used in models.

D Note
These equations are local to the design. Other parts of your workspace cannot access the variables in this
equation set.

For more information see Equations (users).

Scripts

Scripts control Genesys operations. Add a script to your design to load files, save files,
save data sets, and change object parameters.

O Note
To run this script, copy the text and paste it into the Script Processor, then select
Run.

For more information see Running Scripts (users).

Parameters

Parameters are added to a design when the implementation details are generally hidden
from the user as is the case of a user model. When a design contains parameters this
design can be used as a user model and these parameters will be exposed as model
parameters in the part that uses this design as its model.

For more information see User Defined Parameters (users).

Substrate

Designs can contain any number of local substrates. This is used mainly when creating
models so that a model can have an underlying substrate. When your model looks for a
substrate it will look first in the Substrates container in the design and then in the
workspace. Other designs can not access substrates in this design's local container.

Adding a Design Attribute

To add one of these attributes to a design right click on one of the tabs at the bottom of
the design and select the desired attribute.
artlist {:}Schemaﬁcl

4,2 8dd Equation. ..
G Add Make, .

[Add Parameters. ..
=) add scrip..

55

Genesys - Users Guide

Deleting a Design Attribute
A tab can also be deleted from a design my right clicking on it and selecting the 'Delete’

menu entry.
Creating a Design

There are two different ways to to create a design in Genesys. One is the by clicking on

the New Item button () on the Workspace Tree toolbar or by right clicking on a
folder in the workspace tree.

\Method 1 - Clicking on the New Item Button
1. Click the New Item button (|#4.[) on the

Workspace Tree toolbar i T
. 4From Library. ..

‘Workspace Tree

2. Select the 'Designs >' submenu
3. Now select the design of interest 1 Analyses »
4, The design will added under the folder that i - Add Schematic. .
last selected in the workspace tree Evaluations {iiz=- Add Schematic Symbal. ..

=4 Add Graph... = Add User Model.,,

Method 2 - Right
Clicking on a Workspace
Folder

1. Right click on a

pace Tree

folder in the " —
workspace tree to O~ & B B-¢
bring up the right (28 Blank
click menu. B Designs I
2. Select the 'Add >' # Equati ~yFrom Library, ..
submenu. rerarng, —-r i —
3. Select the 'Designs Delete. . - .
>' submenu Properties. .. Y |- Add Schematic,..
4. Now select the Export... Evaluations ¥ | i add Schematic Symbal. ..
design of interest | @ —— &4 Add Graph. .. E- Add User Model.
5. The designwill | e
added under the
folder that was
initially right clicked

D Note
If you create the new design in the wrong folder, simply drag it to the folder of interest.

Using the Design Wizard

The Design Wizard makes designing easier if you are new to Genesys or if you want to
automate the design process.

56

Genesys - Users Guide

Create a New Design E|

Enter the new Design’s name:

Should the new design be
= (%) Based on an existing Design in a Library
Select this ko base your Design on a selection From a library,
-@>) & blank Schematic

Select this ba start with a blank schematic,

£+~ () A blank Layout

Select this ko start with & blank layout.

-D () Another kind of Design?

Select this For ather options.

Your selection here seks a skarting paint For vour Design, You may easily
change the components of the Design at any later time,

[ext =] ’ Cancel] [Help

To create a design using the Design Wizard:

1. Click the New Item button on the Workspace Tree toolbar and select Design
Wizard from the Designs menu.
1. Type a name for the design in the Enter the New Design's Name box.

2.

3.

Click a button to specify whether you want to base your design on an existing
design, a blank schematic, a blank layout, or another kind of design.
Do one of the following:
» Click Finish if you selected to base your design on a blank schematic or a
blank layout.
» Click Next if you selected to base your design on an existing design or
another type design.
If you selected Based on a Design in an Existing Library, do the following:
o Select the name of the library from the Select the Library Which Contains
the Prototype list.
» Select a prototype from the Select a Prototype list.
If you selected Another Kind of Design, do the following:
» Click one of the buttons to indicate your intended use for the design.
o Click Next.
« Click any of the boxes to select initial components to add to your design.
o Click Finish.

57

Genesys - Users Guide

Equations

Equations are a powerful tool that enable post processing of data, control over inputs to
simulations, and definition of user-defined custom models. Two languages are available
for defining equations: Engineering Language (EnglLang) and Mathematics Language
(Math Language).

Contents

e Equations User Interface (users)
Languages (users)

Hierarchy in Equations (users)

Automatic Calculation (users)

Debugging Equations (users)

Tips for Effective Equation Writing (users)

Using Engineering Language

Engineering Language is a simple programming language with structured control
statements. Variable types are defined in context and matrices and arrays can be easily
manipulated with equations.

o For a full description see Using Engineering Language (users).
e For a complete function reference see Engineering Language Function Reference
(users)

Using Math Language

Math Language, along with most of its built-in functions, was designed to be compatible
with m-file script syntax.

e For a full description see Using Math Language (users).
« For a complete function reference see Math Language Function Reference (users)

Comparing Engineering Language and Mathematics Languages
There are two languages available to use in Equations. Which one should you choose?

Engineering Language is well suited for interacting with the workspace and for ease of
use, while Mathematics Language gives you full control over array processing.
Mathematics language is the more powerful and flexible language, and those familiar with
MATLAB m-file syntax will prefer to use Mathematics Language. In Engineering Language,
it is simpler to access dataset variables (Dataset.Var is how you would access a variable
Var in a dataset called Dataset), and it understands Swept variables and provides some
flexibility in dealing with them.

Mathematics language is syntactically compatible with M-files. It has a lot of power for
numeric processing. In some common cases, Mathematics Language code can be more
verbose than Engineering Language. For example, if a Linear Analysis produces a swept
2x2 S-matrix of 100 frequencies, EngLang would understand that S[2,1] means S21 for all
frequencies. In Math Language, you must explicitly specify that you want all frequencies
by using the syntax S(:,2,1). However, there are some places where Mathematics

58

Genesys - Users Guide

Language is more compact, allowing things like 1+3j for a complex number, or 1/Var to
invert a matrix. Also, Mathematics Language includes support for file I/O and tcp/ip
communication functions, both of which are not supported in Engineering Language.

The two equation languages can talk to each other's variables (and the Math Language
may retain units and dependencies when you use an EnglLang variable). They do not share
functions because they are syntactically different (Math Language can return multiple
results, for example).

Select which language is being used by an equation set by picking from the Math or Eng
button pulldown in the Equation window.

G Equation1

Engineeting Language

pto
y Math Language
x=3
¥=3

Here is a simple comparison of Engineering Language vs. Mathematics Language:

Feature

EnglLang MathLang

Shortcuts for common vars (eg. S21) X

Read/write to/from Datasets X
Run Analysis from a script X
Array-assignments

File I/O functions

TCP/IP Comm (Instrument connectivity)
Signal Processing functions

Multiple return values for functions

XX | XX | X | X | X

Engineering Language Function Reference

To go directly to entries that start with a specific letter, select one of the following: A, B, C

D, EFGHLKLMNOPQRSTUYY,Z

Function Name

abs (users)
abssum (users)
ang (users)
ang360 (users)
acos (users)
acosh (users)
array (users)

asin (users)
asinh (users)
atan (users)
atanh (users)
beta (users)

betacdf (users)

Description

Magnitude of a number x.

Sums the magnitude of each part in x.
Phase of a complex nhumber x in radians.
Phase of a complex number x in radians.
Inverse cosine of x.

Inverse hyperbolic cosine of x.

builds an array with dimensions x by y by ... (can take in any number of arguments,
but at least 1).

Inverse sine of x.

Inverse hyperbolic sine of x.
Inverse tangent of x.

Inverse hyperbolic tangent of x.

Evaluates the Beta function for corresponding parts of z and w, which must be non-
negative real values.

Returns the cumulative distribution function of the Beta distribution with parameters a

59

betainc (users)

betainv (users)

betaln (users)

betapdf (users)
ceil (users)

column (users)
complex (users)

Genesys - Users Guide
and b evaluated at the
parts of x.

Evaluates the incomplete Beta function for corresponding parts of x, z, and w. x must
be between 0 and 1. z and
w must be non-negative real values.

Returns the inverse of the Beta cumulative distribution function with parameters a and
b evaluated at the parts of p.

Evaluates the natural logarithm of the Beta function for corresponding parts of z and
w, which must be non-negative
real values.

Returns the probability distribution function of the Beta distribution with parameters a
and b evaluated at the parts of x.

Returns the smallest integer greater than or equal to x. If x is complex, only the real
part is used.

Force a row or column vector x to be a column vector.
Returns the complex number x + jy.

concatcolumns (users) Concatenates matrices or vectors x and y. The number of rows of x and y must be

conj (users)
cos (users)
cosh (users)

cp (users)

cpk (users)
cplower (users)
cpupper (users)
db (users)
db10 (users)
dbm (users)
dbmtow (users)
dbpolar (users)
derivative (users)

dev_lin_phase (users)

diag (users)

erf (users)
erfc (users)
exp (users)
eye (users)

fft (users)

floor (users)

gamma (users)
gammainc (users)
gammaln (users)

gammatoz (users)

equal.

Complex conjugate of x.

Cosine of x, where x is in radians.

Hyperbolic cosine of x.

Process capability index.

Process capability index accounting for the mean.
Lower process capability index.

Upper process capability index.

x expressed in decibels as 20*log(x).

x expressed in decibels as 10*log(x).

Returns the dBm equivalent of x Watts.

Returns the Watts equivalent of x dBm.

Returns the complex value of a voltage in dB and the angle in degrees.

returns a vector that is the derivative at each point of the dependent with respect to
independent vector.

returns a vector in radians of deviation from linear phase; this function is a clone of
the ADS function by the same name.

If the argument is a matrix, this returns a vector with the diagonal parts. Otherwise,
the argument must be a vector,
and diag creates a matrix with the vector on the diagonal and all other parts zero.

Computes the error function of each part x.
Computes the complementary error function of each part of x.
e to the power of x, where e = 2.7182817...

Function to build an eye diagram from transient data. symbolRate is in Hz, numCycles
is the number of cycles to plot before
wrapping (optional), and delay is the number of samples of delay (optional).

Discrete Fourier Transform (DFT) of data, computed with FFT algorithm when possible.
The len argument (the FFT Length) is
optional.

Returns the largest integer less than or equal to x. If x is complex, only the real part
is used.

Evaluates the Gamma function for each part of x, which must be real.
Evaluates the incomplete Gamma function for each part of x, which must be real.

Evaluates the natural logarithm of the Gamma function for each part of x without
computing the Gamma function itself.

Returns the complex impedance given the normalizing impedance and the voltage
reflection coefficient (gamma).
60

getdbunit (users)

getindep (users)

getindepvalue (users)

getunits (users)

hb_gain (users)

hb_getspcomp (users)

hb_getspcompdbm
(users)

hb_iipn (users)
hb_ipn (users)

hb_larges (users)

hb_largesmix (users)

hb_oipn (users)

hb_spurious (users)

hb_totalsp (users)

hb_transgain (users)

hb_transgaindb
(users)

histogram (users)
hermitian (users)
identity (users)
iff (users)

ifft (users)

iftrue (users)
imag (users)

im (users)
integrate (users)

interpolate (users)
intersect (users)

inverse (users)
kurtosis (users)
largeS (users)
lininterp (users)

In (users)

log (users)
mag (users)
matrix (users)

Genesys - Users Guide

Returns the appropriate dB unit: RelDB10 if the input units are power or RelDB20 if
the input units are voltage/current.

Returns the string property containing the path to the independent value of a variable
x. (ie. the reference to the independent
variable)

Returns the value of the independent variable of a variable x. x must have only one
independent value.

Returns an integer corresponding to the units of a variable x. This integer may be
used by setunits.

Calculates the complex gain for selected spectral component.
Returns the complex amplitude of the spectral component in Watts.
Returns the amplitude of the spectral component in dBm.

Returns the input intercept point of two components IndexS1 and IndexS2 of the
power spectrum SpectrPout.

Calculates the common part of the input and output intercept point functions (hb_iipn
and hb_oipn).

Calculates the Large Signal S-parameter for a 1-tone HB analysis.
Calculates the LargeSignal S-parameter for multi-tone HB analyses.

Calculates the output intercept of the two components IndexS1 and IndexS2 of the
power Spectrum SpectrPout.

Calculates the max amplitude of spurious spectral components in the spectrum
SpectrVout.

Calculates total amplitude for spectral components having the same frequency and
sets all of them to the same total amplitude.

Calculates the transducer gain.
Calculates the transducer gain in dB.

creates bins for the data in x and returns the number of parts in each container.
conjugate transpose of a matrix or swept matrix x

Returns an nxn identity matrix. (Datatype is Complex)

Returns valuel if boolean expression is true, otherwise value2.

Inverse Discrete Fourier Transform (IDFT) of data, computed with IFFT algorithm
when possible. The len argument (IFFT length)
is optional.

If x is true, return y. x and y may be vectors.
Imaginary part of a (complex) number x.
Same as imag(x).

Numerically integrate the dependent with respect to independent, from index = start
to index = stop.

Produces an array where the independent value of var is changed to new_indep,
interpolating as necessary.

Produces a vector representing a set which is the intersection of two sets (vectors) x
andy.

Returns the inverse of a non-singular matrix x.
Returns the sample Kurtosis of x.
returns the largeSij for this HB dataset

Returns the linear interpolation of the output values given the data values of indep
and dep.

Natural logarithm of x.
Logarithm (base 10) of x.
Same as abs(x).

Builds an x by y matrix of complex numbers. parts are initialized to zero.
61

max (users)
mean (users)
median (users)
min (users)
mode (users)
moment (users)
ndim (users)
nftovni (users)
norm (users)
normcdf (users)

norminv (users)

normpdf (users)

numcols (users)
numrows (users)
ones (users)

posterror (users)

postwarning (users)

pow (users)
prctile (users)

prod (users)
quantile (users)

rand (users)

randn (users)

real (users)
re (users)
reshape (users)

resize (users)

Genesys - Users Guide
Returns the maximum (magnitude) part of any array x on the dimension iDim.
Returns average of all parts in a vector or an array on the dimension iDim.
Returns the median of all parts in a vector or an array on the dimension iDim.
Returns the minimum (magnitude) part of any array x on the dimension iDim.
Returns the mode of all parts in a vector or an array on the dimension iDim.
Returns the central moment of order order of a vector x.
Number of dimensions of an array x.
Converts noise factor into an equivalent input noise resistance.
Magnitude-squared of a complex number x.

Returns the cumulative distribution function of the normal distribution with mean mu
and standard deviation sigma evaluated at
the values of x.

Returns the inverse cumulative distribution function of the normal distribution with
mean mu and standard deviation sigma evaluated
at the values of x.

Returns the probability distribution function of the normal distribution with mean mu
and standard deviation sigma evaluated at the
values of x.

Returns the number of columns in a matrix x.
Returns the number of rows in a matrix x.

if n argument is omitted: generate a vector of m 1's, otherwise generate an mxn
matrix of 1's.

Converts the argument to a string (if necessary) and posts the string to the error log.
The error stays on the log until the equations

are recalculated. This causes the equations to error out and not calculate, as well as
posting the error.

Converts the argument to a string (if necessary) and posts the string to the error log
as a warning. The warning stays on the log until

the equations are recalculated. This does not cause the equations to error out. The
equations will calculate.

Returns x to the power of y.

Returns the p'th percentiles of a vector x (p can be a scalar or a vector of percent
values).

Calculates the product of all the parts in x.

Returns the q'th quantiles of a vector x (q can be a scalar or a vector of quantile
values).

Generate uniformly distributed random numbers on the interval [0, 1). Both
arguments are optional. If both arguments are omitted,

the function returns a random scalar. If the second argument is omitted, generate a
vector of m random numbers. Otherwise, generate

an mxn matrix of random numbers.

Generate Gaussian distributed random numbers with mean 0 and variance 1. Both
arguments are optional. If both arguments are

omitted, the function returns a random scalar. If the second argument is omitted,
generate a vector of m random numbers. Otherwise,

generate an mxn matrix of random numbers.

Real part of a (complex) number x
Same as real(x)

sets the dimensions of the variable x to be that described by newshape. Swept-
dimensions are NOT counted. (eg. if S is the variable

produced by a 100 point linear analysis of a 2-port circuit, reshape(S, [4;1]) would
return a variable containing S, but having

dimensions 100x4x1)

sets the dimensions of the variable x to be that described by newshape. Swept-

dimensions are counted. (eg. if S is the variable
produced by a 100 point linear analysis of a 2-port circuit, resize(S, [100;4;1]) would

62

reverse (users)

rltogamma (users)

ritoz (users)

rotate (users)

RsCondToThick
(users)

RsResToThick (users)

RsRhoToThick (users)

runanalysis (users)

setindep (users)

setplottype (users)

setunits (users)

shape (users)

sin (users)
sinc (users)

sinh (users)
size (users)

skewness (users)
sort (users)

std (users)

sqgr (users)

sqgrt (users)

Genesys - Users Guide
return a variable containing S, but having
dimensions 100x4x1)

returns the reverse of a vector, so [1,2,3,4] becomes [4,3,2,1]; for matrices this will
reverse the columns

Returns the voltage reflection coefficient (gamma) based on the return loss in dB and
the angle in radians

Returns the complex impedance based on the normalizing impedance, return loss in
dB and the angle in radians

rotates a vector by the integer rotate; if vector = [1,2,3,4], rotate(vector,2) returns
[3,4,1,2]; for matrices this will rotate
the rows.

Returns metal thickness in defined by string parameter Tunits units;
RsCondToThick(Rs,Cond, Tunits);

Rs - sheet resistance Ohm/Sg, Cond - conductivity Ohm*M
Examples: T_mil=RsCondToThick(50,5.8e7,"mil");
T_mm=RsCondToThick(50,5.8e7,"mm")

Returns metal thickness in defined by string parameter Tunits units;
RsResToThick(Rs,Res, Tunits);

Rs - sheet resistance Ohm/Sq, Res - resistivity Ohm*M

Examples: T_mil=RsResToThick(50,1.724e-8,"mil"); T_mm=RsResToThick(50,1.724e-
8,"mm")

Returns metal thickness in defined by string parameter Tunits units;
RsRhoToThick(Rs,Rho,Tunits);

Rs - sheet resistance Ohm/Square, Rho=Res/ResCop - relative to copper resistivity
Res, where copper resistivity ResCop=1.724e-8 Ohm*M

Examples: T_mil=RsRhoToThick(50,1000,"mil");
T_mm=RsRhoToThick(50,1000,"mm")

Run an analysis in the workspace tree

set the independent reference for a swept dependent variable to indepvar(s). A
minimum of two arguments is required.

This function can be used to remove all independent values of a variable by passing in
a blank string for the second argument.

sets the plot-type property of a variable. Valid plot types include "" (Empty string),
"Discrete", "Spectrum", "Level", "Spur",
"SpurFree", "OutOfRange", "ValidIF", "Contour", "PointPlot", and "Histogram".

sets a variable named varname to have units specified by unit. unit may be an
integer or a string. Example setunits("totaltime","msec")

or setunits("frqsweep", "MHz"). The units are used to by graphs to determine the axis
labels and values. They can also by used by the

Tune window. Use UseMKS if you are settings units of variables manually to avoid
confusion.

Returns a vector containing the number of parts in each dimension of x. Swept-
dimensions are NOT counted. (eg. if S is the

variable produced by a 100 point linear analysis of a 2-port circuit, shape(S) returns
the vector [2;2]).

Sine of x, where x is in radians.

Sin(x)
/x, or1ifx =0.

Hyperbolic sine of x.

Returns a vector containing the number of parts in each dimension of x. Swept-
dimensions are counted. (eg. if S is the

variable produced by a 100 point linear analysis of a 2-port circuit, size(S) returns the
vector [100;2;2]).

Returns the sample skewness of a vector x.
Sorts a vector x in ascending order.
Calculates the standard deviation of x.
Square-root of x.
Same as sqr(x).

63

stoy (users)
stoz (users)
stos (users)

substrateer (users)
substratetand (users)
substraterho (users)
substratetmet (users)

substraterough
(users)

substrateh (users)
sum (users)
tan (users)
tanh (users)
tcdf (users)

tinv (users)
time (users)

times (users)

timevector (users)
tpdf (users)

transpose (users)
union (users)

englang_unwrap
(users)

using (users)
var (users)
vector (users)
zeros (users)

abs

Syntax
y = abs(x)

Definition

Genesys - Users Guide
convert S-parameters to Y-parameters

convert S-parameters to Z-parameters

renormalize S-parameters to a different impedance

return the dielectric constant (Er) of the substrated named SubstName.
return the loss tangent of substrate named SubstName.

return the relative resistivity of substrate named SubstName.

return the metal thickness of substrate named SubstName.

return the surface roughness of substrate named SubstName.

return the height of substrate named SubstName.

Calculates the sum of all the parts of x on the dimension iDim.
Tangent of x, where x is in radians.

Hyperbolic tangent of x.

Returns the cumulative distribution function of the Student's T distribution with
degrees of freedom parameter v evaluated at the
parts of x.

Returns the inverse of the cumulative distribution function of the Student's T
distribution with degrees of freedom parameter v
evaluated at the parts of p.

constructs a time-domain waveform from complex spectra at arbitrary frequencies.
(Eg: time(V1, Freq, Time) where V1, Freq, and Time are variables in a HarBEC
Dataset)

Returns the part-by-part product of the two arguments. If one entry is a scalar and
one is an array, the return value is

the scalar multiplied by every part in the array. This is in contrast to the * operator
that does matrix multiplication.

Creates a vector of times from start to stop with a specified step size.

Returns the probability distribution function of the Student's T distribution with
degrees of freedom parameter v evaluated at
the parts of x.

Transposes a matrix or swept matrices x
Produces a vector representing a set which is the union of two sets (vectors) x and y

returns a vector of unwrapped phase; both input and output of the function are
radians (note that ang() returns radians so
this is already self-consistent; z = unwrap(ang(Linear1.S[2,1])) is an example.

sets the current context in an equation block to the dataset called Dataset.
Calculates the variance of x.
Builds a vector of complex numbers of length x. parts are initialized to zero.

if n argument is omitted: generate a vector of m Q's, otherwise generate an mxn
matrix of 0's

abs takes the absolute value of a real variable or the magnitude of a complex variable.
Same as mag function

Examples:

Genesys - Users Guide

Formula Result
abs(-1.5) 1.5
abs(complex(1,1)) |1.414
abs([-1;-2;3]) [1;2;3]
Compatibility
Numeric scalars, Vectors, Arrays
See Also
mag (users)
abssum
Syntax

y = abssum(x)

Definition

abssum calculates the absolute value of each part in x and returns the sum of those
parts. If an part in x is a complex number then the magnitude of the part is used in the
summation.

Examples:

Formula Result
x=[-2.1,3.4,56] 11.1

y = abssum(x)

x = [complex(1,-.4), complex(-1,1)] 2.491
y = abssum(b)

Compatibility
Numeric scalars, Vectors, Arrays

See Also
abs (users)

aCosS

Syntax
y = acos(x)

Definition
acos returns the inverse cosine of the number, in radians (MKS) between 0 <=r <= PI

Examples:

Formula Result or

acos(0) 1.571 |PI/2

acos(1) 0 0

acos(-1) |[3.141 |PI

acos(.707) |0.786 |Pl/4

acos(-.707) |2.356 |3*PI/4
Compatibility

Numeric scalars, Vectors, Arrays

See Also

65

Genesys - Users Guide
asin (users)

acosh

Syntax
y = acosh(x)

Definition
acosh returns the inverse hyperbolic cosine of the number, or log(x + sqrt(x2 - 1)).
acosh takes magnitude of a complex argument before evaluating.

Examples:

Formula |Result
acosh(1) 0

acosh(10) |2.993
acosh(0) |undefined

Compatibility
Numeric scalars, Vectors, Arrays

See Also

e asinh (users)
e atanh (users)

ang

Syntax
y = ang(x)

Definition

ang finds the angle of a complex number. The range of y is -180 to 180 degrees;
internally, the number is stored in radians (MKS), but since the unit is ANGLE, the value
can be displayed in degrees or radians. (This differs from ang360, which returns a
unitless value.)

Examples:

Formula Result
ang(1) 0

ang(complex(sqgr(3)/2,.5))0.524
ang(complex(1,1)) .785

Compatibility
Numeric scalars, Vectors, Arrays

See Also
ang360 (users)

ang360

66

Genesys - Users Guide

Syntax
y = ang360(x)

Definition

ang360 finds the angle of a complex number in degrees. The range of y is 0 to 360;
ang360 specifically returns a unitless value (unlike ang, which returns a value with
ANGLE units).

Examples:

Formula Result
ang360(1) 0
ang360(complex(sqgr(3)/2,.5))30
ang360(complex(1,1)) 45
Compatibility
Numeric scalars, Vectors, Arrays
See Also
ang (users)

array
Syntax

y = array(a, b, ...)

Definition
array creates a multidimensional complex array. The argument list must have at least one
integer (to produce a vector). All arguments are set to zero.

Examples:
Formula Result
array(2) a 2 part vector

array(3, 4, 5) |a 3 dimensional array of size 3x4x5
Compatibility
Variable length integer list

See Also

e reshape (users)
e shape (users)

asin

Syntax
y = asin(x)

Definition
asin returns the inverse sine of the number, in radians (MKS) between -PI / 2 <=r <= PI

/2

Examples:

67

Genesys - Users Guide
Formula Result or
asin (0) 0 0
asin (1) 1.571 |PI/2
asin(-1) -1.571 |-PI/2
asin (.707) 0.786 |Pl/4
asin (-.707) |-0.786 |-PI1/4
Compatibility
Numeric scalars, vectors, arrays

See Also
acos (users)

asinh

Syntax
y = asinh(x)

Definition
asinh returns the inverse hyperbolic sine of the number, or log(x + sqrt(x2 + 1)). asinh
takes magnitude of a complex argument before evaluating.

Examples:

Formula |Result

asinh(1) /0.881

asinh(10) |2.998

asinh(0) |0

Compatibility

Numeric scalars, vectors, arrays

See Also

e acosh (users)
e atanh (users)

atan

Syntax
y = atan(x)

Definition
atan returns the inverse tangent of the number, in radians (MKS) between -PI/2 < r <
PI1/2

Examples:

Formula |[Result or
atan(0) |0

atan(1) |0.785 |PI/4
atan(-1)|-0.785 |-P1/4
atan(.5) |0.464

atan(-.5) -0.464
Compatibility

68

Genesys - Users Guide
Numeric scalars, Vectors, Arrays

See Also
tan (users)

atanh

Syntax
y = atanh(x)

Definition
atanh returns the inverse hyperbolic tangent of the number, or 0.5 * log((1 + x) / (1 -
x)). atanh takes magnitude of a complex argument before evaluating.

Examples:

Formula Result

atanh(1) |undefined

atanh(.5) |0.549

atanh(-.5)|-0.549

atanh(0) |0

Compatibility

Numeric scalars, Vectors, Arrays

See Also
tanh (users)

beta

Syntax
y = beta(z, w)

Definition
Evaluates the Beta function for corresponding parts of z and w, which must be non-
negative real values. Both must be of equal dimensions, or either one can be a scalar.

The Beta function is defined as the integral from 0 to 1 of t~(z-1)*(1-t)~(w-1) dt.

Examples:
Formula Result
beta(1.5, 2) 0.2667

beta([3, 4, 5], 3) [0.0333, 0.0167, 0.0095]
Compatibility
Numeric scalars, Vectors, Arrays

See Also

gamma (users)
gammaln (users)
gammainc (users)
betaln (users)

e betainc (users)

betacdf

69

Genesys - Users Guide
Syntax
y = betacdf(x, a, b)

Definition

Returns the cumulative distribution function of the Beta distribution with parameters a and
b evaluated at the parts of x. All inputs must match in dimensions or be scalars. Scalars
are treated as constant arrays of size compatible with the other arguments.

Examples:

Formula Result
betacdf(0.5, 1, 1.5) |0.6464
betacdf(0.8, [1, 2], 3)|[0.992, 0.9728]
Compatibility

Numeric scalars, Vectors, Arrays

See Also

e betapdf (users)
e betainv (users)

betainc

Syntax
y = betainc(x, z, w)

Definition

Evaluates the incomplete Beta function for corresponding parts of x (which must be
between 0 and 1), z, and w, which must be non-negative real values. The arguments
must be of equal dimensions, or any one can be a scalar.

The incomplete Beta function is defined as (1 / beta(z, w)) times the integral from 0 to x
of t~(z-1)*(1-t)~N(w-1) dt.

Examples:

Formula Result

betainc(0.5, 1.5, 2) 0.6187

betainc(0.8, [3, 4, 5], 3)|[0.9421, 0.9011, 0.852]
Compatibility

Numeric scalars, Vectors, Arrays
See Also

gamma (users)
gammaln (users)
gammainc (users)
beta (users)
betaln (users)

betainv

Syntax
x = betainv(p, a, b)

70

Genesys - Users Guide
Definition
Returns the inverse of the Beta cumulative distribution function with parameters a and b
evaluated at the parts of p. All inputs must match in dimensions or be scalars. Scalars
are treated as constant arrays of size compatible with the other arguments.

Examples:

Formula Result

betainv(0.5, 1, 1.5) |0.37

betainv(0.8, [1, 2], 3)|[0.4152, 0.5825]
Compatibility

Numeric scalars, Vectors, Arrays

See Also

e betapdf (users)
o [betacdf]

betaln

Syntax
y = betaln(z, w)

Definition

Evaluates the natural logarithm of the Beta function for corresponding parts of z and w,
which must be non-negative real values. Both must be of equal dimensions, or either one
can be a scalar.

Since the Beta function can range over huge values, it is sometimes preferable to use its
logarithm.

Examples:

Formula Result

betaln(1.5, 2) -1.3218

betaln([3, 4, 5], 3) |[-3.4012, -4.0943, -4.654]
Compatibility

Numeric scalars, Vectors, Arrays

See Also

gamma (users)
gammaln (users)
gammainc (users)
beta (users)

e betainc (users)

betapdf

Syntax
y = betapdf(x, a, b)

Definition
Returns the probability distribution function of the Beta distribution with parameters a and
b evaluated at the parts of x. All inputs must match in dimensions or be scalars. Scalars

71

Genesys - Users Guide
are treated as constant arrays of size compatible with the other arguments.

Examples:

Formula Result
betapdf(0.5, 1, 1.5) |1.0607
betapdf(0.8, [1, 2], 3) |[0.12, 0.384]
Compatibility

Numeric scalars, Vectors, Arrays

See Also

e betacdf (users)
e betainv (users)

ceil
Syntax
y = ceil(x)

Definition
ceil returns the smallest integer greater than or equal to x. If x is complex, only the real
part is used.

Examples:
Formula Result
ceil(10) 10
ceil(complex (1.5,6)) 2
ceil([-0.5, 0.5 1) [0,1]
Compatibility
Numeric scalars, vectors, arrays
See Also
floor (users)
column
Syntax

y = column(x)

Definition
Creates a column vector y from a row or column vector x. A column vector has one
column and one or more rows.

Examples:

Formula Result

x =1[1,2,3,4,5]y = column(x) ly = [1;2;3;4;5] (vector of 5 rows and 1 column)
Compatibility

Vectors

See Also
transpose (users)

72

Genesys - Users Guide
complex

Syntax
z = complex(x, y)

Definition

Returns a complex number in the form x + jy. The complex number(s) are stored as z = (
x2 + y2)(1/2). By default the magnitude of the complex number(s) will be displayed in
tables and datasets. complex(x, y) can be used on vectors or matrices of same
dimensions.

Examples:

Formula Result
complex(1,1) 1+j=1.414
complex(1,-4) 1-j4=4.123
complex([0,5],[3,0]1)[3,5]1]
complex(5,0) 5

Compatibility
Numeric Scalars, Vectors, Arrays

See Also
mag (users)

concatcolumns

Syntax
z = concatcolumns(x, y)

Definition
Concatenates x and y. Variables x and y must have the same number of rows, be
compatible data types, and have no more that two dimensions.

Examples:

Formula Result
x=[1,2] z=[1,2,3,4]
y=[3,4]

z = concatcolumns(X , y)

x=[1;3;5] z2=101,2;3,4;5,6]
z = concatcolumns(X , Yy)

Compatibility

*, Numeric Scalars

*, array (users)

*. vector (users)

conj

Syntax
y = conj(x)

Definition
Calculates the complex conjugate of x, where x is a complex number. The conjugate of x
+ jy is x - jy.

73

file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+Scalars&linkCreation=true&fromPageId=88319616
file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+Scalars&linkCreation=true&fromPageId=88319616

Genesys - Users Guide

Examples:

Formula Result

conj(complex(1,2)) 1-j2

y =conj(complex([1;2],[3;-4]1))yl[1]=1-]3
v[2]1=2+ij4

Compatibility

*. Numeric Scalars
*, array (users)
*. vector (users)

COSs

Syntax
y = cos(x)

Definition
cos returns the cosine of the number, in radians (MKS) between -1 <=r< 1

Examples:

Formula Result
cos(0) 1

cos(PI) -1
cos(PI/2) 0

cos(PI1/ 4) 0.707
cos(2.094) orcos(2*PI/3)-0.5
Compatibility

Numeric scalars, Vectors, Arrays

See Also
sin (users)

cosh

Syntax
y = cosh(x)

Definition
cosh returns the hyperbolic cosine of the number, or (ex + e-x) / 2.

Examples:

Formula Result

cosh(1) 1.543

cosh(5) 74.21

cosh(PI/3) 1.6

cosh(PI/6)1.14

cosh(0) 1

Compatibility

Numeric scalars, Vectors, Arrays

See Also

74

file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+Scalars&linkCreation=true&fromPageId=88319617
file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+Scalars&linkCreation=true&fromPageId=88319617

Genesys - Users Guide
acosh (users)

Cp

Syntax
y = Cp(USL, LSL, DataArray)

Definition
Determines the process capability index of a numeric array given both upper and lower
specification limits.

The Cp function is defined as (USL - LSL) / (6 * std(DataArray)) where USL is the
Upper Specification Limit, LSL is the Lower Specification Limit, and DataArray is a numeric
array of data points for which the standard deviation will be derived.

Examples:

Formula Result

cp(9,5, [6, 7.5, 6.2, 8.1, 8.5]) 0.596

Cp([16, 12], [8, 6], [6.3, 7.2, 6.4, 8.4, 7.9]) [1.452, 1.089]
Compatibility

Numeric arrays

Library
Process Capability in MoreFunctions.xml.

|'ﬂ NOTE: This library is not automatically loaded at startup.

See Also
cpk, cplower, cpupper

Cpk

Syntax
y = Cpk(USL, LSL, DataArray)

Definition
Determines the process capability index of a numeric array given both upper and lower
specification limits. This index also includes the affects of the mean value of the data.

The Cpk function is defined as min(CpUpper(USL, DataArray), CpLower(LSL, DataArray
)) where USL is the Upper Specification Limit, LSL is the Lower Specification Limit, and
DataArray is a numeric array of data points for which the standard deviation will be
derived.

Examples:

Formula Result
Cpk(9, 5, [6, 7.5, 6.2, 8.1, 8.5]) |0.518
Compatibility

Numeric arrays

Library
Process Capability in MoreFunctions.xml.

75

file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+arrays&linkCreation=true&fromPageId=88319620
file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+arrays&linkCreation=true&fromPageId=88319620
file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+arrays&linkCreation=true&fromPageId=88319621
file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+arrays&linkCreation=true&fromPageId=88319621

Genesys - Users Guide

|'ﬂ NOTE: This library is not automatically loaded at startup.

See Also

e cp (users)
o cplower (users)
e cpupper (users)

CpkLower

Syntax
y = CpkLower(LSL, DataArray)

Definition
Determines the lower process capability index of a numeric array given the lower
specification limit.

The CpkLower function is defined as (mean(DataArray) - LSL) / (3 * std(DataArray)
) where LSL is the Lower Specification Limit and DataArray is a numeric array of data
points for which the standard deviation will be derived.

Examples:

Formula Result
CpkLower(5, [6, 7.5, 6.2, 8.1, 8.5])/0.673
CpkLower([5, 41, [5.2, 6.9, 6.2]) [0.429, 0.819]
Compatibility

Numeric arrays

Library
Process Capability in MoreFunctions.xml.

|'ﬂ' NOTE: This library is not automatically loaded at startup.

See Also

e cp (users)
e Cpk (users)
e cpupper (users)

CpkUpper

Syntax
y = CpkUpper(USL, DataArray)

Definition

Determines the upper process capability index of a numeric array given the upper
specification limit.

The CpkUpper function is defined as (USL - mean(DataArray)) / (3 * std(DataArray)
) where USL is the Upper Specification Limit and DataArray is a numeric array of data
points for which the standard deviation will be derived.

Examples:

76

Genesys - Users Guide
Formula Result
CpkUpper(9, [6, 7.5, 6.2, 8.1, 8.5]) |0.518
CpkUpper([9, 8], [5.2,6.9,6.2]) |[1.131, 0.741]
Compatibility
Numeric arrays

Library
Process Capability in MoreFunctions.xml.

|'ﬂ NOTE: This library is not automatically loaded at startup.

See Also

cp (users)

cpk (users)
cplower (users)

db

Syntax
y = db(x)

Definition
db returns x expressed in decibels as 20 * log(x).

Examples:

Formula |Result

db(1) 0

db(100) 40

db(0.001) -60

Compatibility

Numeric scalars, Vectors, Arrays

See Also
db10 (users)

db10

Syntax
y = db10(x)

Definition
db10 returns x expressed in decibels as 10 * log(x).

Examples:
Formula Result
db10(1) 0

db10(100) 20
db10(0.001) -30
Compatibility
Numeric scalars, vectors, arrays

See Also

77

Genesys - Users Guide
db (users)

dbm

Syntax
y = dbm(x)

Definition
dbm returns the dBm equivalent of x Watts, or 10 * log (x * 1000) where x is measured
in Watts.

Examples:

Formula Result

dbm(1000) |60

dbm(1) 30

dbm(0.5) |26.99

Compatibility

Numeric scalars, Vectors, Arrays

See Also
dbmtow (users)

dbmtow

Syntax
y = dbmtow(x)

Definition
dbmtow returns the Watt equivalent of x dBm, or (1 /1000) * 10 (x / 10) where x is
measured in dBm.

Examples:

Formula Result

dbmtow(60) |1000

dbmtow(30) |1

dbmtow(27) |0.501
Compatibility

Numeric scalars, Vectors, Arrays

See Also
dbm (users)

dbpolar

Syntax

y = dbpolar(dB, ang)

Definition

dbpolar returns the complex value of a voltage dB and an angle ang. The voltage is
measured in dB and the angle is measured in degrees. Can only take in humbers and
square matrices.

Examples:

78

Genesys - Users Guide
Formula Result
dbpolar(12, 45) 2.815 + j2.815
dbpolar(0, 60) 0.5 + j0.886
dbpolar(100, 15)/96592.6 + j25881.9
Compatibility

« Numeric scalars
e array (users)

derivative

Syntax
z = derivative(dep, indep)

Definition

Returns a vector that is the derivative at each point of the dependent with respect to the
independent. Parameter dep is the dependent vector and indep is the independent vector.
Parameters must be column vectors.

Examples:

Formula Result
x=[1;2;3;4,;51z=[3;3;5;7;9]
y = X2

z = derivative(y, x)
x=[4;0;4;0;412=[2;2;2;2;2]
y=x"(1/2)

z = derivative(x, y)

Compatibility
Vectors

See Also
integrate (users)

dev_lin_phase

Syntax
z = dev_lin_phase(x,vy)

Definition

Returns a vector in radians of deviation from the linear phase. Clone of the ADS function.
Parameter x is the dependent vector and parameter y is the independent vector.
Parameters must be vectors.

Examples:

Formula Result
dev_lin_phase([5,101,[10,20]) |[6.283, 3.142]
dev_lin_phase([0,2,5],[4,5,61)|[2.169, 0.608, 1.953]
Compatibility

vector (users)

diag

Syntax
y = diag(x)
79

file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+scalars&linkCreation=true&fromPageId=88319628
file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+scalars&linkCreation=true&fromPageId=88319628

Genesys - Users Guide

Definition

Returns a vector of the diagonal parts from a square matrix. The diagonal starts from the
entry in the first row and the first column. Given a row vector of n number of columns, the
function will return a n by n matrix with the values of the vector on the diagonal.
Parameter x must be a square matrix or a row vector.

Examples:

Formula Result
diag([1,2,3,4])|[1,4]

diag([1,1,11]) [1t,0,0;0,1,0;0,0,1]
Compatibility

e vector (users)
e array (users)
iftrue

Syntax
z = iftrue(x,vy)

Definition
iftrue returns y if x is true or 0 if x is false. The bool value x is either 1 (true) or 0 (false).
Parameters x and y can also be vectors or arrays of the same size.

Examples:

Formula Result

z = iftrue(1, 10) z =10

z = iftrue(0, 10) z=0
z=iftrue([1,0 ;1,11,[6,8;7,51]) z=[(6,0,;7,5]
z = iftrue([1,0,1,1,0]1,[1,2,3,4,5])z=[1,0,3,4,0]
Compatibility

Numeric scalars, Vectors, Arrays

unwrap
Syntax

z = unwrap(wrappedPhase)

Definition
unwrap returns a vector of unwrapped phase; both input and output of the function are in
radians

|'ﬂ Note that ang() returns a value in radians.

Examples:

Formula

z = unwrap(ang(Linearl.S[2,11))
Compatibility

Numeric scalars, Vectors, Matrices

erf
80

Genesys - Users Guide

Syntax
y = erf(x)

Definition
erf computes the error function of each part of x. The parts of x must be real.

Examples:

Formula Result

erf(-1.5) -0.9661

erf(2) 0.9953

erf([-1;-2;1.1]) |[-0.8427; -0.9953; 0.8802]
Compatibility

Numeric scalars, Vectors, Arrays

See Also
erfc (users)

erfc

Syntax
y = erfc(x)

Definition
erfc computes the complementary error function of each part of x. The parts of x must be
real.

Examples:

Formula Result

erfc(-1.5) 1.9661

erfc(2) 0.0047

erfc([-1;-2;1.1]) |[1.8427; 1.9953, 0.1198]
Compatibility

Numeric scalars, Vectors, Arrays

See Also
erf (users)

exp

Syntax
y = exp(Xx)

Definition
Returns the exponential of x. Calculated as e to the power of x, where e = 2.7182817...

Examples:

Formula Result

exp(1l) 2.718

exp([0,1.5]) [1,4.482]
exp([-0.5,0.5;-2,2])[0.607,1.649; 0.135, 7.389]
Compatibility

81

Genesys - Users Guide
Numeric scalars, Vectors, Arrays

See Also
In (users)

eye

Syntax
eye(data, symbolRate, numCycles, delay)

Definition

Function builds an eye diagram from a transient data set. Parameter symbolRate is
measured in Hz, numCycles is the number of cycles to plot before wrapping (optional,
default is 1), and delay is the number of samples from the beginning of the data to ignore
(optional, default is 0).

Examples:

For an example using the eye function to generate an eye diagram, see the example
workspace "Eye Diagram Example" located in the Equations subdirectory of your Examples
folder.

fft

Syntax
fft(data, len)

Definition
Discrete Fourier Transform (DFT) of data. Computed with FFT algorithm when possible.
The parameter len is the FFT length and is optional.

Examples:

The following example generates a signal consisting of the sum of two sinusoids: one at
400 Hz, and one at 1500 Hz. The fft function is then used to compute the spectrum of the
signal.

fft_len = 1024 ' length of the FFT

fs = 8000 ' 8000 Hz sampling rate
T=1/fs ' sample time
L = 1000 " length of signal

t = (0:(L-1))*T 'time vector

' x will be the sum of two sinusoids:

' one at 400 Hz and one at 1500 Hz

X = 0.5*%cos(2*PI*400*t) + cos(2*PI*1500%*t)

X = fft(x, fft_len) ' spectrum of x

X = X[1:(fft_len/2)] ' we only care about single side-band (the rest is redundant)
f =fs/2 * (0:(2/fft_len):1)

82

Genesys - Users Guide
setindep("X","f")

The following graph displays the magnitude of X, the spectrum of x.

S=]E

180

120

G0
0 Jemdls UL U % 8 s U AU U OO DY PO

u] 400 200 1200 G000 2000 2400 2800 3200 3600 000

i

Compatibility
Dataset

See Also
ifft (users)

floor

Syntax
y = floor(x)

Definition
Returns the largest integer less than or equal to x. If x is a complex number, only the real
part is used.

Examples:

Formula Result
floor(10) 10
floor(complex (1.5,6))1

floor([-0.5,0.57]) [-1,0]
Compatibility

Numeric scalars, Vectors, Arrays

See Also
ceil (users)

83

Genesys - Users Guide
gamma

Syntax
y = gamma(x)

Definition
Evaluates the Gamma function for each part of x, which must be real.

The Gamma function is defined as the integral from 0 to infinity of t~(x-1)*exp(-t) dt.

Examples:
Formula Result
gamma(-1.5) 2.3633

gamma([3, 4, 5]) [2, 6, 24]
Compatibility
Numeric scalars, Vectors, Arrays

See Also

gammaln (users)
gammainc (users)
beta (users)
betaln (users)
betainc (users)

gammainc

Syntax
y = gammainc(x, a)

Definition
Evaluates the incomplete Gamma function for each part of x, which must be real. The
arguments must be arrays of equal dimensions, or either one can be a scalar.

The incomplete Gamma function is defined as (1/gamma(a)) times the integral from 0 to
x of t~(a-1)*exp(-t) dt.

Examples:
Formula Result
gammainc(1.5, 2) 0.4422

gammainc([3, 4, 5], 3)/[0.5768, 0.7619, 0.8753]
Compatibility
Numeric scalars, Vectors, Arrays

See Also

gamma (users)
gammaln (users)
beta (users)
betaln (users)
betainc (users)

gammaln

Genesys - Users Guide

Syntax
y = gammaln(x)

Definition
Evaluates the natural logarithm of the Gamma function for each part of x without
computing the Gamma function itself.

Since the Gamma function can range over huge values, it is sometimes preferable to use
its logarithm.

Examples:

Formula Result

gammaln(1.5) -0.1208

gammaln([3, 4, 5]) [0.6931, 1.7918, 3.1781]
Compatibility

e Numeric scalars
e vector (users)
e array (users)

See Also
gamma, gammainc, beta, betaln, betainc

gammatoz

Syntax
X = gammatoz(zo, gamma)

Definition

Returns the complex impedance given the normalizing impedance (zo) and the voltage
reflection coefficient (gamma). Parameter zo must be an array and gamma can be a
numeric scalar or a complex nhumber.

Examples:

Formula Result

gammatoz([-0.4,-0.2,0.21,5) [0.6,0.3,-0.3]

X = gammatoz([0.1, 0.2, 0.3], complex(1, 1)) x[1] = -0.1 + j0.2
x[2] = -0.2 + j0.4
x[3] = -0.3 + jO.6

Compatibility

o Numeric scalars
e vector (users)
e array (users)

getdbunit

Syntax
y = getdbunits(x)

Definition
Returns the appropriate dB unit as an integer value. The unit for db10 (users) is returned
if the input units are power and the unit for db (users) is returned if the input units are

85

file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+scalars&linkCreation=true&fromPageId=88319642
file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+scalars&linkCreation=true&fromPageId=88319642
file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+scalars&linkCreation=true&fromPageId=88319643
file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+scalars&linkCreation=true&fromPageId=88319643

Genesys - Users Guide
voltage/current.

Examples:
Formula Result
x=100 y=15000

setunits("x","W")
y=getdbunits(x)
x=[100,200] y=13000
setunits("x","V")
y=getdbunits(x)
Compatibility

scalar, vector, arrays

See Also
getunits (users)

getindep

Syntax
y = getindep(x)

Definition
Returns a string with the name(s) of the independent variable(s). x is the variable to
check.

Examples:
Formula Result
n=getindep(S) if S is a linear analysis result this will usually return "Linear_Data\Egns\VarBlock\F" (the

longname of F)

n=getindep(VPORT) |in a HARBEC analysis this will return "HbData\Eqns\VarBlock\Freq" - the Frequency
vector

Compatibility
Swept vectors, arrays

See Also
setindep (users)

getindepvalue

Syntax
y = getindepvalue(x)

Definition
Returns the value of the independent variable of a variable x. x must have only one
independent value.

Examples:

Formula Result

y=getindepvalue(S) |If S is a variable from a linear analysis, then y will be a vector of the frequences used.
Compatibility

swept vectors, arrays

See Also
86

Genesys - Users Guide
getindep (users)

getunits

Syntax
y = getunits(x)

Definition
Returns an integer corresponding to the units of a variable x. This integer may be used by
setunits.

Examples:
Formula Result
z=1 y = 9001

setunits("z" , "V")

y = getunits(z)

z=1 y = 6002
setunits("z" , "mil")

y = getunits(z)

z=1 y = 4003
setunits("z" , "H")

y = getunits(z)

Compatibility

Numeric scalars, vectors, arrays

See Also
setunits (users)

hb_gain

Syntax
hb_gain(Pin, SpectrOut, FreqIndexIM, IndexS)

Definition
hb_gain calculates the complex gain.

Pin is the voltage (or power) amplitude of the input signal.
SpectrOut is the voltage (or power) output spectrum.

FreqIndexIM is a HB-analysis dataset variable and contains a table of the intermodulation
(IM) indexes.

IndexS is the IM-index of the output spectral component.

This function is the same as doing:
hb_getspcomp(SpectrOut, FreqIndexIM, IndexS) / Pin

© Note: To use HB analysis functions in sweeps of analyses, they must be defined directly in the analysis
dataset, and the checkbox "Propagate All Variables When Sweeping of the Parameter Sweep Properties
dialog window must be set.

Examples:

The hb_gain function is demonstrated in the following example workspaces: Double
Balance Gilbert cell mixer.wsx and Gilbert cell BJT mixer.wsx. Both files are located in the
Examples\Mixers folder of your Genesys directory. The functions are used in the Harmonic

87

Genesys - Users Guide
Balance dataset.

This dataset can be found in the Double Balance Gilbert cell mixer.wsx example:

* HB1_Data [Z]E]EI

Yariable () CgainHigh
R CqainHigh=32, 769635=[hb_gain{dbmtow(Prf),P2, FreqindexIM,[1,17)] 327E9633
EECgainL0w=32.38El355=[hb_gain(dhmt0w(PrF}, Pz, FreqindexIM,[1,-111]
EEFreq
FEFreqlD
HEFreqindexIm
FElp1=[PPoRT[1]]

HErz=[PPoRT[2]]
FEPa=[PPORT[3]]
FEPPORT
_EETime
FEvporT
FElw_yPoRT
HEzroRT

oy

Compatibility
Arrays

See Also
hb_getspcomp (users)

hb_getspcomp

Syntax
hb_getspcomp(Spectr, FreqIlndexIM, IndexS)

Definition

hb_getspcomp returns the complex amplitude of the spectral component with IM-Index
IndexS from spectrum Spectr . FreqIndexIM is a HB-analysis dataset variable and contains
a table of the intermodulation (IM) indexes. Returned value is in Watts.

© Note: To use HB analysis functions in sweeps of analyses, they must be defined directly in the analysis
dataset, and the checkbox "Propagate All Variables When Sweeping of the Parameter Sweep Properties
dialog window must be set.

Examples:

This example uses hp_getspcompdbm, however, hb_getspcompdbm is the same as
dbm(hb_getspcomp(Spectr, FreqIlndexIM, IndexS)).

Which just calculates the return value in dBm instead of watts.

This dataset can be found in the Amplifier IPn Calculation.wsx workspace located in the
Examples\Amplifiers folder of your Genesys directory.

88

Genesys - Users Guide

* HB1_Data

Wariable () M5 |
_q Freq 1] -185.858569
-E FreqglD
-”3 FreglndexIM

jjIMl -27.047335=[hb_getsprompdbmiPz,FreqlndexIM,[1;0]1]
EEIMS -117.760732=[hb_getspcompdbm(PZ, FreqlndexIM,[2;-11)]

15 69=[hb_getspcompdbmiPZ, FreqindexIM, [3;-2]11]
EHOIPS 18.309537=[hb_nipn(P2,FreqlndexIM,[1;0],[1;-2]1]
EEOIPS 12.663246=[hb_aipn(P2,Freqlnde:xIM,[1;0],[2;-313]
EEpz=[PPORT[2]]

EElppoRT

EElvpoRrT

FEzroRT

To get the amplitude, look at the FreqIndexIM data to find a row which multi-index (or its
conjugate) is equal to the multi index of the spectral component.

For the example referenced above. If the component multi-index IndexS = [3;-2], then it
corresponds to row # 4 of the FreqIndexIM. So the one dimensional index of the spectral
component is 4. Then the value of the spectral component corresponds to the 4th index

of the spectrum array P2 and is passed in as Spectr .

Compatibility
Arrays

See Also
hb_getspcompdbm (users)

hb_getspcompdbm

Syntax
hb_getspcompdbm(Spectr, FregIndexIM, IndexS)

Definition

hb_getspcompdbm returns the complex amplitude of the spectral component with IM-
Index IndexS from spectrum Spectr . FregIndexIM is a HB-analysis dataset variable and
contains a table of the intermodulation (IM) indexes. Returned value is in dBm

This function is the same as doing:
dbm(hb_getspcomp(Spectr, FreqIndexIM, IndexS))

© Note: To use HB analysis functions in sweeps of analyses, they must be defined directly in the analysis
dataset, and the checkbox "Propagate All Variables When Sweeping of the Parameter Sweep Properties
dialog window must be set.

Examples:

The hb_getspcompdbm function is demonstrated in the following example workspaces:
Amplifier IPn Calculations.wsx, SiGe BFP620 Amp.wsx, Diode Ring Mixer.wsx, Gilbert cell
BJT mixer.wsx, and Noise Diode Ring Mixer.wsx. These files are found in
Examples\Amplifers, Examples\Mixers, or Examples\Nonlinear Noise folders of your
Genesys Directory. The functions are used in the Harmonic Balance dataset.

This dataset can be found in the Diode Ring Mixer.wsx.
89

Genesys - Users Guide

* HB1_Data

Yariable {} ConvlLoss
i£§C0nvL055=3.99?469=[PﬁdBHPPW] 31997469
EEFreq

FEFreqlD

FEFreqindexim

FElP1=[PPORT[1]]

THPz=[PPORT[Z]]

P3=[PPCRTS]]

FEPDPORT

_EEPiF=-23.99?469=[hb_getspc0mpd|3m(P3, FreqindexIM,[1;-117]
FEppoRT

] Time

FEvpoRT

EElw_yPoRT

FEzpoRT

]

SiGe BFP620 Amp.wsx uses the function inside the equation called Output Equations.

16 ! Z-toneszs HE ahalysis

17 a=using ("HEZ Data™)

15

18 ' hwailabhle power Gains for each of the Z tones:

20 = pin=[Input Equation=] .Pin

21

22 Gainl=hb getspeompdbm(PZ, FreqindexIM, [1;0])-pin 'dE
23 GainZd=hb getspeompdbm(PZ, FreqindexIM, [0;1])-pin 'dBE
24

o '"breraging Gains for the 2 tones:

Z6 Gain L = 0.5% (Gainl+Gaini)

Compatibility

Arrays

See Also

e« hb_getspcomp (users)
e« dbm (users)

hb_iipn

Syntax
hb_iipn(SpectrPout, FreqgIndexIM, IndexS1, IndexS2, PindBm)

Definition

hb_iipn calculates the input intercept point of the two components IndexS1 and IndexS2
of the power spectrum SpectrPout. FreqIndexIM contains a table of the intermodulation
(IM) indexes. PindBm is the input signal power in dBm.

This function is the same as doing:
hb_ipn(SpectrPout, FreqlndexIM, IndexS1, IndexS2) + PindBm

© Note: To use HB analysis functions in sweeps of analyses, they must be defined directly in the analysis
dataset, and the checkbox "Propagate All Variables When Sweeping of the Parameter Sweep Properties
dialog window must be set.

Examples:
90

Genesys - Users Guide

The hb_iipn function is demonstrated in the following workspace: SiGe BFP620 Amp.wsx.
This file can be found in the Examples\Amplifiers folder of your Genesys directory.

SiGe BFP620 Amp,wsX uses thg functign in the_equation called Output Equations:
o

45 ' Input IF3, calculated using Harbec functicn:

43 ITP3 = hb iipn(P2,FregqIndexIM, [1;0],[2:-1], pinﬂ

50

51 ' Input IF3, calculated from COIF3 and fundamental Gain:

52 IIP3 1 = OIP3 11-Gainl

Compatibility
Arrays

See Also
hb_ipn (users)

hb_ipn

Syntax
hb_ipn(SpectrPout, FreqlndexIM, IndexS, IndexIM)

Definition

hb_ipn is the common part of the input an output IPn functions (IIPn = hb_iipn and OIPn
= hb_oipn). hb_ipn is not usually used for measurement, it's an internal function for
hb_iipn and hb_oipn.

hb_ipn calculates the value:
IPn = (Psig-Pim)/(Nim-Nsig)

where

Nim, Nsig are the harmonic orders of the intermodulation (IM) spectral component, and
the harmonic order of the signal spectral component.

Nsig = abssum(IndexS)
Nim = abssum(IndexIM)

Pim, Psig are the power values of the IM and signal spectral components calculated in
dBm..

Psig = hb_getspcompdbm(SpectrPout, FregIndexIM, IndexS)

Pim = hb_getspcompdbm(SpectrPout, FreqgIndexIM, IndexIM)
The output and input IPn functions differ only by a constant value.

IIPn = Pin + IPn

OIPn = Pout + IPn = IIPn + Gain[dB]

91

Genesys - Users Guide
where Gain is the power gain in dBm. In both cases IPn are calculated for the same
spectrum, the output spectrum of the DUT (device under test).

© Note: To use HB analysis functions in sweeps of analyses, they must be defined directly in the analysis
dataset, and the checkbox "Propagate All Variables When Sweeping of the Parameter Sweep Properties
dialog window must be set.

Examples:
See examples for hb_iipn or hb_oipn.

Compatibility
Arrays

See Also

hb_iipn (users)
hb_oipn (users)
hb_getspcompdbm (users)
abssum (users)

hb_LargeS

) Note. The obsolete function. Not recommended for new projects. Instead of of this function, please use
larges.

Syntax
hb_LargeS(Vin, Vout, sameport)

Definition

hb_LargeS returns the calculated Large Signal S-parameter (LS-parameter) for 1-tone
HB-analysis.

Vin is the voltage amplitude of the input port.

Vout is the complex amplitude of voltage for the selected harmonic at the output port. It
is the complex amplitude of the output spectral component.

Vout = hb_getspcomp(Spectr, FreqIndexIM, IndexS)

sameport = 1 if the input and output ports are the same, and sameport = 0 if the input
and output ports are not the same.

© Note: To use HB analysis functions in sweeps of analyses, they must be defined directly in the analysis
dataset, and the checkbox "Propagate All Variables When Sweeping of the Parameter Sweep Properties
dialog window must be set.

Examples:

The hb_LargeS function is demonstrated in the following workspaces: Large Sighal S
Parameters.wsx and Large Signal S Param LInear Test.wsx. Both workspaces are located
in the Examples\Amplifiers folder of your Genesys directory. The functions are used in the
HB datasets of the workspaces.

This is the dataset from the Large Signal S Parameters.wsx:

92

Genesys - Users Guide

* HB1_Data

BEE
|

L5111
0674577

Wariable

T
=
o

fim]
-

N | 511=0.212166 - j0.640765=[hb_Larges{¥inl,YPORT[2,1],11]
FELs21=-1.6195 + j2.81205=[hb_LargeS(vinl, ¥PORT[Z,2],00]
EEprorT

-E Tirre

EEvroRT

EEw_vPoRT

EzroRT

Compatibility
Arrays

See Also

e hb_largesmix (users)
e hb_getspcomp (users)

hb_LargeSmix

© Note. This is an obsolete function. Not recommended for new projects. Instead of this function, please use
largesmix.

Syntax
hb_LargeSmix(Vin, SpectrVout, sameport, FreqIndexIM, IndexOut)

Definition

hb_LargeSmix returns the Large Signal S-parameter (LS-parameter). This function is
used for multi-tone HB-analysis, or for frequency conversion. hb_LargeSmix calculates
the complex spectrum and then finds the LS-parameter.

This function is the same as doing:

Vout = hb_getspcomp(SpectrVout, FreqIndexIM, IndexOut)

hb_LargeS(Vin, Vout, sameport)

) Note: To use HB analysis functions in sweeps of analyses, they must be defined directly in the analysis
dataset, and the checkbox "Propagate All Variables When Sweeping of the Parameter Sweep Properties
dialog window must be set.

Examples:

The hb_LargeSmix function is demonstrated in the following workspace: Large Signal S
Param Linear Test(2 tones).wsx. This files is located in the Examples\Amplifiers folder of
your Genesys directory.

93

Genesys - Users Guide
The function is used inside the HB dataset:

* HB1 Data
Yariable () LS11
EFreq 1| 09a3069 |
=1 FreqlDh
i FreqlndexIM

S11=-0,953041 + j0.244762=[hb_LargeSmix(¥in1, YPORT[1],1,FreqlndexIr,[1;0]3]
TL512=0,0416757 + j0.115536={hb_LargeSmix({vinZ, ¥PORT[1],0, Freqinde:xIM, [0;1])]
TEL521=0,0416749 + j0.115835=[hb_LargeSmix{¥in1, YPORT[2],0,FreqindexIM,[1;0])]
.5§L522=D.D|3513448 - §0,0999595=[hb_LargeSmix{¥inz, YPORT[2],1,FreqlndexIM,[0;1]1]
FrPORT
FEvPoRT
FEzpoRT

See Also
hb_larges (users)

hb_oipn

Syntax
hb_oipn(SpectrPout, FregIndexIM, IndexS1, IndexS2)

Definition

hb_oipn calculates the output intercept point of the two components IndexS1 and IndexS2
of the power spectrum SpectrPout.

This function is the same as doing:
hb_ipn(SpectrPout, FreqIndexIM, IndexS1, IndexS2) + PoutdBm
'PoutdBm is the output signal power in dBm.

PoutdBm = hb_getspcompdbm(SpectrPout, FreqindexIM, IndexS1)

© Note: To use HB analysis functions in sweeps of analyses, they must be defined directly in the analysis
dataset, and the checkbox "Propagate All Variables When Sweeping of the Parameter Sweep Properties
dialog window must be set.

Examples:

The hb_oipn function is demonstrated in the following workspaces: Amplifier IPn
Calculation.wsx and SiGe BFP620 Amp.wsx. Both files are located in the
Examples\Amplifiers folder of your Genesys directory.

Amplifier IPn Calculation.wsx uses the function in the HB dataset:

94

Genesys - Users Guide

* HB1_Data |Z|[E| X]

Yariahle i Ms |
EEFreq 1] -185 386569
-E FreqglD
-E FreqindexIM

_E_EEIM1=-2?.EI4?335=[hb_getspcu:umpdbm{PZ,FrqundexIMJ[I;D]}]
e IM3=-117.760732=[hb_getspcompdbm({PZ,FreqlndexIM,[2;-11)]

9=[hb_getspeompdbmiPZ, Freqlnde:xIr,
-E CIP3=18.309537=[hb_oipri{P2,FreqindexIM,[1;0],[1;-2]1]
_E CIPS=12.663246=[hb_oipn{P2,FreqlndexIM,[1;0],[2;-31)]
EEpz=[PPORT[2]]
EElppoRT
EElvpoRrT
FEzroRT

SiGe BFP620 Amp uses the function in the equation called Output Equations:

g

aa Znd method of intercept points caloulating (genecal, far any order of IP)

40 Qurput Incercept pointa (OIP3)of Jcd order (for all combinations of carrisra and IH3):
41 OIF3_11 = kb _odipn(P2,FreqlindexIN, [1:0],(2:-1])

42 IZIIH_'LZ - nb_ulpn(PZ.Irqur.:!anH, [1:0],[=1:22])

4F% OIF3_Ii = hb_oipn(P2,FreqlndexIN, [0:1],([2:-1]1)

44 OIP3_z2 = Bb oipn(PZ,freqglndexIf, [0:1],([-122])]

45 reraged OIP3

L1 OIF3 = 0.25% [OIF2_11+401F3 12+0IF3_21+0IP3_2Z2)

Compatibility
Arrays

See Also

e hb_ipn (users)
e hb_getspcompdbm (users)

hb_spurious

Syntax
hb_spurious(SpectrVout, FreqIlndexIM, ExcludeSignals)

Definition

hb_spurious calculates and returns the max amplitude of spurious spectral components in
spectrum SpectrVout. Used for n-Tone Harmonic Balance Analysis, where n > 0.
SpectrVout is the complex spectrum array.

FregIndexIM is the intermodulation (IM) index matrix.

ExcludeSignals is an integer index matrix of index vectors. This matrix defines the signal
components in the spectrum.

) Note: To use HB analysis functions in sweeps of analyses, they must be defined directly in the analysis
dataset, and the checkbox "Propagate All Variables When Sweeping of the Parameter Sweep Properties
dialog window must be set.

Examples:
The hb_spurious function can be found in the following workspace: Double Balance Gilbert
cell mixer.wsx. This file is located in the Examples\Mixers folder of your Genesys
directory.

95

Genesys - Users Guide

The function is used in the Equation called Spurious:

* Spuricus

[P Ter—— - 1 PZ=HEZ Dmta.P2
Varistio 2 FreqIndexIH = HB2 Dats.FregindexIA
_’ 3 =1=dbm (hb_spurious [P, FreqindexI®, [1,1,0:0,0,1:0,-0,0: 1,0,
FxFreqindesIM = Swept Real [64:3]

TRRE = Sk Real [64]
T35 =-46.6781 L8

Compatibility
Arrays

hb_totalsp

Syntax
hb_totalsp(Sin, Freq, eps)

Definition

The hb_totalsp calculates total amplitude for spectral components having the same
frequency and sets all of them to the same total amplitude. It creates a spectrum without
multiple points at the same frequency point where the amplitude is what the spectrum
analyzer measures.

If a circuit has a signal with two frequencies F1 = 100 and F2 = 200 MHz, and the analysis
uses multi-dimensional (n-tones) FFt, then the solution spectrum may have multiple
components having the same frequency.

(F1),(F2-F1),(2*F2-3*F1),(3*F2-5%*F1), etc.

All the spectral components have the frequency 100 MHz, but are calculated as
independent spectral components.

hb_totalsp is used when Harbec calculates spectrum using n-dim FFT. In this case spectral
components with different harmonic index vectors may produce spectral component with
the same frequency.

For example, if the input signal has 2 tones 10 and 11 MHz, then the 2 different spectral
components created by different order nonlinear products: [2;-1] and [9;-9] have the
same frequency 9 MHz:

[2%10 - 1*11| = 9

[9*10 - 9*11| =9

© Note: To use HB analysis functions in sweeps of analyses, they must be defined directly in the analysis
dataset, and the checkbox "Propagate All Variables When Sweeping of the Parameter Sweep Properties
dialog window must be set.

Examples:
The function hb_totalsp is demonstrated in the following workspace: TotalSpectrum.wsx.
This workspace is located in the Examples\Amplifiers folder of your Genesys directory.

This use of the function can be found in the Tablel.

96

Genesys - Users Guide

Freq 'HB1_Data.P2 Freq hb_totalsp{HB2_Data.P2 HB2?_DataFreq,1e-6) HB2_DataP2

0 15642614 | ol i - - 8861205 | 193430934 | =
100 -15.942567 | ol 1BE61205| -25641144
200 -16.592533 | 100 | 15686355 | 17940477
300 -18.54655E | 100 | S15F86355 | -19681454
400 -21.040604 | 100 | 5 RGE35E | -30643312
500 -24 656126 | 100 | -5 RAGISE | 42022525
500 -30.095604 | 200 | 16749393 | -17.940477
700 -40.013208 | 200 S1B.749393 | -23.267465
500 -45.531474 | 200 | 16749393 | -35.419455
900 | -35.695593 | 200 | B749393 | 4151442
1000 -38.275823 | 300 | -1BR05529 | -35 368555
e P! W e
300 | 1BE05529 | -19651454

400, 21206218 | 23267465 |

Linln} a4 anceTd o AT Aonmmd |

Tatal spectrums
10 -10
3 -15
ol Won |

-+] : 1 -0
& -
E-n 25
s E
5-13 — ™
=) = E
= -
o - 35>
- -
£ : 2

3= -0
% - ' g
= A et
H - g

-5 =0

=3 =5

0 =0

o 1m0 200 o] o] =00 &00 700 a0 o] 1000
Frequercy (MHD
= Tl Lo A A s - = PN Ly

See the workspace for more detail.

Compatibility
Arrays

hb_transgain

Syntax
hb_transgain(Spectrln, SpectrOut, FregIndexIM, IndexIn, IndexOut)

Definition

hb_transgain calculates and returns the transducer gain from the input spectrum
component Spectrin with a intermodulation index (IM-index) IndexIn to the output
spectrum component SpectrOut with IM-index IndexOut

© Note: To use HB analysis functions in sweeps of analyses, they must be defined directly in the analysis
dataset, and the checkbox "Propagate All Variables When Sweeping" of the Parameter Sweep Properties
dialog window must be set.

Examples:
The hb_transgain function is demonstrated in the following example workspace: Amplifier
Gain Compression.wsx. This file is located in the Example\Amplifiers folder of your

97

Genesys - Users Guide
Genesys directory.

The function is used in the HB dataset:

#* HB1_Data
Mariable {} Gain |
#Fren 1] 7p43522
S Freqin

E FreqInde:Ik

BE Gain=7 643522=[db10{hb_transgain(P1,P2, FreqindexIM,[1],[11))]
_E Gain=-2,1327 + jl1.12425=[hb_transgain{¥PORT[1],YPORT[2], FreqlndexIM,[1],[113]
EEmi1_cr1

EEP1=[PPORT[1]]

Egpe=[pPoRT[]]

5 Pout1=-29,03647=[dbmiP2[2]1]

EEppoRrT

5] Time

EEvPoRT

EEw_I1_cPi

5w _vrorT

EEzroRT

Compatibility
Arrays

See Also
hb_transgaindb (users)

hb_transgaindb

Syntax
hb_transgaindb(SpectrIn, SpectrOut, FreqIndexIM, IndexIn, IndexOut)

Definition

hb_transgaindb calculates and returns the transducer gain from the input spectrum
component Spectrin with IM-index IndexIn to the output spectrum component SpectrOut
with IM-index IndexOut . The returned values are expressed in decibels as 10 * log(x).

This function is the same as doing:
db10 (hb_transgain(Spectrin, SpectrOut, FreqIndexIM, IndexIn, IndexOut))

© Note: To use HB analysis functions in sweeps of analyses, they must be defined directly in the analysis
dataset, and the checkbox "Propagate All Variables When Sweeping" of the Parameter Sweep Properties
dialog window must be set.

Examples:
See the example for hb_transgain.

Compatibility
Arrays

See Also

e hb_transgain (users)
e db10 (users)
hermitian

98

Genesys - Users Guide

Syntax
y = hermitian(x)

Definition
hermitian returns the conjugate transpose of a matrix or swept matrix x.

Examples:
Formula Result Or
x=[1,2,2;1,2,1] y=[1,1;2,2;2,1]

y = hermitian(x)
y = hermitian([complex(2,4), complex(1,-3)])y=[4.472; 3.162] y[l]=2-j4

y[2] = 1 +j3
y = hermitian([complex(2,-2),-51]) y=1[2.828,-5] y[1l] =2 +j2
y[2] = -5

Compatibility
Numeric scalars, Vectors, Arrays

See Also

e conj (users)
e transpose (users)

histogram
Syntax

y = histogram(x)
y = histogram(x, NumBins)

y = histogram(x, NumBins, RangeMin, RangeMax)

y = histogram(x, strindepToCreate)

y = histogram(x, strIndepToCreate, NumBins, RangeMin, RangeMax)
Definition

This function creates bins for the data in x and returns the number of parts in each
container. The NumBins, RangeMin, and RangeMax parameters are optional. NumBins,
the number of bins to create, defaults to 10. RangeMin and RangeMax, the minimum and
maximum values for the bins, default to the minimum and maximum value in x. The
return value can be directly plotted on a rectangular graph and will produce a histogram
plot.

If the string value strIndepToCreate is not specified, this function creates a new variable
called __HistIndep that is the independent value of the returned value which contains the
bin values. If strindepToCreate is specified, the independent value with that name is
created.

Compatibility
Vectors, Arrays

identity

Syntax
y = identity(n)

Definition
identity returns an n by n identity matrix. n must be a positive number.

99

Genesys - Users Guide
Examples:

Formula Result

y =identity(2)y=[1,0;0,1]

y =identity(3)y=[1,0,0;0,1,0;0,0,1]
Compatibility

Positive Numeric scalars

iff

Syntax

z = iff(bool , x,y)

Definition
iff returns x if bool is true or y if bool is false. bool is a boolean expression represented as
a 1 (true) or 0 (false). Works with nhumbers and column vectors.

Examples:

Formula Result
z=iff(1,10,20) z=10
z=iff(0,25,-5) z=-5
z=iff(0,[0;1],[0;2]))z=[0;2]
Compatibility

Numeric scalars, Vectors

ifft

Syntax

ifft(data, len)

Definition
Inverse Discrete Fourier Transform (IDFT) of data. Computed with IFFT algorithm when
possible. The parameter len is the IFFT length and is optional.

Examples:
The following example code is taken from the fft example:

fft_len = 1024 ' length of the FFT
fs = 8000 ' 8000 Hz sampling rate

T =1/fs sample time
= 1000 ' length of signal

x will be the sum of two sinusoids:

one at 400 Hz and one at 1500 Hz

0.5*%cos\(2*PI*400*t\) + cos\(2*PI*¥1500*t\)

fft\(x, fft_len\) ' spectrum of x

XN[1:\(fft_len/2\)\]1 ' we only care about single side\-band \(the rest is redundant\)
= fs/2 * \(0:\(2/fft_len\):1\)

setindep\ ("X","f"\)

If the following lines of code are now added:

y = ifft(X, fft_len)

then y and x would be identical.

L
t = \N(0:\(L\-1\)\)*T ' time vector

—H X X X
Il

Compatibility
Dataset

100

Genesys - Users Guide

See Also
ifft (users)

im

Syntax
y =im(x)

Definition
im returns the imaginary part of a complex number x. Same as imag function

Examples:

Formula Result

y = im(complex(2 ,-5)) y =-5

y =im([complex(10,1), complex(12,-6)]1)ly=[1,-6]
b = [complex(20, 3) ; complex(1,2)] y=[3,;2]
y =im(b)

Compatibility

Numeric scalars, Vectors, Arrays

See Also

imag
imag

Syntax

y = imag(x)

Definition
imag returns the imaginary part of a complex number x. Same as im function.

Examples:

Formula Result

y = imag(complex(2,-5)) y=-5

y = imag([complex(10 ,1),complex(12,-6)])y=[1,-6]
b = [complex(20, 3) ; complex(1,2)] y=[3;2]
y =imag(b)

Compatibility
Numeric scalars, Vectors, Arrays

See Also
im (users)

integrate

Syntax
Zz = integrate(dep, indep, start, stop)

Definition

Returns the numerical integration of the dependent variable dep with respect to the
independent variable indep going from index start to index stop. The start index must be
at least 1. The variables dep, and indep should be column vectors.

101

Genesys - Users Guide
Examples:

Formula Result
x=1[1;2;3;4;,5],y=2*x,z=integrate(x,y,1,5) z=20
x=[2;4;6;8;10],y=x"2,z=integrate(x,y,2,4) z = 248
x=[0.1;1;10; 100; 10001,y =log(x), z=integrate(x,y,3,5)z=110
Compatibility

Vectors

See Also
derivative (users)

interpolate

Syntax
y = interpolate(new_indep, var)

Definition

interpolate produces an array where the independent value of var is changed to
new_indep, interpolating as necessary. The parameter new_indep should be a vector or an
array, and the parameter var is a number. Make sure the var you are passing in has an
independent value. The S from a linear analysis would be a good example of a variable to
user for the var parameter since it has the independent value of F.

Examples:
This example was made using the Bridge-T.wsx example.

Add a new linear analysis and set the frequency range the same as the "Frequencies"
Analysis. Change the Number of Points to sweep to 101.Enter
x=interpolate(Linearl_Data.F, Frequencies_Data.S11) in an Equations window and view
the results as a table.

102

Genesys - Users Guide
3% Equation’] (=B
| x=inte ::p;:u'- ate L' nn: ar :If_ta.-_._ .',. Fr equencie a;_-_ &t.a-.;S"i"]

Wariakle
x = Complex [101]
=]

O e
-~{3H Bridge-T

5{3 Desian
. i BRIDGE_T {Schematic)

- Linearl_Data
Graphs
E Graphl
Tahblel
-he Equationt

: Equationl

This demonstrates how the interpolate function can be used.

Compatibility
Numeric scalars, Vectors, Arrays

See Also

 Numeric scalars
e vector (users)
e array (users)

intersect

Syntax
Z = intersect(x , y)

Definition
intersect returns a vector z that contain the intersecting values of the two vectors x and vy.

Examples:

103

file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+scalars&linkCreation=true&fromPageId=88319668
file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+scalars&linkCreation=true&fromPageId=88319668

Genesys - Users Guide
Formula Result
x=[1,2,3,4,5] z=[2;4]
y=[02,4,6,8,10]
z = intersect(x, y)
x=1[40, 32,24,16,8] z=[32;16; 8]
y=[4;8;16;32;64]
z = intersect(x , y)
x=[complex(1,1),25]z=1.414
y=[8,complex(1,1)]
z = intersect(x, y)
Compatibility
Numeric scalars, Vectors, Arrays

See Also

« Numeric scalars
e vector (users)
e array (users)

inverse

Syntax
y = inverse(x)

Definition
inverse returns the inverse of a matrix. The parameter x must be a non singular square
matrix.

Examples:

Formula Result

x=[2,4;6,8] y=[-1,0.5;0.75,-0.25]
y = inverse(x)

x=[4,6,8;1,2,3;0,3,5]ly=[-05,3,-1;25,-10,2;-1.5,6,-1]
y = inverse(x)

Compatibility
Square Matrix

kurtosis

Syntax

y = kurtosis(x)

y = kurtosis(x, Flag)

y = kurtosis(x, Flag, iDim)

Definition
Returns the sample kurtosis of a vector x. Kurtosis is the fourth central moment of X
divided by the fourth power of the standard deviation.

If Flag is 0 (default), kurtosis normalizes by N-1 where N is the sample size. If Flagis 1,
kurtosis normalizes by N.

For matrices, this function operates separately on each column and returns a vector. For

multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

104

file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+scalars&linkCreation=true&fromPageId=88319669
file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+scalars&linkCreation=true&fromPageId=88319669
file:/pages/createpage.action?spaceKey=genesys2010&title=Square+Matrix&linkCreation=true&fromPageId=88319670
file:/pages/createpage.action?spaceKey=genesys2010&title=Square+Matrix&linkCreation=true&fromPageId=88319670

Genesys - Users Guide
Examples:

Formula Result

y = kurtosis([3;4;8;9]1)|y =1.1479
y = kurtosis([1, 2, 3], 1) y=15
Compatibility

Numeric arrays

See Also

e std (users)
e var (users)
e skewness (users)

largeS
New function, returns the calculated Large Signal S-parameter (LS-parameter) for 1-tone
HB-analysis, this function substitutes for the old function hb_larges.
It's much easy for using than hb_larges, because it uses a dataset name instead of list of
dataset parameters and external variables.

Syntax
largeS(i, j, dataset)

Definition
largeS returns the calculated Large Signal S-parameter (LS-parameter) for 1-tone HB-
analysis.

i - output port index

j - input port index

dataset - HB analysis dataset name

) Note: To use HB analysis functions in sweeps of analyses, they must be defined directly in the analysis
dataset, and the checkbox "Propagate All Variables When Sweeping" of the Parameter Sweep Properties
dialog window must be set.

Examples:

The largeS function is demonstrated in the following workspaces: Large Signal S
Parameters.wsx and Large Signal S Param LlInear Test.wsx. Both workspaces are located
in the Examples\Amplifiers folder of your Genesys directory. The functions are used in the
HB datasets of the workspaces.

LS11=* largeS *(1,1,"HB1_Data")

LS21=* JlargeS * (2,1,"HB1_Data")

LS12=* largeS * (1,2,"HB2_Data")

LS22=* largeS * (2,2,"HB2_Data")

© Note. The function largeS uses Harbec dataset variable IPORT , which is an array of spectrums of port
excitation currents. It has nonzero components the only for "active" ports, which are ports with signal
sources, which frequencies are the signal source frequencies.

105

Genesys - Users Guide
For example, for LS11, LS21 parameters, measured, when the 1st port is excited, the
IPORT variable has only one nonzero component for the excited port Portl, which
frequency is the port source frequency (number, marked with a red frame in HB1_Data
dataset.) For LS22, LS12 parameters, measured, when the 2nd port is excited
(HB2_Data), the IPORT variable has only one nonzero component, relative to Port2 and
its source frequency 10 MHz:

¥ HB1 Data

LogOutput="Harmonic Balance Analysiz © HB1 OO 202152007
LS11=0.2319992 - j0.0593663={largeS(1 1, "HBT _Data™)

i LS21=0 639507 - j0.130437=[largeS(2 1 "HE1 _Data™)]

| POPORT

il PPORT

i WPORT

il ZPORT

IPORTA IPORTZ |

1 0

2 0
Fregindexih 3 20]]
1&1_11_10 4 30 0 0
IPORT 5 40 0 0
LogOutput="Harmanic Balance Analysiz : HB2O001 2021 22007 . 5] a0]]

L512=0.639507 - j0.130437=[largeS01 2 "HB2_Data™)]
L522=0.277976 - j0.265962=largeS(2,2 "HEZ_Data™)]
FOPORT

PPORT

Time

41

W2

wPORT

W_YPORT

| ZPORT

See Also

largeSmix (users)
largeSconv (users)
hb_larges (users)
hb_largesmix (users)

largeSconv

Syntax
largeSconv(i, j, iFreq, jFreq, dataset)
where
i - output port index
j - input port index
iFreq - index of output port frequency

jFreq - index of input port frequency
106

Genesys - Users Guide
dataset - HB analysis dataset name
returns complex Sij-parameter.
Definition
largeSconv returns the Large Signal S-parameter (LS-parameter). This function is used
for 1 and multi-tone HB-analysis.
It's used as an internal function for largeS (users) and largeSmix (users) functions,
calculating LS parameters.
Note: To use HB analysis functions in sweeps of analyses, they must be defined directly in
the analysis dataset, and the checkbox "Propagate All Variables When Sweeping" of the
Parameter Sweep Properties dialog window must be set.
For example, for 1-tone HB analysis the function calls are equivalent:
LS11 = largeSconv(1, 1, 2,2,"HB1_Data")
LS11 = largeS(1, 1,"HB1_Data")
LS11 = largeSmix(1, 1, [1], [1], "HB1_Data")

For 2-tone HB analysis, when Portl is excited by one 10 MHz tone, having index =2 in the
HB spectrum, the function calls are equivalent:

LS11 = largeSconv(1, 1, 2, 2,"HB1_Data")

LS11 = largeSmix(1, 1, [1; 0], [1; 0], "HB1_Data")

B HB1 Data

Wariahle

Freqg

FreglD

Fregindexih

|PORT

LogDutput="Harmaonic Balance Analysiz . HB1OO1202152007 . 9:24 AwO...
L511=-0.9553041 +j0.244762=[large>=mix(1,1,[1;0],[1,0],"HB1 _Data")]
L512=00416757 +j0.115536=[largeSmix(1,2 [0;1][0:1],"HB1 _Data™)]
L521=00416749 + j0.115535=[largeSmix(2,1 [1;0],[1;0],"HB1 _Data")]
L522=0.00513445 - j0.0933695=[largeSmix(2,2 [0;1][0:1],"HB1 _Data™)]
PODPORT

PPORT

WPORT

ZPORT

ﬁ
=

Freg IPORT1 IPORTZ2
0] 0
10 1.231e-3
10 123e3
20
20
30
30
40
40
50
50

S O wWo Mt B W R =
.
i
o
&
cooooooo

ocoo o oo oo

JEC—Y

Note. Because largeSmix function parameter list includes indexes of spectrum
component, found from FregIndexIM dataset variable, this function is used as an internal
function. It's not recommended using this function in user workspaces. Instead of it use
functions largeS (users), largeSmix (users).

See Also

largeS (users), largeSmix (users)
largeSmix

107

Genesys - Users Guide
New function, calculating Large Signal S-parameter (LS-parameter) for n-tone HB-
analysis.
It substitutes the old function hb_LargeSmix (users).
It's much easy for using than hb_LargeSmix (users), because it uses a dataset name
instead of list of dataset parameters and external variables.
Syntax
largeSmix(i, j, iIndexVector, jiIndexVector, dataset)
where
i - output port index
j - input port index
iIndexVector[n] - vector of indexes of output component
jIndexVector[n] - vector of indexes of input component
dataset - HB analysis dataset name
returns complex Sij -parameter

Definition

largeSmix returns the Large Signal S-parameter (LS-parameter). This function is used
with multi-tone HB-analysis

Note: To use HB analysis functions in sweeps of analyses, they must be defined directly in
the analysis dataset, and the checkbox "Propagate All Variables When Sweeping" of the
Parameter Sweep Properties dialog window must be set.

Examples:

The hb_LargeSmix function is demonstrated in the following workspace: Large Signal S
Param Linear Test(2 tones).wsx. This files is located in the Examples\Amplifiers folder of
your Genesys directory.

The function is used inside the HB dataset:

LS11=largeSmix(1,1,[1;0],[1;0],"HB1_Data")
LS12=largeSmix(1,2,[0;1],[0;1],"HB1_Data")
LS21=largeSmix(2,1,[1;0],[1;0],"HB1_Data")
LS22=largeSmix(2,2,[0;1],[0;1],"HB1_Data")

Note. The function largeSmix uses Harbec dataset variable IPORT , which is an array of
spectrums of the port excitation currents. It has nonzero components the only for "active"
ports - ports with signal sources, which frequencies are the signal source frequencies.
For example, for simultaneously measured all LS parameters of a n -port network, all
ports are active and the IPORT variable has n nonzero components for every ports, which
indexes are indexes of port source frequencies in the HB solution spectrum (in this
example n = 2):

108

Genesys - Users Guide

#% HB1_Data
Wariakle M. Freg IPCRT IPORTZ
Freg 1]]]
FregiD 2 10 1.23e-3
Fregindexih 3 10 1.231e-3
PORT 4 20] u]
LogDutput="Harmonic Balance Analysiz : HB1 OO1 20212007, .9:24 AnM0O... =] 20]]
LE11=-0.9532041 + j0.2447E2=[largeSmix(1 1 ,[1;00,[1;0],"HB1 _Data")] B an 0 0
LE12=0.04ET5T + j0.115836=[largesSmix(1,2 [0;11,00:1],"HBE1 _Data'"] T an] 0
LE21=0.0416749 + j0.115835=largeSmix(2,1 [1:0][1:0]"HE1 _Data™)] & 40] 0
LS22=0.00513448 - j0.0999695=largesmix 2,2 [0:1],[0;1],"HE1 _Data™)] 9 40 0 0
PDPORT 10 a0] u]
PPORT 11 a0] u]
WPORT
ZPORT

See Also

largeS (users), largeSconv (users), hb_LargeS (users), hb_LargeSmix (users)
lininterp

Syntax
w = lininterp(outputIndeps, inputlndeps, inputDeps)

Definition

lininterp returns the linear interpolation of the X values (outputindeps) that you want
interpolated Y values for. inputIndeps and inputDeps are the X and Y data points. The
result of this function are the interpolated Y values for the specified X values from the
given data points. inputIndeps and input Deps must have the same dimensions.

Examples:

Formula Result
[2,5,9,13,17] w=[2,7,11,17]
[2,5,9,13,17]
[1,7,11,19]
lininterp(z, X,Y)
[

[

[

1,3;7,9]1] w=[15,25,3.5,4.5]
1,2;4,5]

2,4,6,8]

lininterp(z, X,Y)
[8,10,15,17,48,50,63,65,80,82]w=1[2.913,3.95,6.991,7.996,9]
sgr(X)

[9,16,49,64,81]

lininterp(z, X,Y)

Compatibility

SN<X s N<X sN=<IX

« Numeric scalars
e vector (users)
e array (users)

In

Syntax
y =In(x)

Definition
109

file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+scalars&linkCreation=true&fromPageId=88319675
file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+scalars&linkCreation=true&fromPageId=88319675

Genesys - Users Guide
In returns the natural logarithm of x

Examples:

Formula Result

In(2.718) 1

In([1,4.4821]) [0,1.5]

In([0.607 , 1.649 ; 0.135, 7.389])|[-0.499, 0.5 ; -2.002, 2]
Compatibility

Numeric Scalars, Vectors, Arrays

See Also
exp (users)

log

Syntax
y = log(x)

Definition
Returns the logarithm (base 10) of x.

Examples:

Formula Result

log(1) 0

log([10,1.5]) [1,0.176]
log([2.3,0.5;3.7,0.8])|[0.362,-0.301; 0.568, -0.097]
Compatibility

« Numeric scalars
e vector (users)
e array (users)

mag

Syntax
y = mag(x)

Definition
mag takes the absolute value of a real variable or the magnitude of a complex variable.
Same as abs function

Examples:
Formula Result
mag(-1.5) 1.5

mag(complex(1,1))|1.414

mag([-1;-2;3]) [1;2;3]
Compatibility

Numeric scalars, Vectors, Arrays

See Also
abs (users)

110

file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+scalars&linkCreation=true&fromPageId=88319677
file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+scalars&linkCreation=true&fromPageId=88319677

Genesys - Users Guide
matrix

Syntax
z=matrix(x,y)

Definition
matrix builds an x by y matrix of complex numbers. All parts are initialized to zero.

Examples:

Formula Result
z=matrix(2,3)[0,0,0;0,0,0]
z=matrix(1,5)[0,0,0,0,0]
z=matrix(5,2)[0,0;0,0;0,0;0,0;0,0]
Compatibility

Positive integers (users)

max

Syntax
y = max(X)
y = max(x, iDim)

Definition
Returns the maximum part of a vector x. In the case of complex-valued arrays, the
magnitude of each part is used.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:
Formula Result
x=[10] y =10
y = max(x)
x=[18,-20,23,54,4,71,-43] y =71

y = max(X)

x =[27,86 ; complex(600, -435), 34]y = [600 - j435, 86]
y = max(X)

x=1[27,86; complex(1,1),-34] y = [27, 86]
y = max(x)

Compatibility
Numeric Scalars, Vectors, Arrays

See Also
min (users)

mean

Syntax

y = mean(X)
y = mean(x, iDim)

111

Genesys - Users Guide
Definition

Returns the arithmetic mean of a vector x.
For matrices, this function operates separately on each column and returns a vector. For

multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

Formula Result
y=mean([3;4;8,;9]) y=6

y = mean([complex(1,2); complex(1,1); complex(2,1)])|y=1.333+ j1.333
y =mean([1,2,3;4,5,6;7,891) y =[4, 5, 6]
Compatibility

Numeric arrays
See Also

e« median (users)
e« mode (users)

median

Syntax
y = median(X)
y = median(x, iDim)

Definition
Returns the median of a vector x.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

Formula Result
y=median([3;4;8;9]) y=6

y = median([complex(1,2); complex(1,1);complex(2,1)])y=2+]j1
y = median([1,2,3;4,5,6;7,8,9 1) y =[4, 5, 6]
Compatibility

Numeric arrays
See Also

e mean (users)
e mode (users)

min
Syntax

y = min(x)
y = min(X, iDim)

112

Genesys - Users Guide
Definition
Returns the minimum part of a vector x. In the case of complex-valued arrays, the
magnitude of each part is used.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:
Formula Result
x=[10] y =10
y = min(X)
x=[18,-20,23,54,4,71,-43] y =-43

y = min(x)

x =1[27,86 ; complex(600, -435),34]|y =[27, 34]
y = min(x)

x=1[27,86; complex(1,1),-34] y = [1+j1, -34]
y = min(x)
Compatibility
Numeric Scalars, Vectors, Arrays
See Also
max
mode
Syntax
y = mode(x)

y = mode(x, iDim)

Definition
Returns the mode of a vector x. If there are several values with equal maximum number
of occurrences, the smallest value is returned.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

Formula Result
y=mode ([8;4,;8;9]) y =8

y = mode ([complex(1,2); complex(1,2);complex(2,1)])ly=1+j2
y = mode ([1,2,3;2,2,3;7,891) y =1[1, 2, 3]

Compatibility
Numeric arrays

See Also
mean, median

moment

Syntax
y = moment(x, order)
y = moment(x, order, iDim)
113

Genesys - Users Guide

Definition
Returns the central moment of order order of a vector x.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

Formula Result
y=moment([1;2;3;4]) y =1.25

y = moment([complex(1,2); complex(2,3)],2)ly=0+j0.5
Compatibility

Numeric arrays

ndim

Syntax
y = ndim(x)

Definition
ndim returns the number of dimensions of an array x

Examples:

Formula Result
y =ndim([3]) y=1
y=ndim([10,31]) y=2

y=ndim([14,2;10,3]) |y=2
y = ndim(array(2,3,4)) |y=3
y =ndim(array(5,2,3,4))ly=4
Compatibility

e Numeric Scalars
e vector (users)
e array (users)

NFtoVNI(NF, Rs, TempC)

Syntax
y = NFtoVNI(NF, Rs, TempC)

Definition
NFtoVNI returns the equivalent input noise voltage given the noise factor NF, the input
resistance RS in ohms, and the temperature in Celsius.

When using vector the NF and Rs vectors must be the same length.

Examples:
Formula Result
y = NFtoVNI(2, 50, 17) y = 0.895 nV

y = NFtoVNI([3,71, [50,1001, 17)|y = [1.266, 3.101]

114

file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+arrays&linkCreation=true&fromPageId=88319879
file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+arrays&linkCreation=true&fromPageId=88319879
file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+Scalars&linkCreation=true&fromPageId=88319880
file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+Scalars&linkCreation=true&fromPageId=88319880

Genesys - Users Guide
Compatibility
Numeric Scalars, Vectors

|'ﬂ NOTE: Temperature must be a scalar|

See Also
stage_equivalent_input_noise_voltage (sim)

norm

Syntax
y = norm(X)

Definition
norm returns the square of the magnitude of a complex number x. Soy = mag(x)2,
where x is a complex number. norm does not work for vectors or arrays

Examples:

Formula Result

y = norm(complex(3,5)) |y =34

y = norm(complex(0, -7))|y = 49

y = norm(complex(4,0)) |y =16
y=norm(6) y =36
Compatibility

Numeric Scalars, Complex Numbers

See Also

e abs (users)
e mag (users)

normcdf

Syntax

y = normcdf(x)

y = normcdf(x, mu)

y = normcdf(x, mu, sigma)

Definition

Returns the cumulative distribution function of the normal distribution with mean mu and
standard deviation sigma evaluated at the values of x. Mu and sigma are optional and
default to 0 and 1, respectively. All inputs must match in dimensions or be scalars.
Scalars are treated as constant arrays of size compatible with the other arguments.

Examples:
Formula Result
normcdf(1) 0.8413

normcdf(1, [0, 1], 2) |[0.6915, 0.5]
Compatibility
Numeric scalars, Vectors, Arrays

See Also
normpdf, norminv

115

Genesys - Users Guide
norminv

Syntax

y = nhorminv(x)

y = norminv(x, mu)

y = norminv(x, mu, sigma)

Definition

Returns the inverse cumulative distribution function of the normal distribution with mean
mu and standard deviation sigma evaluated at the values of x. Mu and sigma are optional
and default to 0 and 1, respectively. All inputs must match in dimensions or be scalars.
Scalars are treated as constant arrays of size compatible with the other arguments.

Examples:

Formula Result

norminv(0.5) 0.8413

norminv(0.1, [0, 0.1], 2) |[[-2.5631, -2.4631]
Compatibility

Numeric scalars, Vectors, Arrays
See Also

e normpdf (users)
e normcdf (users)

normpdf

Syntax

y = normpdf(x)
y = normpdf(x, mu)
y = normpdf(x, mu, sigma)

Definition

Returns the probability distribution function of the normal distribution with mean mu and
standard deviation sigma evaluated at the values of x. Mu and sigma are optional and
default to 0 and 1, respectively. All inputs must match in dimensions or be scalars.
Scalars are treated as constant arrays of size compatible with the other arguments.

Examples:

Formula Result
normpdf(1) 0.242

normpdf(1, [0, 1], 2) |[0.176, 0.1995]
Compatibility

Numeric scalars, Vectors, Arrays
See Also

normcdf (users), norminv (users)

numcols
116

Genesys - Users Guide

Syntax
y = numcols(x)

Definition
numcols returns the number of columns in a matrix x.

Examples:

Formula Result

b=[1,2;3,4;1,2;3,4]y=2
y = numcols(b))

b=[1,2,3,4;1,2,3,4]y=4

y = numcols(b))
Compatibility
Matrices

See Also
numrows (users)

NUMrows

Syntax
y = numrows(X)

Definition
numrows returns the number of rows in a matrix x.

Examples:

Formula Result

b=[1,2;3,4;1,2;3,4]y=4
y = numrows(b)

b=[1,2,3,4;1,2,3,4]y=2
y = numrows(b)

Compatibility
Matrices

See Also
numcols (users)

ones

Syntax
y =ones(m,n)

Definition
ones returns a m by n matrix with every part equal to 1. If parameter n is omitted the
function returns a vector of 1's of length m.

Examples:

117

Genesys - Users Guide
Formula Result
y=ones(3,2)y=[1,1;1,1;1,1]
y=ones(2,2)y=[1,1;1,1]
y=ones(5) |y=[1;1;1;1;1]
Compatibility
Numeric Scalars

See Also
zeros (users)

PortVolts

Calculates complex voltage amplitudes at ports of a linearized circuit.
Syntax

PortVolts(S, ZPORT, iSigPort, Vin)

where

S[n,n] - frequency swept matrix of linear S-parameters of the circuit,
ZPORT[n] - frequency swept vector of circuit port impedances,
iSigPort = 1..n - index of signal source port,

Vin - complex amplitude of voltage, applied to the signal port,

n - number of circuit ports.

Definition

PortVolts - calculates complex voltage amplitudes at ports of a linearized circuit, when 1
of its ports is excited by the same complex voltage for each swept frequency.

Examples:
See \Examples\Tutorial\LinearPortVolts.wsx:

It calculates the port voltages using results of Linear analysis "Filterl_Analysis_Data",
when port 1 is excited by complex
voltage amplitude V1 *exp(j*Phasel) :

using("Filterl_Analysis_Data")
Vports=PortVolts(S, ZPORT, 1, V1*complex(cos(Phasel),sin(Phasel)))
setindep("Vports","F")

posterror

Syntax
y = posterror(x)

Definition

Converts the argument to a string (if necessary) and posts the string to the error log as
an error. This function causes the equations to error out and not calculate, as well as
posting the error. The error stays on the log until the equations are recalculated or the
error log is cleared.

Examples:

118

Genesys - Users Guide
Formula Result
posterror("Custom Error") |[Error window displays an error of "Custom Error"
Compatibility
string

See Also
postwarning (users)

postwarning

Syntax
y = postwarning(x)

Definition

Converts the argument to a string (if necessary) and posts the string to the error log as a
warning. This does not cause the equations to error out. The equations will continue to
calculate if the postwarning function is executed. The warning stays on the log until the
equations are recalculated or the error log is cleared.

Examples:

Formula Result

postwarning("Custom Warning") [Error window displays a warning of "Custom Warning"
Compatibility

string

See Also
posterror (users)

pow

Syntax
z=pow(Xx,y)

Definition
pow returns X raised to the power of y. pow uses the equation exp (y * In(x)) to find z.
x must be greater than zero.

Examples:

Formula Result
z=pow(2,4) z=16
z=pow(10,5) z = 100000
z=pow(4,-3) z = 0.016
z=pow(complex(1,1),3 z=-2+j2

)
Compatibility
Numeric Scalars

See Also

e exp (users)
e In (users)

prctile
119

Genesys - Users Guide

Syntax

y = prctile(x, p)
y = prctile(x, p, iDim)

Definition

Returns the p'th percentiles of a vector x (p can be a scalar or a vector of percent values).
Percentiles must be between 0 and 100. For an N-part vector, this function computes
percentiles by assigning percentile values to the sorted input data as 100*(0.5/N),
100*(1.5/N), ..., 100*((N-0.5)/N). Linear interpolation is then used to compute
percentiles between these values. The minimum or maximum values in the data are
returned for percentile values outside that range.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

Formula Result
prctile([1, 2, 3, 4, 5], 50) 3
prctile([10, 20, 50, 100, 200], 60) |75
Compatibility

Vectors, Arrays
See Also

e guantile (users)
e« median (users)

prod

Syntax

y = prod(x)
y = prod(x, iDim)

Definition
Returns the product of parts of a vector x.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:
Formula Result
y=prod([2,3,5]) y =30

y=prod([1,3;7,5]) y =[7,15]
y =prod([-3.3,0.7,5,31) |y = -34.65

a=complex(1,3) y=1+13j
b = complex(4,1)

c =complex(1,0)
y=prod([a,b,c])

Compatibility

Numeric Scalars, Vectors, Arrays

120

Genesys - Users Guide
See Also
sum (users)

quantile

Syntax
y = quantile(x, q)
y = quantile(x, q, iDim)

Definition

Returns the g'th quantiles of a vector x (q can be a scalar or a vector of quantile values).
Quantiles must be between 0 and 1. For an N-part vector, this function computes
quantiles by assigning quantile values to the sorted input data as (0.5/N), (1.5/N), ...,
((N-0.5)/N). Linear interpolation is then used to compute quantiles between these values.
The minimum or maximum values in the data are returned for quantile values outside that
range.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

Formula Result
quantile([1, 2, 3, 4, 5], 0.5) 3
quantile([10, 20, 50, 100, 200], 0.6) 75
Compatibility

Vectors, Arrays
See Also

e prctile (users)
e median (users)

rand

Syntax
y=rand(m,n)

Definition

Rand generates uniformly distributed random numbers on the interval [0, 1). Both
arguments are optional. If both arguments are omitted, the function returns a random
scalar. If the second argument is omitted, a vector of m random numbers is generated.
When both arguments are present a m by n matrix of random numbers is generated.

© Note: The returned number, vector, or matrix is in complex form where the imaginary part is equal to 0.
The magnitude of the complex number is displayed. May need to do the operation real(y) to get the
desired display result.

Examples:

121

Genesys - Users Guide

Formula Result

y = rand() random number on the interval [0, 1)

y =rand(4) vector of length 4 of random numbers on the interval [0, 1)
y=rand(3,5) 3 by 5 matrix of random numbers on the interval [0, 1)

y =real(rand(4, 2)) the real part of a 4 by 2 complex matrix of random numbers on the interval [0, 1)
Compatibility
Numeric Scalars

See Also

e real (users)
e randn (users)

randn

Syntax
y =randn(m, n)

Definition

randn generates Gaussian distributed random numbers with a mean of 0 and a variance of
1. Both arguments are optional. If both arguments are omitted, the function returns a
random scalar. If the second argument is omitted, a vector of m random numbers is
generated. When both arguments are present a m by n matrix of random numbers is
generated.

© Note: The returned number, vector, or matrix is in complex form where the imaginary part is equal to 0.
The magnitude of the complex number is displayed. May need to do the operation real(y) to get the
desired display result.

Examples:

Formula Result

y = randn() random number on the interval with a mean of 0 and a variance of 1.

y = randn(4) vector of length 4 of random numbers with a mean of 0 and a variance of 1.
y=randn(3,5) 3 by 5 matrix of random numbers with a mean of 0 and a variance of 1.

y = real(randn(4 , 2 [the real part of a 4 by 2 complex matrix of random numbers with a mean of 0 and a
)) variance of 1.

Compatibility
Numeric Scalars

See Also

e rand (users)
e real (users)

re

Syntax
y =re(x)

Definition
re returns the real part of a complex number x. Same as real function

Examples:

122

Genesys - Users Guide

Formula Result
y =re(20) y=20
y = re(complex(3,2)) y=3

y = re(complex(-7 ,1) -complex(-2,3))ly=-5
Same as: re(complex(-5 ,-2))

b=[complex(2,2),complex(1,1)] y=[2,1]
y=re(b)

Compatibility
Numeric Scalars, Vectors, Arrays
See Also

e real (users)
e imag (users)

real

Syntax
y = real(x)

Definition
real returns the real part of a complex number x. Same as re function

Examples:

Formula Result
y = real(20) y =20
y = real(complex(3,2)) y=3

y = real(complex(-7, 1) -complex(-2,3))|ly=-5
Same as: real(complex(-5 ,-2))

b=7[complex(2,2),complex(1,1)] y=[2,1]
y=real(b)
Compatibility

Numeric Scalars, Vectors, Arrays
See Also

e re (users)
e imag (users)

reshape

Syntax
y = reshape(x, newshape)

Definition

reshape sets the dimensions of the variable x to the dimensions described by newshape. If
the new dimensions contain more parts than the variable x, then the extra parts are filled
with zeros.

Swept-dimensions are NOT counted. (eq. if S is the variable produced by a 100 point
linear analysis of a 2-port circuit, reshape(S, [4;1]) would return a variable containing S,
but having dimensions 100x4x1)

Examples:

123

Genesys - Users Guide

Formula Result
x=[1,2,3;4,5,6;7,8,9]y=[1;2;3;4;5]
y = reshape(x, 5)

x=[1,2,3;4,5,6] y=[1,2,3,4,5]

y =reshape(x,[1;51])

x=[1,2;3,4;5,6;7,8] |y=[1,2,3;4,5,6]
y =reshape(x,[2;3])

x=[1,2;3,4] y=(1,2,3,4;0,0,0,0;0,0,0,0]
y =reshape(x,[3;41]1)
Compatibility

Numeric Scalars, Vectors, Arrays
See Also

e resize (users)
e shape (users)
e array (users)

resize

Syntax
y = resize(x, newshape)

Definition
resize sets the dimensions of the variable x to the dimensions described by newshape. If
the new dimensions contain more parts than the variable x, then the extra parts are filled
with zeros.

Swept-dimensions are counted. (eg. if S is the variable produced by a 100 point linear
analysis of a 2-port circuit, resize(S, [100;4;1]) would return a variable containing S, but
having dimensions 100x4x1)

Examples:

Formula Result
x=[1,2,3;4,5,6;7,8,9]y=[1;,2;3;4,5]
y =resize(x,5)

x=[1,2,3;4,5,6] y=[1,2,3,4,5]

y =resize(x,[1;5])

x=[1,2;3,4;5,6;7,8] |y=[1,2,3;4,5,6]
y =resize(x,[2;3])

x=[1,2;3,4] y=[1,2,3,4;,0,0,0,0;0,0,0,0]
y =resize(x,[3;4])
Compatibility

Numeric Scalars, Vectors, Arrays
See Also

e reshape (users)
e array (users)

reverse

Syntax
y = reverse(X)

124

Genesys - Users Guide
Definition
reverse returns the reverse of a vector x. If x is @ matrix then reverse returns a matrix
with its columns reversed.

Examples:

Formula Result
b=[1;2;3;4,;5] |y=[5;4;3;2;1]
y = reverse(b))
b=[1,2,3;4,5,6]y=[4,5,6;1,2,3]
y = reverse(b))

Compatibility

e vector (users)
e matrix (users)

rltogamma

Syntax
y = rltogammal(rl, ang)

Definition

rltogamma returns the voltage reflection coefficient (gamma) based on the return loss rl
in dB and the angle ang in radians. y is returned as a complex number. rl must be a
number and ang can be a number or a vector.

Examples:
Formula Result (complex) Or (magnitude)
y = rltogamma(60, PI) y = -0.001 + j1.225 * 10~-19 y = 0.001
y = rltogamma(27, (PI/3)) y = 0.0223 + j0.0387 y = 0.045
y = rltogamma(45, (4 *PI/3))|y = -.00281 - j0.487 y = 0.00562
rl =22 y[1] = 0.0241 + j0.0376 y = [0.079, 0.079, 0.079]
and=[1,15,2] y[2] = 0.00316 + j0.0446
y = rltogamma(rl, ang) y[3] = -0.0186 + j0.0406
Compatibility
Numeric Scalars, Vectors
See Also
ritoz (users)
ritoz
Syntax

y = rltoz(zo, rl, ang)

Definition

ritoz returns the complex impedance based on the normalizing impedance zo, the return
loss rl in dB, and the angle ang in radians. zo and ang cannot both be vectors. rl must be
a number

Examples:

125

Genesys - Users Guide

Formula Result (complex) Or (magnitude)
y =rltoz(10,22 ,1) y = 10.8 + j1.452 y = 10.893
y=rltoz([3,7],26,2) y[1] = 2.866 + j0.262 |y = [2.878, 6.715]

y[2] = 6.687 + j0.611

y =rltoz(5,27 ,[1,1.5,271)y[1] =5.232 +j0.394 |y = [5.247 , 5.032, 4.818]
y[2] = 5.012 + j0.448
y[3] = 4.802 + j0.391

Compatibility

Numeric Scalars, Vectors

See Also
ritogamma (users)

rotate

Syntax
y = rotate(v, r)

Definition

Rotate returns a rotated vector or matrix v by the integer value r. If v is a vector then the
function rotate moves all the parts r positions over. If v is a matrix then the function
rotate moves all the rows r positions down.

Examples:
Formula Result (complex)
b=[1;2;3;4] y=[3;4;1;2]

y = rotate(b, 2)

b=[1,2;3,4;5,6;7,8] |y=[7,8;1,2;3,4;5,6]
y = rotate(b, 1)
b=(1,2,3;4,5,6;,7,8,9]y=[4,5,6;7,8,9,1,2,3]
y = rotate(b, 5)

Compatibility

 Numeric Scalars
e vector (users)
e matrix (users)

RsCondToThick

Syntax
Thick = RsCondToThick(Rs, Cond, Tunits)

Definition

RsCondToThick Returns metal thickness.
Tunits - output units (string);

Rs - sheet resistance [Ohm/Sq];

Cond - conductivity [Ohm*M]

Examples:

T_mil=RsCondToThick(50,5.8e7,"mil")
T_mm=RsCondToThick(50,5.8e7,"mm")

126

file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+Scalars&linkCreation=true&fromPageId=88319905
file:/pages/createpage.action?spaceKey=genesys2010&title=Numeric+Scalars&linkCreation=true&fromPageId=88319905

Genesys - Users Guide

D Note
Use this function for calculating thickness of sheet resistance. When the calculated thickness is used in the
Layout Layer properties, not supporting variable parameters, it has to be calculated with Layout units. The
calculated value with predefined units may be read from the equation block:
Erp— DER
' 1 Tl mil=RsRhoToThick (50,1000, "nil")
Lp to date 2 TZ_mil=FaResToThick (50,1000/5.8e7, "mil™)
Variakie 3 T3_wil=RsCondToThick (50,5, 82771000, "nil™]
T1_mil=0.014 mi 4
T1_mm=344 5e.5 mm 5 Tl_uwm=RsRhoToThick (50,1000, "un"
T1_um=0.345 pm & TZ_um=ReResToThick (50, 1000/5.8e7,"an")
T2_mil=0.014 mi 7 T3_mm=RsCondToThick (50,5.8e7/1000, "nn")
T2_mm=344 32.6 mm <]
T2 um=0.345 pm 3 T1_um=RsRhoToThick (50,1000, “um")
T3_mil=0.01 4 il 10 TZ_um=FsResToThick (50,1000/5.5e7,"un"™)
3_mm=344 826 mm 11 T3_um=RsCondToThick {50, 5.8e7/1000, "un")
T3_um=0.345 pm 1z
< >
g
< >
See Also

RsResToThick (users) RsRhoToThick (users)

RsResToThick

Syntax
Thick = RsResToThick(Rs, Res, Tunits)

Definition

RsCondToThick Returns metal thickness.
Tunits - output units (string);

Rs - sheet resistance [Ohm/Sq];

Res - resistivity [Ohm*M]

Examples:

T_mil = RsResToThick(50, 1.724e-8, "mil")
T_mm = RsResToThick(50, 1.724e-8, "mm")

© Note

Use this function for calculating thickness of sheet resistance. When the calculated thickness is used in the
Layout Layer properties, not supporting variable parameters, it has to be calculated with Layout units. The
calculated value with predefined units may be read from the equation block:

127

Genesys - Users Guide

=13

1 T1_mil=RaPhoToThick (50,1000, "nil™)

Up to date 2 T2 _mil=RsPesToThick {50,1000/5.8e7, " »il"™)
Variabie 3 T3_wil=RaCondToThick (50,5.8:7/1000, "ril™)
T1_mil=0.01 4 mil 4
T1_mme344 Be.5 mm 5 Tl_mm=R=zRhoToThick (50,1000, "un")

T1_ume0.345 pm & T2_mm=RsResToThick (50, 1000/5.5e7, "nn")
T2_mil=0.01 4 mi 7 Ti_mm=RaCondToThick (50,5.8e7/1000, "nu")
T2_mm=344 5.6 mm -]
T2 _um=0,345 pm 9 Tl _um=FsPhoToThick (50,1000, "um™)
T5_mil=0.01 4 10 TZ_um=FsResToThick (50, 1000/5. 8.7, un")
T3_mim=344 Ba-& mm 11 T3_1um=FaCondToThick (50,5.8e7/71000, "um")
T5_um=0.345 pm 1z
< ¥
g
< >
See Also

RsCondToThick (users) RsRhoToThick (users)
RsRhoToThick

Syntax
Thick = RsRhoToThick(Rs, Rho, Tunits)

Definition

RsRhoToThick Returns metal thickness.

Tunits - output units (string);

Rs - sheet resistance [Ohm/Sq];

Rho - relative to copper resistivity: Rho=Res/ResCop, where copper resistivity
ResCop=1.724e-8 [Ohm*M].

Examples:

T_mil = RsRhoToThick(50, 100, "mil")
T_mm = RsRhoToThick(50, 100, "mm")

© Note

Use this function for calculating thickness of sheet resistance. When the calculated thickness is used in the
Layout Layer properties, not supporting variable parameters, it has to be calculated with Layout units. The
calculated value with predefined units may be read from the equation block:

128

Genesys - Users Guide
=13

1 T1_wil=RsRhoToThick (50,1000, "wil™}

IUp to date 2 T2 mil=FsResToThick (50,1000/5.8e7, " mil™)
Variabie 3 T3_wil=RaCondToThick (50,5.8:7/1000, "ril™)
T1_mil=0.01 4 mil 4
T1_mm=344 5e-5 mm 5 Tl_uw=RePhoToThick (50,1000, "un")

T1_um=0.345 pm & T:_pw=RsResToThick (50,1000/5.8e7, "nn")
T2_mil=0 0 4 mi 7 T3_mm=RaCondToThick (50,5.8e7/1000, "nu")
T2 mm=344 2.6 mm &
T2_um=0,345 pm] T1_um=FsRhoToThick (50,1000, "um™)
T3_mit=0.01 4 mil 10 T2_um=FsResToThick [50,1000/5.887,"un")
T3 mm=344 B=-6 mm 11 T3_1um=FaCondToThick (50,5.8e7/71000, "um")
T3_um=0.345 pm 1z
< >
=
< >
See Also

RsCondToThick (users) RsResToThick (users)

129

Genesys - Users Guide

runanalysis

Syntax
runanalysis("AnalysisName")
runanalysis("AnalysisName", ContinueOnError)

Definition

The runanalysis function is used to force an analysis to run from an equation block. It can
be used to control simulations in a sequential manner. The function does not return until
the analysis finishes, whether successful or in error.

The second argument, ContinueOnError, is optional and defaults to 0 (false). If
ContinueOnError is 0 and an error is encountered when running the analysis, the equation
block throws an error and terminates. If ContinueOnError is 1 (true), the equation script
continues to run.

Examples:

SourceAmpls = [1, 2, 5, 10]; ' We'll step our source's amplitude with these values
SourceAmpls_size = size(SourceAmpls); ' vector representing dimensions of SourceAmpls
for i = 1 to SourceAmpls_size[1]

CurAmplitude = SourceAmpls[i]; ' This variable is used by our source's Amplitude parameter
runanalysis("Analysisl");

' Post process data from the current analysis run

' Post-processing equations would go here
next

setindep

Syntax
setindep("dependentvar"”, "independentvarl", "independentvar2", ...)

Definition

setindep manually sets the independent variable(s) for a swept variable. Both are passed
by name. A long hame can be used for the independentvar. If independentvar is empty
(blank) the dependentvar becomes unswept. All independents should have the same
length, equal to the number of rows in the dependent.

Examples:

Formula Result

ind = [0.025;1;2;5] set x to have a 4 part independent vector. x should be of size 4xm or 4xmxn
setindep("x" ,"ind")

abest = myS[2,1] set abest to use MyData.F as an independent vector. F must have the same
setindep("abest", number of parts as abest has rows.
"myData.F")

Compatibility
Vectors and Arrays. The independent var must be numeric.

See Also
getunits (users)
setplottype
Syntax
setplottype("varname", "PlotType")
130

Genesys - Users Guide

Definition
setplottype sets the plot-type property of a variable, which indicates both the organization
of the data and the drawing style for the plot.

Valid plot types include:
"" (Empty string indicates a standard plot), "Discrete", "Spectrum", "Level", "Spur",
"SpurFree", "OutOfRange", "ValidIF", "Contour", "PointPlot", and "Histogram".

Examples:

Formula
x=[1,2,3,4]

setplottype("x" , "Spectrum")
Vari1=[5,10, 15, 20,25]
setplottype("Varl" , "PointPlot")
b=[13,45,7.2,12.7,16.9]
setplottype("b" , "OutOfRange")
Compatibility

Strings

setunits

Syntax
setunits("varname", unit)

Definition
setunits sets a variable named varname to have units specified by the parameter unit.
unit may be an integer or a string.

© setunits is used only to set the units of variables in equations and datasets. It will not change units of a
part's parameters.

Examples:
Formula Result
y = [0.025] sets units of y to um
setunits("x" , 6006) |y = 25000
y=5 sets units of y to mm
setunit("y", "mm")|y =5000
y = 0.0001 sets units of y to uF
setunits("y", "uF") |y = 100
Compatibility
Numeric Scalars, Strings
See Also
getunits
shape
Syntax
y = shape(x)
Definition

shape returns a vector containing the number of parts in each dimension of x. part one of
y corresponds to the number of parts in the first dimension, part two to the second

dimension, and so on.
131

file:/pages/createpage.action?spaceKey=genesys2010&title=Strings&linkCreation=true&fromPageId=88319907
file:/pages/createpage.action?spaceKey=genesys2010&title=Strings&linkCreation=true&fromPageId=88319907

Genesys - Users Guide

Swept-dimensions are NOT counted. (eq. if S is the variable produced by a 100 point
linear analysis of a 2-port circuit, shape(S) returns the vector [2;2]). The function size
does count them.

Examples:

Formula Result
b=[1,2,3,4] y=[1;4]

y = shape(b))
b=[1,2,3;4,5,6]y=[2;3]

y = shape(b))

b=array(5,4,6) y=[5;4,;6]
y = shape(b))
b=array(11,7,3,2)y=[11,;7;3; 2]
y = shape(b))

Compatibility

Numeric Scalars, Vectors, Arrays
See Also

e reshape (users)
e size (users)
e array (users)

sin
Syntax
y =sin(x)

Definition
sin returns the sine of the number, in radians (MKS) between -1 <=r < 1

Examples:

Formula Result
sin(0) 0
sin(PI/2) 1
sin(-PI/ 2) -1

sin(PI1/ 4) 0.707
sin(2.094) or sin(2 * PI / 3)/0.866
Compatibility
Numeric scalars, Vectors, Arrays
See Also
asin (users)

sinc
Syntax

y = sinc(X)

Definition
sin returns the sin(PI * x)/ (PI * x) or 1 if x is equal to 0.

132

Genesys - Users Guide

Examples:

Formula Result
sinc(0) 1
sinc(PI/ 2) 0.198
sinc(PI / 4) 0.253
sinc(2.094) or sinc(2 * PI / 3)/0.044
Compatibility
Numeric scalars, Vectors, Arrays
See Also
sin (users)

sinh
Syntax
y = sinh(x)
Definition

sinh returns the hyperbolic sine of the number, or (ex - e-x) / 2.

Examples:
Formula Result
sinh(1) 1.175
sinh(5) 74.203

sinh(PI/3) 1.249
sinh(PI/ 6)0.548

sinh(0) 0
Compatibility
Numeric scalars, Vectors, Arrays
See Also
asinh (users)
size
Syntax

y = size(x)

Definition

size returns a vector containing the number of parts in each dimension of x. part one of y
corresponds to the number of parts in the first dimension, part two to the second
dimension, and so on.

Swept-dimensions are counted. (eg. if S is the variable produced by a 100 point linear
analysis of a 2-port circuit, size(S) returns the vector [100;2;2]). The function shape
does not count them.

Examples:

133

Genesys - Users Guide

Formula Result
b=[1,2,3,4] y=[1;4]

y = size(b))
b=[1,2,3;4,5,6]y=1[2;3]

y = size(b))

b=array(5,4,6) y=[5;4,;6]

y = size(b))
b=array(11,7,3,2)y=[11,;7;3; 2]
y = size(b))

Compatibility

Numeric Scalars, Vectors, Arrays
See Also

e shape (users)
e array (users)

skewness

Syntax

y = skewness(x)

y = skewness(X, Flag)

y = skewness(x, Flag, iDim)

Definition
Returns the sample skewness of a vector x. Skewness is the third central moment of X
divided by the cube of the standard deviation.

If Flag is 0 (default), skewness normalizes by N-1 where N is the sample size. If Flagis 1,
skewness normalizes by N.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

Formula Result

y = skewness([3;4;8;9])y=0

y = skewness([1, 2, -5], 1) y = -0.652
Compatibility

Numeric arrays

See Also

o std (users)
e var (users)
e kurtosis (users)

sort

Syntax
y = sort(x)

Definition
sort returns a vector that has been rearranged in ascending order. If values of x are
134

Genesys - Users Guide
complex then the real part of those numbers is used.

Examples:
Formula Result
y=sort([4,6,2,7,1,3,5]) y=[1;,2;3;4,5;6,7]
y=sort([4,6,2;1,3,5]) y=[1;2;3;4;5;6]
y = sort([complex(5,1), complex(7,6), y[1]=1+j6
complex(4,3),complex(1,6)]) y[2] =4 +j3
y[3] =5 +j1
y[4] =7 +j6
Note: the magnitudes may appear unsorted.
b=array(2,2,2) y=[0;0;0;0;1;2;3;4]
b[2,2,1]=1
b[1,1,1]=2
b[1,2,1]=3
b[2,2,2]=4
y =sort(b)
Compatibility
Numeric Scalars, Vectors, Arrays
sqr
Syntax
y =sqr(x)
Definition

sgr returns the square root of x. If x is a complex number then the square root of the
magnitude is returned as a complex number.

Same as sqrt function

Examples:
Formula Result
y =sqr(16) y=4

y=sqr([25,9,121]) y=[5,3,11]

y = sqr(complex(4,4))|y = 2.197+ j0.9101 or 2.378
y=sqr([3,2;5,71) y=[1.732,1.14; 2.236, 2.646]
Compatibility

Numeric scalars, Vectors, Arrays

See Also
sqrt (users)

sqrt

Syntax

y = sqrt(x)

Definition

sqrt returns the square root of x. If x is a complex number then the square root of the
magnitude is returned as a complex number.

Same as sqgr function

135

Genesys - Users Guide

Examples:
Formula Result
y = sqrt(16) y=4

y=sqrt([25,9,121]) y=[5,3,11]

y = sqrt(complex(4,4))|y = 2.197+ j0.9101 or 2.378
y=sqrt([3,2;5,7]) |y=[1.732,1.14; 2.236, 2.646]
Compatibility

Numeric scalars, Vectors, Arrays

See Also
sqgr (users)

std

Syntax

y = std(x)

y = std(x, Flag)

y = std(x, Flag, iDim)

Definition
Returns the standard deviation of a vector x.

If Flag is 0 (default), std normalizes by N-1 where N is the sample size. If Flag is 1, std
normalizes by N.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

Formula Result
y=std([3;4,;8;9])y=2.9439
y=std([1,2 3],1) y = 0.8165
Compatibility

Numeric arrays

See Also
e var (users)

e skewness (users)
e kurtosis (users)

stos

Syntax
y=stos(S1, ZPORT1, ZPORT2)

Definition
Converts S1 parameters for port impedance's ZPORT1 to S2 parameters for port
impedance's ZPORT2

Examples:

136

Genesys - Users Guide

Formula Result
y=stos(S, 50, 75) S-Data from 50 Ohm to 75 Ohm
reference

Compatibility
Can be used in any dataset and equation block that references to s-parameter data.

stoy

Syntax
Y = stoy(S, ZPORT)

Definition
Converts S-parameters to Y-parameters given the port impedance.

Examples:

Formula Result
y=stoy(S, 50) Y-Data converted from S-parameter data using 50 ohms

Compatibility

Can be used in any dataset and equation block that references s-parameter data.
stoz

Syntax

Z = stoz(S, ZPORT)

Definition
Converts S-parameters to Z-parameters given the port impedance.

Examples:

Formula Result
z=stoz(S, 50 |Z-Data converted from S-parameter data using 50 ohms

)
Compatibility
Can be used in any dataset and equation block that references s-parameter data.

substrateer

Syntax
y = substrateer(x)

Definition
Returns the dielectric constant (Er) of substrate x.

Examples:

Formula Result
y=substrateer("Substratel") ly=4.6
Compatibility

string

See Also
substratetand (users)

substrateh
137

Genesys - Users Guide

Syntax
y = substrateh(x)

Definition
Returns the height (Height) of substrate x. The returned value has no units

Examples:

Formula Result
y=substrateh("Substratel") ly=59

setunits("y","mil")
Compatibility
string

See Also
substrateer (users)

substraterho

Syntax
y = substraterho(x)

Definition
Returns the relative resistivity (Rho) of substrate x.

Examples:

Formula Result
y=substraterho("Substratel") y=1
Compatibility

string

See Also
substratetmet (users)

substraterough

Syntax
y = substraterough(x)

Definition
Returns the surface roughness (Sr) of substrate x. The returned value has no units.

Examples:

Formula Result
y=substraterough("Substratel") y=0.094

setunits("y","mil")
Compatibility
string

See Also
substrateh (users)

substratetand

138

Genesys - Users Guide

Syntax
y = substratetand(x)

Definition
Returns the loss tangent (TanD) of substrate x.

Examples:

Formula Result
y=substratetand("Substratel") y=0.011
Compatibility

string

See Also
substraterho (users)

substratemet

Syntax
y = substratetmet(x)

Definition
Returns the metal thickness (Thick) of substrate x. The returned value has no units.

Examples:

Formula Result
y=substratetmet("Substratel") |y=1.42
setunits("y","mil")

Compatibility

string

See Also
substraterough (users)

sum
Syntax
y =sum(x)
y = sum(x, iDim)

Definition

Returns the sum of parts of a vector x.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

139

Genesys - Users Guide
Formula Result
y=sum([10,3,51]) y =18
y=sum([2;9;111]) y =22
y = sum([complex(3,3), complex(5,2)])y=8+j5
y=sum([3,2,19;5,7,1.5]) y = [8, 9, 20.5]
Compatibility
Numeric scalars, Vectors, Arrays

See Also
prod (users)

tan

Syntax
y =tan(x)

Definition
tan returns the tangent of the number, in radians (MKS) between -infinity < r < infinity

Examples:
Formula Result
tan(PI) 0

tan(PI/4) 1

tan(-P1/4) -1

tan(5*PI/11) 6.955

tan(-5PI/11) -6.955
Compatibility

Numeric scalars, Vectors, Arrays

See Also
atan (users)

tanh

Syntax
y = tanh(x)

Definition
tanh retruns the hyperbolic tangent of x or (e2x - 1) / (e2x +1).

Examples:
Formula Result
tanh(1) 0.762
tanh(5) 1

tanh(PI/ 3)/0.781

tanh(PI / 6)/0.48

tanh(0) 0

Compatibility

Numeric scalars, Vectors, Arrays

See Also

140

Genesys - Users Guide
atanh (users)

tcdf

Syntax
y = tecdf(x, v)

Definition

Returns the cumulative distribution function of the Student's T distribution with degrees of
freedom parameter v evaluated at the parts of x. All inputs must match in dimensions or
be scalars. Scalars are treated as constant arrays of size compatible with the other
arguments.

Examples:

Formula Result

tcdf(0.5, 5) 0.6809

tcdf(3, [10, 100]) |[[0.9933, 0.9983]
Compatibility

Numeric scalars, Vectors, Arrays

See Also

o tpdf (users)
e tinv (users)
time
Syntax
y = time(spectra, freqgs, times)
Definition

time constructs and returns a time-domain waveform from complex spectra at arbitrary
frequencies.

Examples:
The time function is demonstrated in the Amplifier Gain Compression.wsx. This file is
located in the Examples\Amplifiers directory of your Genesys directory.

The function is used as a measurement in the Waves graph of the workspace:
B4 Waves Properties

General | Graph Properties

Default Dataset or Equations: |HEL_Data

Measurement |
time(‘\;"F‘ORTH .] Freq Time)
limePORT[2] Freg, Time)

141

Genesys - Users Guide

B=1Ed

YWaves
g 0.0z
oo
o
g 0012
ge-3 Ty Jﬁ'- J !

x
X1 £ .'bg;" e

[y

=)

=z

(1

% 3

£

.’5 ; - .-‘f P
E -da-3 i = 2 FJ T
5 ge3 F...’.

[

=,

=

(1

()

s

E

i

= 0012

=
g
==
[

o 0235 0469 0.704 0933 1.173 1.407 1.642 1876 2411 2346
Time (=)
—e— time (WPORT[T,Freq,Time) —=— time (VPO RT Freq . Tine)

Compatibility
array (users)

times

Syntax
y = times(a, b)

Definition

Returns the part-by-part product of the two arguments. If one entry is a scalar and one is
an array, the return value is

the scalar multiplied by every part in the array. This is in contrast to the * operator that
does matrix multiplication.

Unless one argument is a scalar, then the dimensions of the two parameters must agree.

Examples:

Formula Result
a=2 c=[2,4;6,8]
b=[1,2;3,4]
c=times(a,b)

a=[1,3,5] c=[1,9,25]
b=[1,3,5]

c=times(a,b)

a=[1,2;3,4] |c=[1,4,;9,16]
b=[1,2;3,4]
c=times(a,b)
Compatibility

array (users)

See Also
text

timevector

Syntax
y = timevector(start, stop, step)

Definition
142

file:/pages/createpage.action?spaceKey=genesys2010&title=text&linkCreation=true&fromPageId=88319933
file:/pages/createpage.action?spaceKey=genesys2010&title=text&linkCreation=true&fromPageId=88319933

Genesys - Users Guide
timevector creates and returns a vector of times from start to stop with a specified step
size. start must be less than stop and step must be a number greater than 0.

Examples:

Formula Result

y = timevector(0,5, 0.5) y=[0;05;1;15;2;25;3;35;4,;45;5]
y = timevector(1, 100,20) |y=[1;21;41;61;81]

y = timevector(1, 100, 1001)y =1

Compatibility

Numeric scalars

tinv

Syntax
x = tinv(p, v)

Definition

Returns the inverse of the cumulative distribution function of the Student's T distribution
with degrees of freedom parameter v evaluated at the parts of p. All inputs must match in
dimensions or be scalars. Scalars are treated as constant arrays of size compatible with
the other arguments.

Examples:

Formula Result

tinv(0.5, 5) 0

tinv(0.8, [10, 100]) |[0.8791, 0.8452]
Compatibility

Numeric scalars, Vectors, Arrays
See Also

e tpdf (users)
e tcdf (users)

tpdf

Syntax
y = tpdf(x, v)

Definition

Returns the probability distribution function of the Student's T distribution with degrees of
freedom parameter v evaluated at the parts of x. All inputs must match in dimensions or
be scalars. Scalars are treated as constant arrays of size compatible with the other
arguments.

Examples:

Formula Result

tpdf(0.5, 5) 0.3279

tpdf(3, [10, 100]) |[[0.0114, 0.0051]
Compatibility

Numeric scalars, Vectors, Arrays

143

Genesys - Users Guide
See Also

e tcdf (users)
e tinv (users)

transpose

Syntax
y = transpose(x)

Definition
transpose returns the transposition of a matrix or swept matrices x

Examples:

Formula Result

y = transpose([1,2;3,4;5,6])y=[1,3,5;2,4,6]
y =transpose([1,2;3,41) y=[1,3;2,4]

y =transpose([1,2,3,41]) y=[1;2;3;4]

y =transpose([1;2;3;41]) y=[1,2,3,4]

Compatibility
Numeric scalars, Vectors, Arrays

See Also
column (users)

union

Syntax
z=union(xX,vy)

Definition

union returns a vector representing a set which is the union of two sets (vectors) x and vy.
The vector z is returned in ascended order. The vectors or matricies can have different
dimensions. If x or y have repeated values they will only be found once in the new
variable z.

Examples:

Formula Result

z=union([2,2;3,4]1,[5,6;3,4]) z=[2;3;4,;5,;6]

z=union([1,2], [3,4]) z=[1;2;3;4]
z=union([1;2],[3;4;51]) z=[1;2;3,;4,;5]
z=union([1,2,3],[4,5;6,7;8,9]1)z=[1;2;3,;4,;5;6;7,;8]
x=[1,2,3;4,5,6] z=[1;2;3;4;5;6;7;8;9,;10;11;12]

y=[7,8,9;10,11,12]
z = union(X, y)

Compatibility
Numeric scalars, Vectors, Matrices

See Also
column (users)

unwrap

144

Genesys - Users Guide
Syntax
z = unwrap(wrappedPhase)

Definition
unwrap returns a vector of unwrapped phase; both input and output of the function are in
radians

|'ﬂ Note that ang() returns a value in radians.

Examples:

Formula
z = unwrap(ang(Linear1.S[2,11))

Compatibility

Numeric scalars, Vectors, Matrices
using

Syntax

using("Dataset")

Definition

using sets the current context in an equation block to the dataset in the parameter. When
set, you can use the variables within the dataset as if there were defined in the equation
block.

Examples:

Formula Result

say a dataset called Datal has a variablecalled z=[1,2,3,4]
Varl and it contains the vector

[3,6,9,12]

using("Datal")

z=Varl/3

Compatibility

String

var

Syntax

y = var(x)

y =var(x, W)

y = var(x, W, iDim)

Definition
Returns the variance of a vector x.

If W is 0 (default), var normalizes by N-1 where N is the sample size. If W is 1, var
normalizes by N. If W is a vector, it is treated as coefficient weights for computing the
variance. In this case, the coefficients of W are scaled so that they sum to unity.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

145

Genesys - Users Guide

Formula Result
y=var([3;4;8;9]) y = 8.6667
y=var([1,2 3], 1) y = 0.6667

y=var([1,2, 3],[0.7,0.1,0.2]) |y = 0.65
Compatibility
Numeric arrays

See Also

e std (users)
e skewness (users)
e kurtosis (users)

vector

Syntax
y = vector(x)

Definition
vector returns a vector of complex numbers of length x. parts are initialized to zero..

Examples:

Formula Result (complex)
y =vector(4)y=[0;0;0;0]
Compatibility
Numeric scalar

Zeros
Syntax

y = zeros(m, n)

Definition
zeros returns a m by n matrix with every part equal to 0. If parameter n is omitted the
function returns a vector of 0's of length m.

Examples:

Formula Result
y=zeros(3,2)y=[0,0;0,0;0,0]
y=zeros(2,2)y=[0,0;0,0]

y = zeros(5) y=[0;0;0;0;0]
Compatibility

Numeric Scalars

See Also
ones (users)

Math Language Function Reference

To go directly to entries that start with a specific letter, select one of the following: A, B,

D,EF,GH LKLMNOPQRSTUVWXLZ

146

C

Function Name
abs (users)
acos (users)
acosd (users)
acosh (users)
acot (users)
acotd (users)
acoth (users)
acsc (users)
acscd (users)
acsch (users)
all (users)
angle (users)
any (users)
asec (users)
asecd (users)
asech (users)
asin (users)
asind (users)
asinh (users)
atan (users)
atan2 (users)
atand (users)
atanh (users)
bartlett (users)
blackman (users)
butter (users)
ceil (users)

cell (users)
cheby1 (users)
cheby?2 (users)
class (users)
clc (users)

clear (users)
conj (users)
conv (users)
cos (users)
cosd (users)
cosh (users)
cot (users)

cotd (users)
coth (users)

csc (users)

cscd (users)
csch (users)
cumprod (users)
cumsum (users)
dbg_print (users)

Genesys - Users Guide

Description

absolute value or magnitude

inverse cosine, in radians

inverse cosine, in degrees

inverse hyperbolic cosine

inverse cotangent

inverse cotangent, in degrees

inverse hyperbolic cotangent

inverse cosecant

inverse cosecant, in degrees

inverse hyperbolic cosecant

true if all parts in a vector are nonzero
phase of a complex number, in radians
true if any part in a vector is nonzero
inverse secant, in radians

inverse secant, in degrees

inverse hyperbolic secant

inverse sine, in radians

inverse sine, in degrees

inverse hyperbolic sine

inverse tangent, in radians
4-quadrant inverse tangent, in radians
inverse tangent, in degrees

inverse hyperbolic tangent

Bartlett Window

Blackman Window

Butterworth filter designer

smallest integer greater than or equal to argument

create a cell array

Chebyshev type 1 filter designer
Chebyshev type 2 filter designer
data-type (class name) of argument
clear the command window

delete a class object

complex conjugate

linear convolution (or polynomial multiplication)

cosine of a radian-valued argument
cosine of a degree-valued argument
hyperbolic cosine
cotangent of a radian-valued argument
cotangent of a degree-valued argument
hyperbolic cotangent
cosecant of a radian-valued argument
cosecant of a degree-valued argument
hyperbolic cosecant
cumulative product of parts of a vector
cumulative sum of parts of a vector
output to equation debug window

147

dbg_showvar (users)

deconv (users)
diag (users)
diff (users)
eig (users)
ellip (users)
eps (users)
erf (users)
erfc (users)
error (users)
exp (users)
eye (users)
eyediag (users)
false (users)
fclose (users)
fft (users)
fftshift (users)
fgetl (users)
fgets (users)
filter (users)
find (users)
firl (users)
fix (users)
flipdim (users)
fliplr (users)
flipud (users)
floor (users)
fopen (users)
fread (users)
fprintf (users)
fscanf (users)
fwrite (users)

Genesys - Users Guide
output contents of a variable to equation debug window

deconvolution (or polynomial division)
create diagonal matrix or extract diagonal of a matrix
difference (or approximate derivative)
eigenvalues and eigenvectors of a matrix
Elliptic or Cauer filter designer

spacing of floating point numbers

error function

complementary error function

posts to error log or output error to command window
exponential

construct identity matrix

build an eye diagram from time data
logical false

close a file or stream

Discrete Fourier Transform (DFT)

shift zero-frequency to center of spectrum
read a line from a file, discard newline
read a line from a file, keep newline

one dimensional digital filtering

indices of nonzero parts

FIR filter design using window method
round toward zero

flip matrix along a dimension

left/right matrix flip

up/down matrix flip

largest integer less than or equal to argument
open file or stream

read binary data from a file or stream
write formatted text to a file or stream
read formatted text from a file or stream
write binary data to a file or stream
Gaussian Window

gausswin (users)

getindep (users) returns the string property containing the path to the independent value of a

variable x. (ie. the reference to the independent
variable)

getindepvalue (users) returns the single independent value of a variable x.

getunits (users) Returns an integer corresponding to the units of a variable x. This integer may be

used by setunits.
getvariable (users) get the value of a variable from a dataset
hamming (users) Hamming Window
hann (users) Hann Window
hankel (users) construct Hankel matrix
histc (users)
ifft (users)
ifftshift (users)

imag (users)

histogram count

Inverse Discrete Fourier Transform (IDFT)
inverse FFT shift

imaginary part of a complex humber

inf (users) infinity

interp1 (users) one dimensional interpolation

148

Genesys - Users Guide

ipermute (users) inverse permutation of array dimensions

iscell (users) true if argument is a cell array

ischar (users) true if argument is of type character array
isempty (users) true if argument is empty or array with a dimension of length 0
isequal (users) true if arrays contain equal values, ignoring NaNs
isequalwithequalnans true if arrays contain equal values, including NaNs
(users)

isfield (users) true if a field is in a structure or structure array
isfinite (users) true for finite parts

isfloat (users) true if argument is a floating point scalar or array
isinf (users) true for infinite parts

isinteger (users) true if argument is an integer scalar or array
islogical (users) true if argument is a logical scalar or array

isnan (users) true for NaN parts

isnumeric (users) true if argument is a numeric scalar or array
isreal (users) true if argument is a real-valued scalar or array
isscalar (users) true if argument is a scalar

isstr (users) true if argument is a character array

isstruct (users) true if argument is a structure array

isvector (users) true if argument is a vector

kurtosis (users)
length (users)
linspace (users)
log (users)

log2 (users)
log10 (users)

sample kurtosis
length of a vector

construct linearly spaced vector

natural logarithm
Base-2 logarithm
Base-10 logarithm

logspace (users) construct logarithmically spaced vector

lookup (users) look up values in a sorted table
lu (users) LU matrix factorization

max (users) largest value of a vector

mean (users) arithmetic mean of a vector
median (users) median of a vector

min (users) smallest value of a vector
mkpp (users) construct a piecewise polynomial
mod (users) modulus after division
mode (users) mode (most frequent value) of a vector
moment (users) nth order central moment of a vector
nan (users) Not-a-Number

ndims (users) number of dimensions of the argument
nextpow?2 (users)
num?2str (users) convert number to a character array
numel (users) total number of parts in an array
ones (users) construct array with parts set to 1
pchip (users) construct piecewise cubic Hermite interpolating polynomial
permute (users) permutation of array dimensions
poly (users) convert roots to a polynomial
polyval (users) evaluate a polynomial

polyvalm (users) evaluate a polynomial with a matrix argument

149

ppval (users)
prctile (users)
prod (users)
guantile (users)
rand (users)
randn (users)
real (users)
rectwin (users)
rem (users)
repmat (users)
reshape (users)
roots (users)
rot90 (users)
round (users)
runanalysis (users)
sec (users)
secd (users)
sech (users)
setindep (users)

setvariable (users)
setunits (users)

shiftdim (users)
sign (users)

sin (users)

sinc (users)
sind (users)
sinh (users)
size (users)
skewness (users)
sort (users)
spline (users)
sqrt (users)

std (users)
str2num (users)
strcmp (users)
strempi (users)
strncmp (users)
strncmpi (users)
struct (users)
sum (users)
svd (users)

tan (users)

Genesys - Users Guide
evaluate a piecewise polynomial

p'th percentiles of a vector

product of parts of a vector

q'th quantiles of a vector

uniformly distributed random numbers between 0 and 1
Normally (Gaussian) distributed random numbers
real part of a complex number

Rectangular Window

remainder after division

replicate and tile an array

change dimensions of an array

roots of a polynomial

rotate a matrix 90 degrees

round towards nearest integer

Run an analysis in the workspace tree

secant of a radian-valued argument

secant of a degree-valued argument

hyperbolic secant

set the independent reference for a swept dependent variable to indepvar(s). A
minimum of two arguments is required.

This function can be used to remove all independent values of a variable by passing
in a blank string for the second argument.

write a value to a variable in a dataset
sets a variable named varname to have units specified by unit. unit may be an

integer or a string. Example setunits("totaltime","msec")

or setunits("frqgsweep", "MHz"). The units are used to by graphs to determine the
axis labels and values. They can also by used by the

Tune window. Use UseMKS if you are settings units of variables manually to avoid
confusion.

shift array dimensions

sighum

sine of a radian-valued argument

sinc function (sin(pi*x) / (pi*x))

sine of a degree-valued argument

hyperbolic sine

dimensions of an array

skewness of a vector

sort a vector in ascending or descending order
cubic spline interpolation

square root

standard deviation of a vector

convert a string to a number

case-sensitive string comparison
case-insensitive string comparison

compare first N characters of a string (case-sensitive)
compare first N characters of a string (case-insensitive)
construct a structure array

sum of the parts of a vector

matrix singular value decomposition

tangent of a radian-valued argument

150

tand (users)
tanh (users)
tcpip (users)
toeplitz (users)
true (users)
unmkpp (users)
using (users)
var (users)
warning (users)
xcorr (users)
xor (users)
zeros (users)

abs

Syntax
y = abs(x)

Definition

This function takes the absolute value of a real variable or the magnitude of a complex

Genesys - Users Guide
tangent of a degree-valued argument

hyperbolic tangent

construct tcpip stream object for TCP/IP communications

construct Toeplitz matrix

logical true

details of piecewise polynomial

sets the current context in an equation block to the dataset called Dataset.
variance of a vector

posts a warning to error log or output warning to command window
cross correlation

logical exclusive-OR

construct array with parts setto 0

variable. It operates on an part-by-part basis on arrays.

Examples:

Formula
abs(-1.5)

abs(complex(1,1)

abs([-1;-2;3])
Compatibility

Result

1.5

1.414

[1,2;3]

scalars, vectors, arrays

aCos

Syntax
y = acos(x)

Definition

This function returns the inverse cosine of the angular value x, in radians expressed in the
MKS range [0, PI]. It operates on an part-by-part basis on arrays. It cannot accept a

complex valued variable.

Examples:

Formula
acos(0)
acos(1)
acos(-1)
acos(.707)

acos([-.707 0 1]) [2.356 1.571

Compatibility

Result

1.571
0

3.141
0.786

0]

or
PI/2
0

PI
PI/4

[3*P1/4 PI/2
0]

Real valued scalars, vectors, arrays

151

Genesys - Users Guide

See Also
acosd (users)
acosh (users)
cos (users)
cosd (users)
cosh (users)

acosd

Syntax
y = acosd(x)

Definition

This function returns the inverse cosine of the angular value x, in radians expressed in the
range [0, 180]. It operates on an part-by-part basis on arrays. It cannot accept a
complex valued variable.

Examples:

Formula Result
acosd(0) 90

acosd(1) 0

acosd(-1) 180
acosd(.707) 45

acosd([-.707 0 1])|[135 90 0]
Compatibility

Real valued scalars, vectors, arrays

See Also
acos (users)
acosh (users)
cos (users)
cosd (users)
cosh (users)

acosh

Syntax
y = acosh(x)

Definition
This function returns the inverse of the hyperbolic cosine of the number x. It operates on
an part-by-part basis on arrays. It cannot accept a complex valued variable.

cosh(x) = log(x + sqgrt(x"2 - 1))
Examples:

Formula |Result

acosh(1) 0

acosh(10) |2.993

acosh(0) |NaN

Compatibility

Real valued scalars, vectors, arrays

152

Genesys - Users Guide
See Also

acos (users)
acosd (users)
cos (users)
cosd (users)
cosh (users)

acot

Syntax
y = acot(x)

Definition

This function returns the inverse co-tangent of the angular value X, in radians expressed

in the MKS range [0, PI]. It operates on an part-by-part basis on arrays. It cannot accept
a complex valued variable.

Formula Result or

acot(1.732) |0.5236 |P1/6

acot(0.577) |1.0472 |PI/3
Compatibility

Real valued scalars, vectors, arrays

See Also:

acotd (users)
acoth (users)
cot (users)
cotd (users)
coth (users)

acotd

Syntax
y = acotd(x)

Definition

This function returns the inverse co-tangent of the angular value X, in radians expressed
in the range [0, 180]. It operates on an part-by-part basis on arrays. It cannot accept a
complex valued variable.

Formula Result

acotd(1.732) |30

acotd(0.577) 160

Compatibility

Numeric scalars, vectors, arrays

See Also:
acot (users)
acoth (users)
cot (users)
cotd (users)
coth (users)

153

Genesys - Users Guide
acoth

Syntax
y = acoth(x)

Definition
This function returns the inverse of the hyperbolic co-tangent of the nhumber x. It operates
on an part-by-part basis on arrays. It cannot accept a complex valued variable.

Compatibility
Real valued scalars, vectors, arrays

See Also:

acot (users)
acotd (users)
cot (users)
cotd (users)
coth (users)

dCSsC

Syntax
y = acsc(x)

Definition

This function returns the inverse co-secant of the angular value X, in radians expressed in
the MKS range [0, PI]. It operates on an part-by-part basis on arrays. It cannot accept a
complex valued variable.

Compatibility
Real valued scalars, Vectors, Arrays

See Also:
acscd (users)
acsch (users)
csc (users)
cscd (users)
csch (users)

acscd

Syntax
y = acscd(x)

Definition

This function returns the inverse co-secant of the angular value X, in degrees expressed in
the range [0, 180]. It operates on an part-by-part basis on arrays. It cannot accept a
complex valued variable.

Compatibility
Real valued scalars, Vectors, Arrays

See Also:
acsc (users)
acsch (users)

154

Genesys - Users Guide
csc (users)
cscd (users)
csch (users)

acsch

Syntax
y = acsch(x)

Definition
This function returns the inverse of the hyperbolic co-secant of the number x. It operates
on an part-by-part basis on arrays. It cannot accept a complex valued variable.

Compatibility
Numeric scalars, Vectors, Arrays

See Also:
acsc (users)
acscd (users)
csc (users)
cscd (users)
csch (users)

all

Syntax
all(data)
all(data, dim)

Definition
This function returns true if all values in a vector are non-zero or logical true, otherwise it
returns false. If data is a matrix, then this function operates on the columns of data.

The dim argument is optional and specifies which dimension to operate along. For
example, if dim is 1, this function operates on each column of the argument. If the
argument is omitted, the first non-singleton dimension is chosen as the dimension to
operate along.

Examples:

Formula Result
all([10010])0

all([111]) 1
ForA=[110;101;111];

Formula |Result Comments

all(A) [1 00] |Returns dim=1 column wise
results

all(A, 1)|[100] |Returns column wise results
all(A, 2)|[0; 0; 1] Returns row wise results
Compatibility

vectors, arrays

See Also
any (users)

155

Genesys - Users Guide
angle

Syntax
y = angle(x)

Definition
This function returns the phase of a complex number, in radians.
This function operates on an part-by-part basis on arrays.

Compatibility
Complex valued scalars, vectors, arrays
Real valued variables are treated as vectors with angular value of zero.

any

Syntax
any(data)
any(data, dim)

Definition

This function returns true if any of the values in a vector are non-zero or logical true,
otherwise it returns false. If data is a matrix, then this function operates on the columns
of data.

The dim argument is optional and specifies which dimension to operate along. For
example, if dim is 1, this function operates on each column of the argument. If the
argument is omitted, the first non-singleton dimension is chosen as the dimension to
operate along.

Examples:

Formula Result
all([1t0010])11

all([000]) 0
ForA=[001;010; 000];

Formula Result |Comments

all(A) [011] |Returns dim=1 column wise
results

all(A, 1)|[011] |Returns column wise results
all(A, 2)|[1; 1; 0]|Returns row wise results
Compatibility

vectors, arrays

See Also
all (users)

asecC

Syntax
y = asec(x)

Definition
This function is the inverse secant, in radians in the range [0, PI].
This function operates on an part-by-part basis on arrays.

156

Genesys - Users Guide

Compatibility
Real valued scalars, vectors, arrays

See Also
asecd (users)
asech (users)
sec (users)
secd (users)
sech (users)

asecd

Syntax
y = asecd(x)

Definition
This function is the inverse secant, in degrees.
This function operates on an part-by-part basis on arrays.

Compatibility
Real valued scalars, vectors, arrays

See Also
asec (users)
asech (users)
sec (users)
secd (users)
sech (users)

asech

Syntax
y = asech(x)

Definition
This function returns the inverse hyperbolic secant of the argument.
This function operates on an part-by-part basis on arrays.

Compatibility
Real valued scalars, vectors, arrays

See Also
asecd (users)
sec (users)
secd (users)
sech (users)

asin
Syntax
y = asin(x)

Definition
asin returns the inverse sine of the argument, in radians, between -PI1 / 2 <=r <= PI / 2.
This function operates on an part-by-part basis on arrays.

Examples:
157

Genesys - Users Guide

Formula Result or

asin (0) 0 0

asin (1) 1.571 |PI/2

asin(-1) |-1.571 |-PI/2

asin (.707) |0.786 |P1/4

asin (-.707) |-0.786 |-PI/4
Compatibility

Real valued scalars, vectors, arrays

See Also
asind (users)
asinh (users)
sin (users)
sind (users)
sinh (users)

asind

Syntax
y = asind(x)

Definition
asind returns the inverse sine of the argument, in degrees, in a range of [-180, 180]. This
function operates on an part-by-part basis on arrays.

Examples:

Formula Result |in Radians

asin (0) 0 0

asin (1) 180 P1/2

asin(-1) |-180 |-PI/2

asin (.707) |45 PI/4

asin (-.707) |-45 -PI/4
Compatibility

Real valued scalars, vectors, arrays

See Also:
asin (users)
asinh (users)
sin (users)
sind (users)
sinh (users)

asinh

Syntax
y = asinh(x)

Definition

This function returns the inverse hyperbolic sine of the argument, equal to log(x + sqrt(
x~2 + 1)). This function operates on an part-by-part basis on arrays.

Examples:
158

Genesys - Users Guide

Formula Result

asinh(1) 0.881

asinh(10) 2.998

asinh([0 1 10]) [0 0.881 2.998]
Compatibility

Real valued scalars, vectors, arrays

See Also:
asind (users)
asin (users)
sin (users)
sind (users)
sinh (users)

atan

Syntax
y = atan(x)

Definition
This function returns the inverse tangent of the argument, in radians between -PI/2 < r <
PI/2. This function operates on an part-by-part basis on arrays.

Examples:

Formula Result

atan(0) 0

atan(1) 0.785

atan([-1 .5 -.51)|[-0.785 0.464 -0.464]
Compatibility

Real valued scalars, vectors, arrays

See Also:
tanh (users)
atan2 (users)
atand (users)
atanh (users)
tan (users)
tand (users)

atan2

Syntax
y = atan2(y, x)

Definition

atan2 returns the 4-quadrant inverse tangent of the argument, in radians. The return
value is the same size as the input arrays y and X, and is computed on an part-by-part
basis. Either argument may be a scalar, in which case that argument is expanded to be
the same size as the other argument. For complex inputs, imaginary parts are ignored.

Examples:

159

Genesys - Users Guide

Formula Result or

atan2(1,0) 1.571 pi/2

atan2(1,1) 0.785 pi/4

atan2([1; 0; -1], -1) |[2.356; 3.142; -2.356] |[[3*pi/4; pi; -3*pi/4]
Compatibility

Real valued scalars, vectors, arrays

See Also
atan (users)
tan (users)

atand

Syntax
y = atand(x)

Definition
This function returns the inverse tangent of the argument, in degrees.
This function operates on an part-by-part basis on arrays.

Examples:

Formula Result in Radians

atan(0) |0

atan(1) /45 P1/4

atan(-1) -45 -PI/4
Compatibility

Real valued scalars, vectors, arrays

See Also:
atan (users)
tan (users)
tand (users)
atanh (users)
tand (users)

atanh

Syntax
y = atanh(x)

Definition
This function returns the inverse hyperbolic tangent of the argument, which is equivalent
to 0.5 * log((1 + x) / (1 - x)). This function operates on an part-by-part basis on arrays.

Examples:

Formula Result
atanh(1) |undefined
atanh(.5) |0.549
atanh(-.5) -0.549
atanh(0) |0
Compatibility
Real valued scalars, vectors, arrays
160

Genesys - Users Guide

See Also:
atan (users)
tan (users)
atand (users)
tanh (users)
tand (users)

bartlett

Syntax
bartlett(N)

Definition

This function returns a column vector containing a Bartlett window with N points, N being
a positive integer greater than 2. The Bartlett window is characteristically triangular in
shape with a base value of 0 and an apex value of 1. When N is odd, the apex is explicitly
an part of the window function. When N is even, the apex is not explicitly sampled but
rather the two sample points which flank the apex are represented in the returned vector.

O Note

bartlett(2), a redundant usage of this function returns [0 0] whereas bartlett(1) returns [1].
Examples:
Formula |Result Comment

bartlett(13) [O,1,2,3,4,5,6,5,4,3,2,1,0]/6 (13-1)/2=6 is common divisor
bartlett(14) [0,1,2,3,4,5,6,6,5,4,3,2,1,01/6.5 (14-1)/2=6.5 is common
divisor
The graph shows how bartlett(14) does not sample the peak value of 1 at 6.5 explicitly
but bartlett(13) does.

161

Genesys - Users Guide

-y

=
(e}

Al
JZ4RA\N
A \:Q

=
oo

o]
-
)

=
(@]
\\.

13-point Bartlett windows, 14-point Bartlett window
= = =
(%] = on

/ N\

=] f]
— %]
]

NAN
N

10 11 12 13

N

L
[a
(%]
N,
[#)]
(= 2]
=
o
ow

—— 13-point Bartlett window —=— 14-point Bartlett window

Compatibility
scalar

See Also
blackman (users)
gausswin (users)
hamming (users)
hann (users)
rectwin (users)

blackman

Syntax
blackman(N)

Definition

This function returns a column vector containing a Blackman window with N points, N
being a positive integer greater than 2. The Blackman window is composed of raised
cosine windows scaled to have a base value of 0 and an apex value of 1 as follows:

_blackman_value_at_n_of N_ = 0.42 - 0.5 * cos(2*%pi*n/N) + 0.08 * cos(4*pi*n/N), 0 <= n <= N
When N is odd, the apex is explicitly an part of the window function. When N is even, the
apex is not explicitly sampled but rather the two sample points which flank the apex are
represented in the returned vector.

D Note
blackman(2), a redundant usage of this function returns [0 0] whereas blackman(1) returns [1].

Examples:

162

Genesys - Users Guide

nEmy W

1 3-point Blackman window, 14-point Blackmanwindow
in

0 1 2 3 4 5 G 7 8 9 10 11 12 13
== 1{3-point Blackmsan window =—#— 14-point Blackman window
Compatibility
scalar
See Also

bartlett (users)
gausswin (users)
hamming (users)
hann (users)
rectwin (users)

butter

Syntax

[num, denom] = butter(order, normfreq, ftype, domain)

or

[zeros, poles, gain] = butter(order, normfreq, ftype, domain)

Parameters

Name |Definition Compatibility Usage Default Example

order order of Butterworth filter positive integer >= 3 required 5

normfreq \normalized frequency or range of normalized scalar or 2-part required 0.3
frequencies defining filter vector

ftype type of filter enumerated as optional |'low' 'pass’

'low','high’','pass' or 'stop'

domain |digital (Z-domain) or analog (S- 'z' or's' optional |'z' 's'
domain) filter

Definition

Depending on the list out output arguments, this function delivers a humerator-
163

Genesys - Users Guide
denominator or a pole-zero-gain definition of a maximally-flat Butterworth filter response.
Input arguments consist of order, normalized frequency range and the optional
enumerated choice of filter type.

Examples:

Note that while zeros and poles are expressed as column vector, numerator and
denominator coefficients are expressed as row vectors. Gain is always expressed as a real
valued scalar variable.

Formula zeros poles gain num denom
butter(3, 0.5) |[-1+j4.714e-6; -1- [i/V3; -i/V3;0] 1/6 |[1/6,1/2, |[1,0,1/3,

j4.714e-6; -1] 1/2, 1/6] |0]
butter(3, 0.5, [1+j4.714e-6; 1- [i/V3; -i/V3;0] 1/6 |[1/6, -1/2, |[1, 0, 1/3,
'high") j4.714e-6; 0] 1/2, -1/6] 0]
butter(3, [1; 1+j2.597e-6; 1- [-0.537+j0.537; -0.537-j0.537; 1/6 |[1/6,0,- |[1,0,0,0,
[0.25,0.75], j2.597e-6; -1; - 0.537+j0.537; 0.537+j0.537; 1/2, 0, 1/3, 0, 0]
'pass') 1+3.772e-6; -1- j7.451e-9; -j7.451e-9] 1/2, 0, -

j3.772e-6] 1/6]
butter(3, [-3.055e-6+j; -3.055e- |[-0.537+j0.537; -0.537- 1/6 [[1/6, 0, [1,0,0,0,
[0.25,0.75], 6-j; 3.055e6+j; 3.055e- j0.537;0.537+j0.537; 0.537-j0.537; 1/2, 0, 1/3, 0, 0]
'stop") 6-j; i; -l 9.125e-9; 9.125e-9] 1/2, 0,

1/6]

See Also

cheby1 (users)
cheby2 (users)
ellip (users)

ceil

Syntax
y = ceil(x)

Definition
ceil returns the smallest integer greater than or equal to the argument. If x is complex,
only the real part is used. This function operates on an part-by-part basis on arrays.

Examples:

Formula Result

ceil(10) 10

ceil(complex (1.5,6))2

ceil([-0.5,0.571) [0,1]
Compatibility

Numeric scalars, vectors, arrays

See Also
floor (users)

cell

Syntax

a = cell(y)

cell(x, y)
cell([x, y])
cell(x, vy, z,...)
cell([xy z...])

a
a
a
a

164

Genesys - Users Guide
a = cell(size(V))

Definition
a = cell(y) creates a cell array, whose dimension is y-by-y, containing empty matrices. If
the parameter y is not of type scalar, then a = cell(y) produces an error message.

a = cell(x,y) and a = cell([x,y]) creates a cell array, whose dimension is x-by-y,
containing empty matrices. If the parameters x and/or y are not of type scalar, then an
error message is produced when these statements are executed.

a = cell(x,y, z, ...) and a = cell([x,Y,z,...]) creates a cell array, whose dimension is x-by-
y-by-z-...and so on, containing empty matrices. If any of the parameters ¥, vy, z,..., are
not of type scalar, then an error message is produced when these statements are
executed.

a = cell(size(V)) creates a cell array, whose dimension matches that of V, containing
empty matrices.

Examples:

Formula Result

a = cell(2) a = {[1, [1; [LI[1}
a =cell([3,2]) la=

{ILI1; 0101 00,003
vV =1[1;3;5] a = {[LIL}
a=

cell(size(V))

Compatibility

scalar, vector, array

See Also
ones (users)
rand (users)
randn (users)
zeros (users)

chebyl

Syntax

[num, denom] = cheby1(order, normripple, normfreq, ftype, domain)

or

[zeros, poles, gain] = chebyl(order, normripple, normfreq, ftype, domain)

Parameters

Name Definition Compatibility Usage |Default Example

order order of Butterworth filter positive integer >= 3 required 5

normripple |normalized ripple in passband positive real required 0.1

normfreq |normalized frequency or range of normalized scalar or 2-part required 0.3
frequencies defining filter vector

ftype type of filter enumerated as optional |'low’ 'pass’

'low','high’,'pass' or 'stop'

domain digital (Z-domain) or analog (S- 'z' or's' optional |'z' 's'
domain) filter

Definition

165

Genesys - Users Guide
Depending on the list out output arguments, this function delivers a nhumerator-
denominator or a pole-zero-gain definition of a Chebyshev filter response of Type 1, which
allows ripples in the passband and creates a maximally flat stopband. Input arguments
consist of order, normalized in-band ripple, normalized frequency range and the optional
enumerated choice of filter type.

Examples:

Note that while zeros and poles are expressed as column vector, numerator and
denominator coefficients are expressed as row vectors. Gain is always expressed as a real
valued scalar variable.

Formula zeros poles gain \num denom
cheby1(3, 0.1, [-1; -1; - [-0.1885+j0.659; 0.0155; - 0.227[0.227, 0.682, |[1, 0.361,
0.5) 1] 0.1885+j0.659] 0.682, 0.227] 0.464, -0.007]
cheby1(3, 0.1, [111] [0.1885+j0.659; -0.0155; 0.1885- |0.227|[0.227, -0.682, [[1,-0.361,
0.5, 'high") j0.659] 0.682, -0.227] 0.464, 0.007]
cheby1(3, 0.1, [1; 1; 1; - [0.661+j0.499; j0.125; 0.661- 0.227[0.227, 0, - [1, 0, -0.361,
[0.25,0.75], 1; -1; -1] |j0.499; -0.661=j0.499; -j0.125; - 0.682, 0, 0.682, |0, 0.464,0
'pass') 0.6614j0.499] 0, -0.227] 0.007]
cheby1(3, 0.1, [-3; 3; -3; |[0.499-j0.661; 0.125; 0.227|[0.227, 0, 0.682, [1, 0, 0.361, O,
[0.25,0.75], 'stop") i; -j; j1 0.499+j0.661; -0.499+j0.661; - 0, 0.682, 0, 0.464, 0, -
0.125; -0.499-j0.661] 0.227] 0.007]
See Also

butter (users)
cheby2 (users)
ellip (users)

cheby?2

Syntax

Syntax

[num, denom] = cheby2(order, normripple, normfreq, ftype, domain)

or

[zeros, poles, gain] = cheby2(order, normripple, normfreq, ftype, domain)

Parameters

Name Definition Compatibility Usage Default Example

order order of Butterworth filter positive integer >= 3 required 5

normripple normalized ripple in stopband positive real required 0.1

normfreq |normalized frequency or range of normalized scalar or 2-part required 0.3
frequencies defining filter vector

ftype type of filter enumerated as optional 'low’ 'pass’

'low’,'high’,'pass' or 'stop'

domain digital (Z-domain) or analog (S- 'z' or's' optional |'z' 's'
domain) filter

Definition

Depending on the list out output arguments, this function delivers a nhumerator-
denominator or a pole-zero-gain definition of a Chebyshev filter response of Type 2, which
allows ripples in the stopband and creates a maximally flat passband. Input arguments
consist of order, normalized out-of-band ripple, normalized frequency range and the
optional enumerated choice of filter type.

Examples:
Note that while zeros and poles are expressed as column vector, numerator and

166

Genesys - Users Guide
denominator coefficients are expressed as row vectors. Gain is always expressed as a real
valued scalar variable.

Formula zeros poles gain \num denom
cheby2(3, 0.1, |[-0.143+j0.990; -0.143- |[-0.138-j0.962; -0.903; - 0.924[0.924, [1,1.178,
0.5) j0.990; -1] 0.137+j0.962] 1.188, 1.188, 1.192,
0.924] 0.853]
cheby2(3, 0.1, [[0.143-j0.990; [0.137+j0.962; 0.903; 0.9241[0.924, - [1,-1.178,
0.5, 'high") 0.143+j0.990; 1] 0.137-j0.962] 1.188, 1.188, |1.192, -
-0.924] 0.853]
cheby2(3, 0.1, |[-0.756+j0.655; [0.745+]j0.646; 0.951; 0.924[0.924,0,- [[1,0, -
[0.25,0.75], 0.756+j0.655; 0.756- 0.745-j0.646; -0.745- 1.188, 0, 1.178, 0,
'pass') j0.655; -0.756-0.655; 1; -|j0.646; -0.951; - 1.188, 0, - 1,192, 0, -
1] 0.745+j0.646] 0.924] 0.853]
cheby2(3, 0.1, [[0.655+j0.756; - [0.646-j0.745;-j0.951; 0.924[0.924, 0, [1,0,1.178,
[0.25,0.75], 0.655+j0.756; -0.655- 0.646+j0.745; - 1.188, 0, 0, 1.192, 0,
'stop") j0.756; 0.655-j0.756; -j; |0.646+j0.745; jO.951; - 1.188, 0, 0.853]
il 0.646-j0.745] 0.924]

See Also
cheby1 (users)
butter (users)
ellip (users)

class
Syntax
type = class(object)
Definition
This function returns the type of class of the supplied object as a string type. The input

argument is evaluated as an expression so a combination of existing objects can be
applied to this parameter.

Example

o char

cl = class(['This','is','a','char','class','vector'])
This is a vector of strings or an array of characters
cl = 'char'

oe

oe

- cell

c2 = class({'This','is','a','char','class','vector'})
This is a cell array of characters
c2 = 'cell'

oe

oe

« double

c3a = class([1 2 3; 4.5 5 6])

This is an array of double precision floating point numbers

c3a = 'double'

Note real-valued integers and floating point assigned the 'double'
whereas,

c3b = class(4+51)

% complex-valued numbers are assigned
c3a = 'complex double'

o oo o

o

'complex double'

oe

167

Genesys - Users Guide

» logical

cd = class([3<=4, length('were') < size([2,11)])

The 1st expression is evaluating whether or not 3<=4.

The 2nd expression is evaluating wthere the length of

the string 'were' is greater than the length of the supplied
numeric vector [2,1]. Both are logical expressions, making
the supplied vector of logical class.

c4 = 'logical'

d® o0 o° o o

oe

o struct

c5 = class(struct('Name',{'FirstName','LastName'}, 'Date Of Birth', [23 04 1999]))
The expression defines a structure, thus

o

% ¢c5 = 'struct!
Compatibility
all
See Also

struct (users)

clc

Syntax
cle()

Definition
Clear the command window
clear

Syntax

clear

clear name

clear namel name2 name3

clear ('namel’, 'name2', 'name3')
clear global name

Definition
Remove variables from an equation block. This frees up old variables in memory.

clear name just removes the variable name from the equation block.

clear namel name2 name3 or clear('namel’, 'name2’, 'name3’) removes variables
namel, name2, and name3 from the equation block.

clear global name removes the global variable name from the equation block.
conj

Syntax
y = conj(x)

Definition
168

Genesys - Users Guide
conj returns the complex conjugate of the argument. The conjugate of a complex number
X + jy is x - jy. This function operates on an part-by-part basis on arrays.

Examples:

Formula Result

conj(1+2j) 1-2j
conj([1+2j,3-4§1)I[1-2§, 3+ 4]

Compatibility

Numeric Scalars, Arrays, Vectors
conv

Syntax

y = conv(x1,x2)

Definition

This function performs the algebraic convolution between the two vector valued inputs x1
and x2. Given the lengths of the vectors to be IN = length(xN), N = {1, 2}, the result is
of length equal to sum of all lengths minus 1.

Examples:

a=1[2, 3]

b=1[5, 6, 7]

c = conv(a, b)

$ c = [10 27 32 21] because

% c(1) = a()*p(1) = 10

% c(2) = a(1)*b(2) + a(2)*pb(1) = 12 + 15 = 27
% c(3) = a(1)*p(3) + a(2)*b(2) = 14 + 18 = 32
% c(4) = a(2)*p(3) = 21

Compatibility

Real and complex valued scalars and vectors. Multi-dimensional arrays are not supported.
See Also

fft (users)
ifft (users)

(o0 1

Syntax
y = cos(X)

Definition
cos returns the cosine of a radian-valued argument. This function operates on an part-by-
part basis on arrays.

Examples:

169

Genesys - Users Guide

Formula Result
cos(0) 1

cos(pi) -1

cos(pi/2) 0

cos(pi/ 4) 0.707
cos([2*pi/3; pi/2]) [[-0.5; O]
Compatibility

Numeric scalars, Vectors, Arrays

See Also
cosd (users)
sin (users)
tan (users)

cosd

Syntax
y = cosd(x)

Definition
cosd returns the cosine of a degree-valued argument. This function operates on an part-
by-part basis on arrays.

Examples:

Formula Result

cosd(0) 1

cosd(180) -1

cosd(90) 0

cosd(45) 0.707

cosd([60; 90]) |[-0.5; 0]
Compatibility

Numeric scalars, Vectors, Arrays

See Also
cos (users)

cosh

Syntax
y = cosh(x)

Definition
cosh returns the hyperbolic cosine of the argument, equivalent to (exp(x) + exp(-x)) / 2.
This function operates on an part-by-part basis on arrays.

Examples:
Formula Result
cosh(1) 1.543

cosh(pi/ 3) 1.6
cosh([pi/6; 0]) [1.14; 1]
Compatibility

Numeric scalars, Vectors, Arrays
170

Genesys - Users Guide

See Also
acosh (users)

cot

Syntax
y = cot(x)

Definition
cot returns the cotangent of a radian-valued argument, which is equivalent to 1 / tan(x).
This function operates on an part-by-part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

cotd

Syntax
y = cotd(x)

Definition

cotd returns the cotangent of a degree-valued argument. This function operates on an
part-by-part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

coth

Syntax
y = coth(x)
Definition

coth returns the hyperbolic cotangent of the argument. This function operates on an part-
by-part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

CSC

Syntax
y = csc(x)

Definition

csc returns the cosecant of a radian-valued argument. This function operates on an part-
by-part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

cscd

Syntax
y = cscd(x)

Definition

171

Genesys - Users Guide
cscd returns the cosecant of a degree-valued argument. This function operates on an part-
by-part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

csch

Syntax
y = csch(x)

Definition
csch returns the hyperbolic cosecant of the argument. This function operates on an part-
by-part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

cumprod

Syntax
b = cumprod(a)
b = cumprod(a,dim)

Definition

Returns the cumulative product of a vector. If a is a vector, then cumprod finds the
cumulative product of all the parts and returns it in a vector, b. If a is a matrix, then
cumprod finds the cumulative product of each column and returns it in a matrix b, whose
dimensions are the same as a.

The dim argument is optional and specifies which dimension to operate along. For
example, if dim is 1, this function operates on each column of the argument. If the
argument is omitted, the first non-singleton dimension is chosen as the dimension to
operate along.

Examples:
Formula Result
cumprod([1 2 34]) [126 24]

cumprod([1234;5678]) |[1234;5122132]
cumprod([1234;5678],2)[12624;530 210 1680]
Compatibility

Numeric vectors and arrays

See Also
cumsum (users)

cumsum

Syntax
b = cumsum(a)
b = cumsum(a, dim)

Definition

Returns the cumulative sum of a vector. If a is a vector, then cumsum finds the

cumulative sum of all the parts and returns it in a vector, b. If a is a matrix, then cumsum

finds the cumulative sum of each column and returns it in a matrix b, whose dimensions
172

Genesys - Users Guide
are the same as a.

The dim argument is optional and specifies which dimension to operate along. For
example, if dim is 1, this function operates on each column of the argument. If the
argument is omitted, the first non-singleton dimension is chosen as the dimension to
operate along.

Examples:
\Formula Result
‘cumsum([12 3 4]) [136 10]

\

\
cumsum([1234;5678]) \[1 234;6810 12]
‘cumsum([1234;5678],2)/[13610;511 18 26]
Compatibility
Numeric vectors and arrays

See Also
cumprod (users)

dbg_print

Syntax
dbg_print('message')

Definition

This function can be invoked from within a set of equations on an equations page in order
to report execution status to the Equation Debug window. Note that the window for
debugging equations is not the same as the Error Log. The debug window can be invoked
by selecting View > Advanced Windows > Equation Debug.

Examples:
Note the difference between the reporting windows and formats for debug and non-debug
messages.

& Equation1

Units'Use Display| Go| | 1 %l = zandn{ 5, 1le3d }:
Lip to date 2 $ x i=2 a 5x1000 wvector of random numberz normally distributed around 0.
Variable | 3 =if (size(xl) >= [53,1lel])
% =Real [5x1000] 4 dbg_print :j "Thiz array appears t©to be a '\re:y large \'EC'_D:' - o .
x1 = Real [5x1000] -] warning("You might conaider shortening this wector to hawve 100 elementa' }:
1 error('I think thi=z error needs to be fixed right now'):
7 end
-
« | v
Equation I Lire] Mezzage |
Equation 1 4 This array appears to be a very large vector
Type Error | Location |
1 | think this error needs fo be foced right now Equation] (Equation) Show
2 YWarning *'ou might consider shortening this vector to have 100 elements Equation! (Egquation)) Show
W Autematically Display Errors # Clear Al Erors

Compatibility
string

See Also
173

error (users)
dbg_showvar (users)
warning (users)

dbg_showvar

Syntax
dbg_showvar(name, variable)

Definition

Genesys - Users Guide

This function can be invoked from within a set of equations on an equations page in order
to report the current value of a variable to the Equation Debug window by the supplied
name. Note that the window for debugging equations is not the same as the Error Log.

The debug window can be invoked by
Debug.

Examples:

selecting View > Advanced Windows > Equation

In the following example the use model of dbg_showvar() is shown along side that of
other relevant Mathematical Language functions.

&5 Equation1

Units:Use Display| Go | 1 %1l = randn{ S5, la3 }; =
to date 2 [rows, cols] = size| x1);
Variable | 3 T x is a 5x1000 wvector of random numbers normally distribucted arcund 0.
cols=1000 4 =if | [zows, cola] »= [5,le2]]
rows=5 i) dbg_print('This array appears to be a very large wector® };
1 = Real [Sx1000] g dbg showvar| "RowsOfxl', rows);
7 dbg_showvar('ColumnaCfxl', cola i:
B warning("¥You might conaider shortening this wector to hawve 100 elemsnta® |
2 erzor("I think this error needs to be Lixed zight now'): _
10 and ﬂ
Equaltion Debug ® | |
A
Equation | Line | Meszage |
Eguation1 5 This array appears to be a very large vector
Equation 6 RowsOfxl = +Byte Integer: §
Equation 1 7 ColumnsOficl = 4-Byte Integer: 1000
Error Location | ﬂ
1 I think this error needs to be ficed right now Equation (Equation) Show
2 Warning Wou might consider shortening this vector to have 100 slemants Equationi {Equation Show

W Automatically Display Errors K CearalEmors |

\Formula

\Message in Equation Debug

\dbg_showvar('Expression’, 2+3);

\‘Expression = 8-byte Real: 5'

stringl = 'hello world';
dbg_showvar('Greeting', stringl);

'Greeting = Array[1x11] of type Char: hello world'

vectorl = [1 2 3];
dbg_showvar('Vector', vectorl);

'Vector = Array[1x3] of type 8-Byte Real: 1 2 3'

arrayl = [1 2; 3+2j, 9];
dbg_showvar('Array', arrayl);

'Array = Array[2x2] of type 16-Byte Complex: 1 2 3+2i, 9'

celll = {'This','is','a','sentence’,".'};
dbg_showvar('Cell’, celll);

'Cell = Array[1x5] of type Variant: [1x4 char] [1x2 char] ['a']
[1x8 char] ['.']"

structl = struct(‘name’,{'Jane’','Doe'},'AgE’,
37);
dbg_showvar('Struct', structl);

'Struct = Array[1x2] of type Object:[1x2\ struct] with fields:
name AgE'

Compatibility

174

Genesys - Users Guide
name - string
variable - any pre-defined variable or expression

See Also

error (users)
dbg_print (users)
warning (users)

deconv

Syntax
[a,b] = deconv(c,d)

Definition
[a,b] = deconv(c,d) deconvolves a vector d out of a vector ¢ and returns it in vector a,
and the remainder in b so that ¢ = conv(d,a) + b.

If vectors c and d contain the coefficients of a polynomial, then convolving them is
equivalent to mutiplying the polynomials, and deconvolving is equivalent to dividing the
polynomials.

Examples:
Formula Result
b=1[1234] g = [10 20 30]

a = [10 20 30] r=[000000]
[g,r] = deconv(a,b)
Compatibility

vector

See Also
conv (users)

diag

Syntax
V = diag(x [, a])
v = diag(X)

Definition

If x is a vector, diag(x) gives a matrices V with x on main diagonal. diag(x, a) returns an
abs(a)+n (if there are n parts in x) square matrix with the parts of a on the a-th diagonal,
main diagonal when a = 0, upper diagonal when a>0, and lower diagonal when a<0.

If X is a matrix, diag(X) returns its main diagonals to a column vector v.

Examples:
Formula Result
diag([2,3]) [2,0; 0, 3]
diag([1,5], 1) [0,1,0;0,0,5;0,0, 0]
diag([123;456; 789])[1; 5; 9]
Compatibility
Numeric vectors, Vectors, Matrices
diff

175

Genesys - Users Guide
Syntax
A = diff(B)
A = diff(B,r)
A = diff(B,r,dim)

Definition

text here

A = diff(B) returns, in the vector A, the difference between each part in B.

A = diff(B,r) recurses the diff function r times, to find the rth difference.

A = diff(B,r,dim) recurses the diff function r times, to find the rth difference in the scalar
dimension dim. If r>= dim, then an empty array is returned.

The dim argument is optional and specifies which dimension to operate along. For
example, if dim is 1, this function operates on each column of the argument. If the
argument is omitted, the first non-singleton dimension is chosen as the dimension to
operate along.

Examples:

Formula Result
B =[151535]|[4 10 20]
A = diff(B)

N = diff(A) [6 10]
Z = diff(A,2) |[4]
Compatibility
scalar, vector, array

See Also
prod (users)
sum (users)

eig

Syntax

X = eig(Y)

X = eig(Y,2)
[U,X] = eig(Y)
[U,X] = eig(Y,2)
[U,X] = eig(Y,Z,flag)

Definition
X = eig(Y) returns, in vector X, the eigenvalues of the matrix Y.

X = eig(Y,Z) returns, in vector X, the generalized eigenvalues, as long as Y and Z are
square matrices.

[U,X] = eig(Y) produces matrices containing the eigenvalues in X, and eigenvectors in U,
so: Y*U = U*X

[U,X] = eig(Y,Z) produces a diagonal matrix, X, that contains the generalized eigenvalues,
and a full matrix, U, containing the eigenvectors in columns, so: Y*U = Z*U*X

[U,X] = eig(Y,Z,flag) produces the eigenvalues and eigenvectors using a specified
algorithm, flag:
'‘chol' - Computes using Cholesky factorization of Z.

'az' - Computes using QOZ algorithm.
176

Genesys - Users Guide

Examples:

Formula Result

Z =[3-2-.9 2*eps; Z*VZ - VZ*DZ
-24 1 -eps; Z*VY - VY*DY
-eps/4 eps/2 -1 0;

-5-5.11]

[VZ,DZ] = eig(Z)
[VY,DY] = eig(Z,'nobalance')

ellip

Syntax

[num, denom] = ellip(order, passnormripple, stopnormripple, normfreq, ftype, domain)
or

[zeros, poles, gain] = ellip(order, passnormripple, stopnormripple, normfreq, ftype,
domain)

Parameters

Name Definition Compatibility Usage Default Example

order order of Butterworth filter positive integer >= 3 required 5

passnormripple \normalized ripple in passband positive real required 0.1

stopnormripple \normalized ripple in stopband positive real required 0.1

normfreq normalized frequency or range of |normalized scalar or 2-part |required 0.3
frequencies defining filter vector

ftype type of filter enumerated as optional 'low’ 'pass’

'low’,'high’,'pass' or 'stop’
domain digital (Z-domain) or analog (S- 'z' or's' optional |'z' 's'

domain) filter
Definition
Depending on the list out output arguments, this function delivers a humerator-
denominator or a pole-zero-gain definition of an elliptic filter response, which allows
controlled amounts of ripples both in the pass and stop bands. Input arguments consist of
order, normalized in- and out-of-band ripples, normalized frequency range and the
optional enumerated choice of filter type.

Examples:

Note that while zeros and poles are expressed as column vector, numerator and
denominator coefficients are expressed as row vectors. Gain is always expressed as a real
valued scalar variable.

177

Genesys - Users Guide

Formula zeros poles gain [num denom
ellip(3, 0.1, 0.1, [[j; -j; -1] [j; -j; -0.040] 0.520|[0.520, 0.520, |[1, 0.040, 1,
0.5) 0.520, 0.520] |0.040]
ellip(3, 0.1, 0.1, |[-j; j; 1] [-i; j; 0.040] 0.520([0.520, -0.520, |[1, -0.040, 1,
0.5, 'high") 0.520, -0.520] |-0.040]
ellip(3, 0.1, 0.1, [[-1/V2+]j/V2; [1/V2+j/V2; 1/vV2+j/v/2; |0.520|[0.520, O, - [1, 0, -0.040,
[0.25,0.75], 1/V2+j/V2; 1/V2-j/V2; (0.2; -1/vV2+]j/V2; -1/V2- 0.520, 0, 0,1,0,-
'pass') -1/v2-i/V2; 1; -1] i/v2; -0.2] 0.520, 0, - 0.040]
0.520]
ellip(3, 0.1, 0.1, |[[1/V2+]i/V2; - [1/vV2+j/V2; 1/v/2-j/v/2; |0.520|[0.520, O, [1, 0, 0.040,
[0.25,0.75], 1/V2+j/V2; -1/V2-j/V2; [i0.2; -1/V/2-j/V2; - 0.520, 0, 0,1,0,
'stop') 1/V2-j/V2; -i; il 1/v2+j/v2; -j0.2] 0.520, 0, 0.040]
0.520]
See Also

cheby1 (users)
butter (users)
cheby2 (users)

eps

Syntax

y = eps(m)

y = eps(m, n)

y = eps(ml nl pl "')

y = eps([m,n,p,...])

y = eps(m, n, p, ..., class)
y = eps([m,n,p,...], class)

Definition

This function is used to create arrays of various sizes containing the default tolerance of a
machine in distinguishing between absolute 1.0 and the next higher floating point number.
On machines with IEEE floating point arithmetic, the value of eps is 2~ (-52) = 2.2204e-
16. The function returns a m by n by ... array with every part equal to 2.2204e-16. If only
one argument is specified and it is a scalar m, then an m x m matrix is returned. A vector
of dimensions may also be passed in. The optional class argument is a string that specifies
the data type of the array to return.

Examples:

Formula Result

y=eps(3,2)|y=1[2.2204e-16, 2.2204e-16 ; 2.2204e-16, 2.2204e-16 ; 2.2204e-16, 2.2204e-16]
y =eps(2) y = [2.2204e-16, 2.2204e-16; 2.2204e-16, 2.2204e-16]

y =eps([51])|y =[2.2204e-16; 2.2204e-16; 2.2204e-16; 2.2204e-16; 2.2204e-16]

See Also

ones (users)
zeros (users)

erf

Syntax
y = erf(x)

Definition

This function computes the error function of each part of x.
The parts of x must be real.

178

Genesys - Users Guide

Examples:
Formula Result
erf(-1.5) -0.9661
erf(2) 0.9953
erf([-1; -2; 1.1]) [-0.8427; -0.9953;
0.8802]
Compatibility
Real valued scalars, vectors, arrays
See Also
erfc (users)
erfc
Syntax
y = erfc(x)
Definition

This function computes the complementary error function of each part of x.
The parts of x must be real.

Examples:
Formula Result
erfc(-1.5) 1.9661
erfc(2) 0.0047
erfc([-1; -2; 1.1] |[1.8427; 1.9953;
) 0.1198]
Compatibility
Real valued scalars, vectors, arrays
See Also
erf (users)
error
Syntax

error(‘message’)

Definition

Posts the error message to the error log and also places the red error symbol on the menu
button.

Examples:

Formula Result
error('out of range') the message "out of range" is posted to the Error Log as an error

179

Genesys - Users Guide

&' SystemVue™ 2008 Beta - [Equation1]
4.2 File Edit View Eguation Action Tools Window Help == x|
DS E 4R 9o 5¢ HBEH
HEE OIS o 2
Workspace... w & X || Units:Use Display | Go | | 1 x=[1, 2i, 31: -
- IUp to date 2 =[4, 5, &]:
ShIE = ERE i e
Variable | 3 =if (x(1) < ¥(1))
] Tes.tz ans = Char [1x12] 4 error('out of range'):
|::|2 EES'QQS 1 ¢ = Complex [1x3] s . M
2x® Squaton ¥ = Complex [1x3) 1 v
vy =Real [1x3] e
KN — -
Errors * o x
Type Error | Location |
1 -uutufrﬂnge Equation1 (Equation)| Show
lv¥ Automatically Display Errors X Clear All Errors
Ready
Compatibility
Strings
See Also
warning (users)
exist
Syntax

y = exist(Name, Kind, Scope)

Definition

This function checks the existence of a variable or a built-in function. The Name, Kind, and
Scope arguments must be strings. Kind and Scope are optional arguments, whereas Name
is mandatory. The value of Name must be the name of a variable or built-in function. The
exist functions returns 1 if Name is a variable in the Scope, and 5 if it is builtin function,
and 0 if the specified Name is not found in the Scope.

If Kind is specified then only that kind is searched for existence. The supported values for
Kind are 'var' and 'builtin'.

Default value for an Scope is 'global’', a Scope argument can only be specified if Kind =
'var'. The Scope can be either a 'global’, a 'local' or the name of a dataset.

Examples:

180

Genesys - Users Guide

Formula Result

iCode = exist('x') set the variable iCode to 1 if 'x' is a variable name in global scope

iCode = exist('sin') set the variable iCode to 5 because 'sin' is a built-in function

iCode = exist('sin','var') set the variable iCode to 0 because 'sin' is a built-in function but it is not
of Kind 'var'

iCode = exist('x','builtin") set the variable iCode to 0 even if the variable named 'x' exist as it is
not a built-in function

iCode = exist(set the variable iCode to 1 if S1 is a variable present in dataset

'S1','var','Design1_Data') 'Desingl_Data'

Compatibility

Name, Kind, and Scope are strings.

See Also
getvariable (users)
setvariable (users)

exp

Syntax
y = exp(x)

Definition

This function returns the exponential of the argument. The exponential function calculates
e to the power of x, where e = 2.7182817... This function operates on an part-by-part
basis on arrays.

Examples:

Formula Result

exp(1) 2.718

exp([0,1.5]) [1,4.482]
exp([-0.5,0.5;-2,21)|[0.607,1.649 ; 0.135, 7.389]

Compatibility

Numeric scalars, Vectors, Arrays. Real and Complex.
eye

Syntax

y =eye(n)

y =eye(m,n)
y = eye(size(A))

Definition
Y = eye(n) returns the n-by-n identity matrix.

Y = eye(m, n) or eye([m n]) returns an m-by-n matrix with 1's on the diagonal and 0's
elsewhere.

Y = eye(size(A)) returns an identity matrix the same size as A.

Examples
X =-eye(4,5);
eyediag
Syntax
181

Genesys - Users Guide
y = eyediag(x, symbolRate, numCycles, startupDelay)

Definition
This function builds an eye diagram from a time sequence X.

Parameter Comment Unit Requirement Compatibility Default

X one-dimensional time sequence waveform \Y required real-valued

symbolRate |rate of input sequence Hz |required real > 0.0

numCycles |number of unit intervals to be plotted >= 1 optional integer >=1 1

startupDelay |number of samples that will be removed from optional integer > 0 0
beginning of time sequence before plotting >= 0

Examples:

y = eyediag(x, 2*5e3, 1, 23)

Note that the following eye diagram was derived from a sinusoid at 5 kHz, so the unit
interval was half of the 200 usec period, or just 100 usec. The data-rate or symbol-rate of
this simple waveform is therefore 1/unit interval or 10 kHz. The eye-diagram itself was
delayed by 23 samples to demonstrate the time-shift propert of this function.

Eye Diagram
0.8
o
0.56 _ﬁﬁ"“\
™N
0.32 A N[

0.08 \

-0.16 \\ /

-0.4

/
-0.64 /| \\
-0.88 \ //

-1.12 - //
_____________,.--'
-1.36
1.6
0 10e-6 20e-6 30e-6 40e-6 50e-6 60e-6 70e-6 80e-6 90e-6 100e-6
fclose
Syntax

fclose(fileP)

Definition
This function closes the file stream referenced by fileP and returns a O if the operation is
successful.

Examples:
182

Genesys - Users Guide

fileP = fopen('MyFile.txt','r');

oe

oe

Access first 200 contiguously located floating point numbers
= fscanf(fileP, '%f', 200);

e Q

o

Close file
fclose(fileP);

See Also
fgetl (users)
fgets (users)
fopen (users)
fread (users)
fprintf (users)
fscanf (users)
fwrite (users)
tcpip (users)

fft

Syntax

V = fft(X)

V = fft(X,n)
V = fft(X,[],c)
V = fft(X,n,c)

Definition

Discrete Fourier Transform (DFT) of data. Computed with FFT algorithm when possible.
The parameter len is the FFT length and is optional.

fft(X) gives the discrete Fourier transform of vector X.

fft(X,n) returns the n-point DFT. X adds zeros if n>length of X, X is truncated if n<length
of X.

fft(X, [], c¢) gives the FFT on the dimension c.

Examples:
The following example generates a signal consisting of the sum of two sinusoids: one at

400 Hz, and one at 1500 Hz. The fft function is then used to compute the spectrum of the
signal.

fft_len = 1024 % length of the FFT

fs = 8000 % 8000 Hz sampling rate
T =1/fs % sample time

L = 1000 % length of signal

t = (0:(L-1))*T % time vector

% x will be the sum of two sinusoids:
% one at 400 Hz and one at 1500 Hz
x = 0.5%cos(2*pi*400*t) + cos(2*pi*1500*t)
X = fft(x, fft_len) % spectrum of x
X = X(1:(fft_len/2)) % we only care about single side\-band (the rest is
redundant)
f = fs/2 * (0:(2/fft_len):1)

The following graph displays the magnitude of X, the spectrum of x.

183

Genesys - Users Guide
Compatibility
Vectors, Arrays, Dataset

See Also
ifft (users)

fftshift

Syntax
Y =fftshift(X)

Definition

If X is the output of fft(V):

fftshift(X) moves the zero-frequency to the center,

If X is a vector:

fftshift(X) swaps the left and right

If X is a Matrix:

fftshift(X) swaps the first quadrant with the third and the second quadrant with the fourth.

Examples:

Formula Result
x=[12; 3 y=[4, 3; 2, 1]
4]

Compatibility
Vectors, Arrays

See Also
fft (users)
ifft (users)

fgetl

Syntax
y = fgetl(fileP)

Definition
This function gets the next line from an open file and presents it in a string, after
discarding the newline character.

Examples:

fileP = fopen('MyFile.txt', 'r');

a = fgetl(fileP);

while (ischar(a)) % a will be a number = -1, not a char at end of file
a = fgetl(fileP);

end

fclose(fileP);

Compatibility
file pointer

See Also

fclose (users)
fgets (users)
fopen (users)

fread (users)
184

Genesys - Users Guide
fprintf (users)
fscanf (users)
fwrite (users)
tcpip (users)

fgets

Syntax
y = fgets(fileP)
y = fgets(fileP, maxChars)

Definition
This function gets the next line from an open file and presents it in a string, including the
newline character.

Use the argument maxChars to specify the maximum number of character to read. At
most_maxChars_ characters will be returned.

Compatibility
fileP - pointer to an open file that is ready for reading
maxChars - maximum number of characters to be read from the next line

See Also
fclose (users)
fgetl (users)
fopen (users)
fread (users)
fprintf (users)
fscanf (users)
fwrite (users)
tcpip (users)

filter

Syntax
y = filter(b,a,X)
[y,zf] = filter(b,a,X)

Definition

y = filter(b,a,X)filters the data in vector/matrix X with the filter described by numerator
coefficient vector b and denominator coefficient vector a.

Ly,zf] = filter(b,a,X) returns the final conditions, zf, of the filter delays. If X is a row or
column vector, output zf is a column vector of max(length(a),length(b))-1.

Examples:

185

Genesys - Users Guide

Formula Result

X = [1:0.4:6]"; ans =

windowSize = 4; ?0.25

filter(ones(1,windowSize)/windowsSize,1,X) |? 0.6
?1.05
?1.6
?2
?2.4
?2.8
? 3.2
?3.6
?4
?4.4
?74.8
?5.2

Compatibility

Vectors, Matrices

See Also

text here

find

Syntax

i = find(A)

I = find(A, n)

I = find(A, n, 'first")
I = find(A, n, 'last")
[r,c] = find(A, ...)

[r,c,x] = find(A, ...)

Definition

i = find(A) returns the indices of all the nonzero parts in array A and places them in vector
i
I = find(A n) returns an n number of indices of all the nonzero parts in an array A and
places them in vector i. adding a 'first' argument means that it returns the first n indices
of all the nonzero parts, and adding a 'last’' argument means that it returns the last n
indices.

[r,c] = find(A, ...) finds all the nonzero parts in array A and returns the row location, in r,
and column location, in c.

[r,c,x] = find(A, ...) finds all the nonzero parts in array A and returns the row location, in
r, and column location, in ¢, as well as returning the nonzero parts in a vector, x.

Examples:

Formula Result
find([1,0, 2,0, 3, 5]) [1, 3,5, 6]
find([1,0,2;0,3,5],3) [1, 4, 5]
find([1,0, 2; 0, 3, 5], 2, 'last') |[5,6]
Compatibility

Numeric arrays

firl

Syntax
coefs = firl(order, bandEdge, filterType, window, normalization)

186

Genesys - Users Guide

Definition
This function returns a vector containing n+1 coefficients for a finite impulse response
(FIR) filter of order=n.

Parameters

Parameter |Description Requirement Compatibility Default Example

order order of FIR filter required integer >=1 5

bandEdge a scalar defining required O<real<1 [0.25
normalized passband edge 0.75]

frequency for lowpass and
highpass filters or a 2-part
vector defining normalized
lower and upper passband
edge frequencies for
bandpass and bandstop

filters
filterType filter response type: optional {'low','high’,'pass','stop'} |'low" if 'high'
lowpass, highpass, bandEdge is a
bandpass, bandstop scalar; 'pass' if
bandEdge is a
2-part vector
window a vector containing order |optional real rectangular [111]
+1 window coefficients window with
length order+1
normalization specifies whether or not optional {'scale','noscale'} 'scale' 'noscale’

the filter passband
magnitude is normalized to
0dB

If all or any subset of the last three optional parameters are specified, they should be
specified in order.

Examples:

Formula Result
firl(5,0.1) [0.0264077,0.140531,0.333061,0.333061,0.140531,0.0264077]
fir1(5,[0.1,0.9],'pass') |[[0,-0.134665,0.572442,0.572442,-0.134665,0]

See Also
filter (users)

fix
Syntax
y = fix(x)

Definition
fix rounds the argument toward zero, producing integer. This function operates on an
part-by-part basis on arrays.

Examples:
Formula Result
fix(2.2) 2

fix(2.2 + 3.3j) 2 + 3j
fix(-2.3 - 3.9j) -2 - 3j
Compatibility
187

Genesys - Users Guide
Numeric scalars, Vectors, Arrays

See Also
floor (users)

flipdim

Syntax
Y = flipdim(X, dim)

Definition

This function returns an array Y which is X flipped along a dimension dim. For example, if
dimis 1, X is flipped row-wise down (same as flipud). If dim is 2, X is flipped column-wise
left to right (same as fliplr).

Examples:

Formula Result
X=[12;34;56]Y=[56;34;1
flipdim(X, 1) 2]
X=[12;34;56]Y=[21;43;6
flipdim(X, 2) 5]
Compatibility

Arrays

See Also

flipud (users)
fliplr (users)

fliplr

Syntax
Y = fliplr(X)

Definition

This function returns X, except it flips the columns about the vertical axis, so in the left to
right direction.

If X is a column vector, then the function just returns the original X. If X is a row vector,
then a vector the same dimensions as X is returned but with the parts flipped left to right.

Examples:

Formula Result

X=11,4;2,53,6] Y=[4,1;5,2;6,
3]

Y = fliplr(X)

X=11,2,3,4,5] Y =[5 4,3 2 1]

Y = fliplr(X)

X =1[1;2;3;4;5] Y =[1;2;3;4;5]

Y = fliplr(X)

Compatibility

array

See Also

flipud (users)
flipdim (users)

188

Genesys - Users Guide
flipud

Syntax
Y = flipud(X)

Definition

This function returns X, except it flips the rows about the horizontal axis, so in the up-
down direction.

If X is a row vector, then the function just returns the original X. If X is a column vector,
then a vector the same dimensions as X is returned but with the parts flipped up-down.

Examples:

Formula Result
X=11,4;2,5;3,6;,Y=[3,6;25;1,
Y = flipud(X) 4]

X =1[1,;2;3;4;5] Y=[5;4,;3,2;1]
Y = flipud(X)

X =11,2,3,4,5] Y =[1,2,3,4,5]
Y = flipud(X)

Compatibility

array

See Also

fliplr (users)
flipdim (users)

floor

Syntax
y = floor(x)

Definition
floor returns the largest integer less than or equal to the argument. This function operates
on an part-by-part basis on arrays.

Examples:
Formula Result
floor(10) 10

floor(1.5 + 6.2j)) |1

floor([-0.5,0.51)[-1,0]
Compatibility

Numeric scalars, Vectors, Arrays

See Also
ceil (users)

fopen
Opens a file to read, write or append.
Syntax

fileP = fopen(filename)
189

Genesys - Users Guide

fileP = fopen(fileName, operationFormat)
fileP, mess = fopen(filename, operationFormat)
Definition

This function performs file access and returns a handle fileP to the beginning of a file
whose name is filename enclosed in single quotes. The file name can be an absolute path
or a relative path. An extension for the file name is optional. The operationFormat is
specified in operationFormat. Supported operations are:

Open for reading.

'a' |Open or create a file for writing. Append data the end of the file if content exists.
Open or create a file for writing. Truncate the file if content exists.

'r+' |Open for reading and writing.

'a+' Open or create a file for reading and writing. Append data the end of the file if content
exists.

'w+' |Open or create a file for reading and writing. Truncate the file if content exists.
If the fopen fails, fileP is -1 in contrast to a positive value if the operation was successful.

If two outputs are expected, the first one will be the handle fileP and the second one will
be an appropriate message indicating whether the file was successfully opened or not.

Note that for binary files, the functions fread (users) and fwrite (users) should be used for
file access.

Example

fileP = fopen('C:\TEMP\test.txt') will open the existing test.txt file for reading.

fileP = fopen('C:\TEMP\test.txt', 'w') will create the test.txt file and open it for writing.
See Also

fclose (users)
fgetl (users)
fgets (users)
fread (users)
fprintf (users)
fscanf (users)
fwrite (users)
tcpip (users)

fprintf
Syntax
count = fprintf(fid, format, A, ...)

Definition
Formats data from a matrix A or set of matrix ... and writes results to a file fid. count is
the number of elements that were written to the file.

Compatibility
The first argument is a file handle which is returned from a call to fopen, followed by a

190

Genesys - Users Guide
format string and then by one or more matrix arguments.

The format string is of the form (only the leading % and conversionChar are required):
%/{flags}<{fieldWidth}{.precision})conversionChar

Flags are used to control the alignment of the output. Valid flags are:

Character Description Example
Minus sign (-) |Left-justify the output in its field |%-6.4d
Plus sign (+) Always print a plus or minus sign |%+6.4d
Space character Inserts a space before the value % 6.4d
Zero (0) Pads with zeros rather than %06.4d

spaces
Field Width specifies the minimum number of digits that will be printed for the field
Precision specifies the number of digits to be printed after the decimal point

Conversion Character must be one of the following:

Character Description

C Character sequence

dori Signed decimal integer

e Scientific notation (mantise/exponent) using e character

E Scientific notation (mantise/exponent) using E
character

f Decimal floating point

g Use the shorter of %e or %f

G Use the shorter of %E or %f

o] Signed octal

s String of characters

u Unsigned decimal integer

X Unsigned hexadecimal integer

X Unsigned hexadecimal integer (capital letters)

See Also

fclose (users)
fgetl (users)
fgets (users)
fopen (users)
fread (users)
fscanf (users)
fwrite (users)
tcpip (users)

fread

Reads binary data from a file.
fread supports both TCP/IP and FILE I/O connections.

TCP/IP

Syntax
cIn = fread(cStream, iValues, cConvert)

191

Genesys - Users Guide
Definition
Read some amount of binary data from the stream.

e CcStream is a stream class object.

« iValues is the number of values to read.

e cConvert is a string array defining how to read. It can be 'type' to read as this type.
It can be "*type' to have both input and output by this type. It can be
'typel=>type2' to have input data interpreted as typel and output data in type2. By
default, input format is byte and output format is double.

Examples:

Formula Result

dOut = fread(t, 12, 'double') read 12 doubles from the input and save them as doubles (the default).
This will consume 96 bytes of input data.

iOut = fread(t, 100, "*int") read 100 integers from the input and save them as integers.
This will consume 400 bytes of input data.

cOut = fread(t, 22, read 22 ascii characters as input and save them as a character array \

'uchar=>ushort")

FILEI/O

Description

Formula Result

fread(fileP) reads the contents of the file pointed to by the handle fileP (obtained from fopen.) The file is

read from beginning to end and fileP is finally positioned at the end of the file.
mat=fread(fileP) does exactly the above and returns a matrix mat with the contents of the file.

Compatibility
Scalars, Vectors, Arrays. Real and Complex and Character.

See Also:

fclose (users)

fgetl (users)

fgets (users)

fopen (users)

fprintf (users)

fscanf (users)

fwrite (users)

tcpip (users)

(2 bytes per character for unicode).
This will consume 22 bytes of input data.|

fscanf

Syntax
A = fscanf(fileP, format)
A = fscanf(fileP, format, size)

Definition
This function reads data from a file represented by a file handle fileP and converts it to a
string using format. The result is returned in a matrix A.

An optional argument can be passed size, to specify the amount of data in the resulting
matrix.

192

Genesys - Users Guide

Compatibility

fileP - file pointer to an open file ready for reading

format - string description of format in which to access contents of file, e.g. '%f" for
floating-point

size - positive integer specifying number of parts to be read in readFormat
size can be in the form:

n read at most n elements from the file
inf read to the end of the file
[m,n] [read at most m*n elements. Fill at most m rows in A

The format string consists of an initial % character and at a minimum a conversion
character. Optional characters can be entered between the % and the conversion
character.

digit Maximum field width
* Skip over the match value for this format. The value much match but will be ignored and not added to A
Valid conversion characters are:

C Character sequence

d or i|Signed decimal integer

e Scientific notation (mantise/exponent) using e character

E Scientific notation (mantise/exponent) using E
character

f Decimal floating point

g Use the shorter of %e or %f

G Use the shorter of %E or %f

o] Signed octal

s String of characters

u Unsigned decimal integer

X Unsigned hexadecimal integer

X Unsigned hexadecimal integer (capital letters)

See Also

fclose (users)
fgetl (users)
fgets (users)
fopen (users)
fprintf (users)
fread (users)
fwrite (users)
tcpip (users)

fwrite

Writes binary data to a file.
fwrite supports both TCP/IP and FILE I/O operations.

TCP_IP

Syntax
iWritten = fwrite(cStream, Value)

193

Genesys - Users Guide
iWritten = fwrite(cStream, Value, Mode)

iWritten = fwrite(cStream, Value, Precision, Mode)

Definition
Write some amount of binary data to the stream.

cStream is a stream class object.

Value is the data to write.

Mode can be 'sync' or 'async', default is async.

Precision is a char array defining the output data type. Default is byte.

Examples:

Formula Result

iOut = fwrite(t, 12) Write the value 12 to the stream as a single byte.

iOut = fwrite(t, [1, 2], 'int', 'async') |Write the vector [1 2] to the stream as two integers.

iOut = fwrite(t, 22, 'sync') Write the value 22 synchronously to the stream as a single byte.
FILEI/O
Description

Formula Result

fwrite(fileP, mat) will write the contents of matrix mat to the file pointed to by the handle fileP

(obtained from fopen.) Data is written to the file in column order.

counter=fwrite(fileP, will do exactly the above. In addition it will return a counter with the number of
mat) elements successfully written to the file.

Note: Until the file is closed using the fclose (users) function, the contents of that fill
cannot be viewed.

Compatibility
Scalars, Vectors, Arrays. Real and Complex and Character.

See Also
fclose (users)
fgetl (users)
fgets (users)
fopen (users)
fprintf (users)
fread (users)
fscanf (users)
tcpip (users)

gausswin

Syntax
¢ = gausswin(L)
¢ = gausswin(L,alpha)

Definition

This function returns, in the column vector ¢, a Gaussian window with L-points and a
window width parameter alpha. The default value of alpha is 2.5. The width of the window
is inversely related to the value of alpha as shown in the graph below.

194

Genesys - Users Guide
_gausswin_at_n_of_L_with_alpha_ = exp(-0.5 * (2 * alpha *n / N) ~ 2)
where -N/2 <= n <= N/2, L = N+1
When L is odd valued the apex of 1 is reached by the central sample. When L is even the
two samples flanking the unsampled apex have a value of less than 1.

© Note

gausswin(2), a redundant usage of this function returns [0.458 0.458], whereas gausswin(1) returns [1].

Examples:

In the following graph, 13-point Gaussian windows are overlaid for alpha in the range
[1.5,3.5]. Vector values at each sample point are shown. The default behavior of alpha
=2.5 is shown in green.

Note that the values at the end points of the vector are not forced to zero but rather
determined by the value of alpha.

1
/
_ EHﬁég

ndex=0
ndex=2
nd ex=
ndex=0

[i=]

=
Index=11

=
[==]

=

= =]

-]

- i

//i

35{

A/

|4 / V/E oo DN

LELA LY NNRNEAN
/ 13/":35l|r / \ 1\ 0.305

f.1{ /

/]
e N
8

=]
=]

=

o

=]
i

Window Coefficierts

=
Bad

[e=]
[X]

=]
]
1

A/)
01 / 0.098
W 007 — T 0.av ~
il 027
.4139-3|
0 1 2 3 4 5 G [8 g 10 11 12

— g ausswin13) — gausswin{i3,1.5) = gauswin{13,2.0) m— ggusswin(13,3.0) = gausswin(13,3.5)
Compatibility
scalar
See Also:

bartlett (users)
blackman (users)
hamming (users)
hann (users)
rectwin (users)

getindep

Syntax
y = getindep(x)

195

Genesys - Users Guide

Definition
Returns a string with the name(s) of the independent variable(s). x is the variable to
check.

Examples:
Formula Result
n=getindep(S) if S is a linear analysis result this will usually return "Linear_Data\Egns\VarBlock\F" (the

longname of F)

n=getindep(VPORT) |in a HARBEC analysis this will return "HbData\Eqns\VarBlock\Freq" - the Frequency
vector

Compatibility
Swept vectors, arrays

See Also
setindep

getindepvalue

Syntax
y = (X)

Definition
text

Examples:

Formula Result

Compatibility
text

See Also
text

getunits

Syntax
y = getunits(x)

Definition
Returns an integer corresponding to the units of a variable x. This integer may be used by
setunits.

Examples:

196

Genesys - Users Guide
Formula Result
z=1 y = 9001
setunits("z", "V")
y = getunits(z)
z=1 y = 6002
setunits("z" , "mil")
y = getunits(z)
z=1 y = 4003
setunits("z" , "H")
y = getunits(z)
Compatibility
Numeric scalars, vectors, arrays

See Also
setunits

getvariable

Syntax
y = getvariable(Dataset, Variable)
Ly, yindep] = getvariable(Dataset, Variable)

Definition

This function gets a variable value (and, optionally, the value of its independent variable)
from a dataset. The Dataset and Variable arguments must be strings. If an independent

value is requested but the referenced variable doesn't have one, a warning is issued and
yindep is set to a blank value.

Examples:

Formula Result

OutVar = getvariable('OutData’, |set the variable OutVar from the dataset variable OutData.OutVar
'OutVar')

myVar = getvariable('Out', 'Var') |set the variable myVar from the dataset variable Out.Var

[myVar, myIndep] = getvariable(|set the variable myVar from the dataset variable out.Var and set myIndep
'Out’, 'Var') to Out.Var's independent value

Compatibility

Dataset and Variable are strings.

See Also
setvariable (users)

hamming

Syntax
¢ = hamming(L)

Definition
This function returns a Hamming window with L points into a column vector, c.

_hamming_value_at n_of L _symmetric_ = 0.54 - 0.46 * cos(2*pi*n/N)

where 0 <= n <= N

Note that the end points of the vector is not always 0. When N is odd, the apex of 1 is
explicitly an part of the window function. When N is even, the apex is not explicitly
sampled but rather the two sample points which flank the apex are represented in the
returned vector.

197

Genesys - Users Guide

i Note

hamming(2) a redundant usage of this function returns [0.08 0.08] whereas hamming(1) returns [1].

Examples:

0987

1 Indax=T
}ﬁ:laxﬁ?\
~
049 m/ \\\: Ind=x=8, 0.884

. / AN

g /4 \
/ AN

D2 77
:l'-.:lax=1.:l.142 \ Index=12.0.133

P
""-u..._‘“)
=

;“uuldmr-r CCI_I:ffILIn:I s
= in
e

[0
0
] 1 2 3 4 5 G T a 9 10 11 12 13
=—+— 13-point Hemming window =—#— 14-point Hemming window
Compatibility
scalar
See Also:

bartlett (users)
blackman (users)
gausswin (users)
hann (users)
rectwin (users)

hankel

Syntax
hm = hankel(col)
hm = hankel(col,row)

Definition

This function returns a Hankel matrix whose first column is defined by the argument co/
and whose parts start at zero below the first anti-diagonal.

If the row argument is specified, then the first column is co/ , and last row is row. If the
last part in col suppresses the first part in row, if the two values happen to be different.

198

Genesys - Users Guide
Examples:

col = [1,2,5];

row = [7,8,9,107;

% Note that col(length(col)) == 5 ~= 7 == row(length(row)),

% therefore, the (3,1), (2,2) and (1,3) parts of the Hankel matrix will be 5.

hm = hankel(col, row)

$ hm=7[1, 2, 5, 8

% 2, 5, 8, 9 ;

% 5, 8, 9, 10]

S Note how the left-upper triangular section of the matrix corresponds to the column vector
% and the right-lower triangular section corresponds to the row vector.

Compatibility:
col - Numeric valued vector
row - Numeric valued vector

hann

Syntax
¢ = hann(L)

Definition
This function returns a hann window with L points into a column vector, c.

_hann_value_at_n_of_L_symmetric_ = 0.5 * (1 - cos(2*¥pi*n/N))

where 0 <= n <= N

Note that the end points of the vector are always 0. When N is odd, the apex of 1 is
explicitly an part of the window function. When N is even, the apex is not explicitly
sampled but rather the two sample points which flank the apex are represented in the
returned vector.

© Note

hann(2) a redundant usage of this function returns [0 0] whereas hann(1) returns [1].

Examples:

199

Genesys - Users Guide
T,0.985

/AR RN
/] \
[/ I

0.874

L=t
_
s
m
b
i
[
=]
£}

Index=10, .44

0.4 W \
Vil AN\

17 VAN

Window Coefficients
i
=]

0 FEl=], U | Index=12, 0.057
‘ NS
- Index=13, 0
0 } } —- =T
0 1 2 3 4 5 G 7 g g 10 1 12 13
== 13-point Hann window === 14-point Hann window
Compatibility
scalar
See Also:

bartlett (users)
blackman (users)
gausswin (users)
hamming (users)
rectwin (users)

hilbert

Syntax:

V = hilbert(X)

V = hilbert(X,n)
V = hilbert(X,[],¢)
V = hilbert(X,n,c)

Definition:
Computes the analytic signal from a real data vector using the Hilbert Transform, where
the Discrete Fourier Transform is used to calculate the Hilbert Transform. In the resulting
complex vector the original real vector values are stored in the real part, and the
imaginary part is the Hilbert Transform of the real vector.
hilbert(X) calculates the analytic signal of vector X. If X is a matrix, the analytic signal is
computed for each column.
hilbert(X,n) returns the n-point analytic signal. X is extended by adding zeros if n>length
of X, X is truncated if n<length of X.
hilbert(X, [], c) calculates the analytic signal on the dimension c.

200

Genesys - Users Guide

Examples:
The following example creates a simple sinusoid at 400Hz then generates the analytic

signal from that waveform. The resulting complex vector will contain the original sine
wave as the real part, and a cosine wave (the Hilbert transform) as the imaginary part.

fs = 8000 % 8000 Hz sampling rate

T =1/fs % sample time

L = 100 % length of signal

t = (0:(L-1))*T % time vector

X = sin(2*pi*400%*t) % sine wave at 400 Hz

X = hilbert(x) % analytic signal calculation
The following graph displays the real and imaginary parts of X. X
1 Graph1 Lﬁl

2

16

1.2

oo RGN e g el R

A RN RN R AR R TP B

real(), imagi)
o

+ [
r—

F e
e T
"ﬂ-____“__-..-

0 449 186 Ay 18E 495 8.4 69.3 782 9.1 99

—— el == imagk)

Compatibility:
Vectors, Arrays, Dataset

See Also:

histc

Syntax

y = histc(x,e)

y = histc(x,e,dim)
[y,bin] = histc(x,e)

Definition

This function provides a count of the number of parts of a humeric real-valued vector or

array x that fall into each histogram bin where the histogram itself is defined by the bin

boundaries defined in the vector e. By definition y is a vector of integers. If x is a multi-

dimensional array then the dimension of binning may be included as an optional third
201

Genesys - Users Guide
argument dim. If dim is omitted, the innermost non-singleton dimension is chosen as the
dimension to operate along.

If the function is called with an optional bin output variable, then the actual binning matrix
is returned in addition to the bin count vector y.

Examples:

% Define a large vector of normally-distributed random variables, with mean = 0
= randn(1, 1e5);

% Detect the number that is farthest from 0

elim = max(abs(x));

% Create binning vector with bin span being one

= [-elim-1:elim+1]

Invoke histogram count

= histc(x, e);

y = [0,4,151,2400,14546,34846,33406,12648,1881,117,1,0]

Note that the normalized distribution of values is captured in the vector y.

X

(0]

o0 < oe

o° oo

oe

Define a large 2-D array of bi-normally distributed random variables with mean = 0,0
= randn(3, 1e3);

Detect the number that is farthest from 0 along any radius

elim = max(abs(x);

Create binning vector with bin span being one

= [-elim-1:elim+1]

Invoke histogram count row-wise (along dim=2)

X

o

oe

(0]

oe

y = histc(x, e, 2);
$y=10,0,2,1,5,25,65,109,174,182,172,140,78,35,7,4,0,0,1,0;

% 0,0,0,2,11,13,59,113,156,206,193,124,68,33,20,2,0,0,0,0;
% 0,0,0,4,9,27,59,118,162,189,180,127,81,31,8,3,2,0,0,,07;

oe

o

Note that the normalized distribution of values is captured in each row of y.

ifft

Syntax
ifft(data, len)

Definition
Inverse Discrete Fourier Transform (IDFT) of data. Computed with IFFT algorithm when
possible. The parameter len is the IFFT length and is optional.

Examples:
The following example code is taken from the fft example:

fft_len = 1024 length of the FFT

oo oo

fs = 8000 8000 Hz sampling rate
T =1/fs % sample time
L = 1000 % length of signal
t = (0:(L-1))*T % time vector
% x will be the sum of two sinusoids:
% one at 400 Hz and one at 1500 Hz
x = 0.5%cos(2*¥pi*400*t) + cos(2*pi*1500%*t)
X = fft(x, fft_len) % spectrum of x
X = X(1:(fft_len/2)) % we only care about single side\-band (the rest is

redundant)
f = fs/2 * (0:(2/fft_len):1)

If the following lines of code are now added:
y = ifft(X, fft_len)

202

Genesys - Users Guide
then y and x would be identical.

Compatibility
Dataset

See Also
fft (users)

ifftshift

Syntax
ifftshift(X)

Definition

Inverse FFT shift.

ifftshift(X) swaps the left and right halves of the vector X. For matrices, ifftshift(X) swaps
the first quadrant with the third and the second quadrant with the fourth.

Examples:

Formula Result

x=[1 2] ?ans =
221

x=[12;34] ?ans =
743
721

Compatibility

Vectors, Matrices

See Also
fftshift (users)
fft (users)

ifft (users)

imag
Syntax
y = imag(x)

Definition
imag returns the imaginary part of a complex number. This function operates on an part-
by-part basis on arrays.

Examples:
Formula Result
imag(2 -5j) -5

imag([10 + 1j,12]) |[1, O]

imag([20 + 3j; 1 +2j1)I[3; 2]
Compatibility

Numeric scalars, Vectors, Arrays

inf
Syntax

203

Genesys - Users Guide
DA = Inf(n, dist)
DA = Inf(m, n, dist)
DA = Inf(..., classname, dist)

Definition

this function creates an n by n, or m by n, array of class double.

The classname parameter is for specifying the underlying class, which can be either
'double’, the default, or 'single’.

Examples:

Formula Result
x =inf |1.#I0e
Compatibility
Numeric

interpl

Syntax

y2 = interp1(x1,Y1,x2)

y2 = interp1(x1,Y1,x2,method)

y2 = interp1l(x1,Y1,x2,method,'extrap')
pp = interpl(x,Y,method,'pp')

Definition

y2 = interp1(x1,Y1,x2) interpolates to find y2, the values of the underlying function Y1 at
the points in the vector x1.

method:

'nearest' Nearest neighbor interpolation

'linear' Linear interpolation (default)

'spline' Cubic spline interpolation

'pchip' Piecewise cubic Hermite interpolation

‘cubic' (Same as 'pchip')

yi = interp1(x,Y,xi,method,'extrap') uses the specified method to perform extrapolation
for out of range values.

Examples:

Formula Result
x1=[1245] y2
y1=[34 56 67 77] ?ans =
y2=interp1(x1,y1,3) ?61.5
x1=[124 5] y2
y1=[34 56 67 77] ? ans =

y2=interp1(x1,y1,-1,'linear','extrap') |? -10
Compatibility
Numeric scalars, Vectors

See Also
pchip (users)
spline (users)

ipermute

Syntax
204

Genesys - Users Guide
b = ipermute(Array, PermutedIndexes)

Definition
Inverse permute dimensions of an array. This inversley permutes Array using the vector of
permuted indexes.

Examples:

Formula Result

r=[1,2,3,4; 5,6,7,8] >>r
u=ipermute(r, [2,1]) |ans =

1234

5678

>>u

ans =

15

26

37

48
r=[1,2,3,4;5,6,7,8] >>b
a=[r, r] ans(:,:,1) =
b=reshape(a, [2,4,2]) 1234
u=ipermute(b, [2,3,1])|56 7 8

ans(:,:,2) =

1234

5678

>>u

ans(:,:,1) =

15

15

ans(:,:,2) =

26

26

ans(:,:,3) =

37

37

ans(:,:,4) =

48

48 >>

Compatibility
Numeric Arrays.

See Also
permute (users)

iscell

Syntax
y = iscell(x)

Definition
This function determines whether the given parameter x, is a cell or an array of cells. If
so, it returns true, logical 1, and if not it returns false, logical 0.

Examples:

205

Genesys - Users Guide

Formula Result Comment

iscell(23) 0 scalar is not a cell

iscell(1:10) 0 10-part row-vector is not a cell
iscell('hello") 0 string is not a cell

iscell(['hello’,'there']) |0 array of strings is not a cell
iscell({'hello'}) 1 single part cell

iscell({'hello','there'}) |1 array of cells

Compatibility
Numeric and string valued variables.

See Also:
ischar (users)
isempty (users)
isfield (users)
isfloat (users)
isinteger (users)
islogical (users)
isnumeric (users)
isreal (users)
isscalar (users)
isstr (users)
isstruct (users)
isvector (users)

ischar

Syntax
y = char(x)

Definition
This function determines whether the given parameter x, is a character or array of
characters. If so, it returns true, logical 1, and if not it returns false, logical 0.

Examples:

Formula Result Comment

ischar(2) 0 scalar is not a character

ischar('2') 1 character

ischar(1:10) 0 numeric vector is not an array of characters
ischar('hello') 1 vector of characters

ischar(['hello','table']) |1 array of characters

ischar({'hello’,'table'}) |0 cell is not an array

Compatibility

Numeric and string valued variables.

See Also:

iscell (users)
isempty (users)
isfield (users)
isfloat (users)
isinteger (users)
islogical (users)
isnumeric (users)

206

Genesys - Users Guide
isreal (users)
isscalar (users)
isstr (users)
isstruct (users)
isvector (users)

isempty

Syntax
y = isempty(x)

Definition

This function returns true if x is an empty array and false otherwise. An empty array has
at least one dimension of size zero, for example, 0-x-0 or 0-x-5. This function does not
operate on strings or cells. So supplying an empty string to the function does not get a
logical true.

Examples:

Formula Result
isempty(rand(2,2))10

b(:,:) =1[1; a=1;

a = isempty(b)

Compatibility

Numeric scalars, vectors, arrays.
isequal

Syntax
out = isequal(a, b[, ...])

Definition
isequal returns true if the input arrays have the same contents, and false otherwise.
Nonempty arrays must be of the same data type and size to be compared.

Examples:
Formula Result
a=1[1,2;3,4] out=1;
b =1[1,2;3,4]

out = isequal(a,b)

Compatibility
Arrays and scalars.

isequalwithequalnans

Syntax
out = isequalwithequalnans(a, b[, ...])

Definition

isequalwithequalnans returns true if the input arrays have the same contents, and false
otherwise. Nonempty arrays must be of the same data type and size to be compared. NaN
values are not ignored, and considered to be equal to each other.

207

Genesys - Users Guide

Examples:
Formula Result
a =[1,2;NaN,4] out=1;

b =[1,2;NaN,4]
out = isequalwithequalnans(a,b)

Compatibility
Arrays and scalars.

isfield

Syntax
y = isfield(x,'fieldname’)
y = isfield(x, {'fieldname1l’,'fieldname?2',...,'fieldnameN'})

Definition

This function examines the structure, x, to confirm whether it contains the field specified
by 'fieldname’. It returns a logical 1 if the field exists and a logical 0 otherwise. When
multiple field names are specified in a cell array, then an array is returned with the
corresponding logical values.

Examples:

patient.name = '"John Doe';

patient.billing = 127.00;

yl = isfield(patient, 'billing')

Syl =1

y2 = isfield(patient, {'billing','date of birth','name'})
S y2=1[1, 0, 1]

Compatibility

structure, string, cell array

See Also:

iscell (users)
ischar (users)
isempty (users)
isfloat (users)
isinteger (users)
islogical (users)
isnumeric (users)
isreal (users)
isscalar (users)
isstr (users)
isstruct (users)
isvector (users)

isfinite

Syntax
b = isfinite(Array)

Definition
isfinite returns an array the same size as Array containing true where the parts of Array

208

Genesys - Users Guide
are finite and false where they are infinite or NaN. For a complex number z, isfinite(z)
returns true if both the real and imaginary parts of z are finite, and false if either the real
or the imaginary part is infinite or NaN.

Compatibility
Numeric arrays

See Also
isinf (users)

isfloat

Syntax
y = isfloat(x)

Definition

This function determines whether the given parameter x, is a floating point humber. If so,
it returns true, logical 1, and if not, it returns false, logical 0. When x is a character or a
string, this function returns 0 because the argument is not an explicit numeric value but
isreal (users) returns 1 because the argument is implicitly real valued because ASCII
characters are involved in scalar or vector format.

Examples:

Formula Result Comment

isfloat(23) 1 scalar is a 1-part vector

isfloat(1:0.5:10) |1 row-vector of floating point numbers

isfloat([2+3i;4]) |1 column-vector of real and complex numbers

isfloat('h") 0 ASCII character is not a floating point numeric value
isfloat('hello") 0 string is a vector of ASCII characters, not numeric values
Compatibility

Numeric and string valued variables.

See Also:

iscell (users)
ischar (users)
isempty (users)
isfield (users)
isinteger (users)
islogical (users)
isnumeric (users)
isreal (users)
isscalar (users)
isstr (users)
isstruct (users)
isvector (users)

isinf
Syntax
out = isinf(Array)

Definition

isinf returns an array the same size as Array containing true where the parts of Array are

+Inf or -Inf and false where they are finite. For a complex number z, isinf(z) returns true

if either the real or imaginary part of z is infinite, and false if both the real and imaginary
209

Genesys - Users Guide

parts are finite or NaN. For any real a, exactly one of the three quantities isfinite(a),
isinf(a), and isnan(a) is true.

isinteger

Syntax
y = isinteger(x)

Definition

This function determines whether the given parameter x, is an integer. If so, it returns
true, logical 1, and if not it returns false, logical 0. When applied to a multi-part array, all
parts must be integers for the function to evaluate to a true.

Examples:

Formula Result Comment

isinteger(-23) 1 is an integer

isinteger(1:10) 1 10-part row-vector of integers
isinteger(1:0.5:2) 0 contains some non-integers
Compatibility

Numeric and string valued variables.

See Also:
iscell (users)
ischar (users)
isempty (users)
isfield (users)
isfloat (users)
islogical (users)
isnumeric (users)
isreal (users)
isscalar (users)
isstr (users)
isstruct (users)
isvector (users)

islogical

Syntax
y = islogical(x)

Definition
This function determines whether the given expression x, is evaluates to a binary logical
value. If so, it returns true, logical 1, and if not it returns false, logical 0.

Examples:

Formula Result Comment

islogical(1) 0 numeric scalar not a logical expression even though it is binary valued 1
islogical(2>3) 1 is a logical expression

islogical([3,4] < [5,6])1 is a logical expression

Compatibility

Numeric and string valued variables.

See Also:
210

Genesys - Users Guide
iscell (users)
ischar (users)
isempty (users)
isfield (users)
isfloat (users)
isinteger (users)
isnumeric (users)
isreal (users)
isscalar (users)
isstr (users)
isstruct (users)
isvector (users)

isnan

Syntax
out = isnan(Array)

Definition

isnan returns an array the same size as Array containing true where the parts of Array are
NaN (not-a-number). For any real a, exactly one of the three quantities isfinite(a),
isinf(a), and isnan(a) is true.

isnumeric

Syntax
y = isnumeric(x)

Definition

This function determines whether the given parameter x, is of numeric value. If so, it
returns true, logical 1, and if not it returns false, logical 0. Strings, cells and structures are
not numeric parts.

Examples:

Formula Result Comment

isnumeric(23) 1 scalar is a 1-part vector
isnumeric(1:10) |1 10-part row-vector
isnumeric(‘hello') |0 string is not a numeric array
isnumeric({23}) |0 cell is not a numeric part
Compatibility

Numeric and string valued variables.

See Also:
iscell (users)
ischar (users)
isempty (users)
isfield (users)
isfloat (users)
isinteger (users)
islogical (users)
isreal (users)
isscalar (users)
isstr (users)
isstruct (users)
isvector (users)

211

Genesys - Users Guide
isreal

Syntax
y = isreal(x)

Definition

This function determines whether the given parameter x, is a real valued number or a
vector or array containing only real numbers. If so, it returns true, logical 1, and if not, it
returns false, logical 0.

Examples:

Formula Result Comment

isreal(23) 1 integer is real valued
isreal(1:0.5:10) |1 10-part real-valued row-vector
isreal([3;4+5i;6]) 0 has one complex valued part
isreal('h") 1 character has an ASCII value
isreal('hello") 1 string is an array of ASCII values
isreal({'hello'}) |0 cell is not a numeric part
isreal({1.4}) 0 cell is not a numeric part
Compatibility

Numeric and string valued variables.

See Also:

iscell (users)
ischar (users)
isempty (users)
isfield (users)
isfloat (users)
isinteger (users)
islogical (users)
isnumeric (users)
isscalar (users)
isstr (users)
isstruct (users)
isvector (users)

isscalar

Syntax
y = isscalar(x)

Definition
This function determines whether the given parameter x, is a 1x1 part with an ASCII value
i.e. a scalar. If so, then it returns true, logical 1, and if not then it returns false, logical 0.

Examples:

212

Genesys - Users Guide

Formula Result Comment

isscalar(23) 1 is a scalar
isscalar(1:10) 0 10-part row-vector
isscalar('d") 1 is an ASCII character
isscalar('hello") 1 string is not a scalar
isscalar({1}) 1 is a 1-part cell
isscalar({'This is a sentence'}) 1 is also a 1-part cell
isscalar({'This','is','a','sentence’,".'}) |0 is a multi-part cell

Compatibility
Numeric and string valued variables.

See Also:

iscell (users)
ischar (users)
isempty (users)
isfield (users)
isfloat (users)
isinteger (users)
islogical (users)
isnumeric (users)
isreal (users)
isstr (users)
isstruct (users)
isvector (users)

isstr

Syntax
y = isstr(x)

Definition
This function determines whether the given parameter x, is a string. If so, then it returns
true, logical 1, and if not then it returns false, logical 0.

Examples:

Formula Result Comment

isstr(23) 0 scalar is not a string

isstr(‘hello") 1 is a string

isstr({'This','is','a','sentence’,'.'}) |0 array of cells is not a string

isstr({'This'}) 0 even single string part in cell is not a string
Compatibility

Numeric and string valued variables.

See Also:
iscell (users)
ischar (users)
isempty (users)
isfield (users)
isfloat (users)
isinteger (users)
islogical (users)
isnumeric (users)
isreal (users)

213

Genesys - Users Guide

isscalar (users)
isstruct (users)
isvector (users)

isstruct

Syntax
y = isstruct(x)

Definition
This function determines whether the given parameter x, is a structure and if so it returns
true, logical 1. Otherwise, it returns false, logical 0.

Examples:

Formula Result Comment

isstruct(2) 0 scalar is not a structure
isstruct([2,3]) 0 vector is not a structure
isstruct([2,3;4,5]) |0 array is not a structure
isstruct('hello") 0 string is not a structure

type.greeting="hi!"';

type.date=[01 29 2009];

y = isstruct(type);

isstruct(type) |1 |type is a structure with fields 'greeting' and 'date’

See Also:

iscell (users)
ischar (users)
isempty (users)
isfield (users)
isfloat (users)
isinteger (users)
islogical (users)
isnumeric (users)
isreal (users)
isscalar (users)
isstr (users)
isvector (users)

isvector

Syntax
y = isvector(x)

Definition
This function determines whether the given parameter x, is a vector. If so, it returns true,
logical 1, and if not it returns false, logical 0.

Examples:

214

Genesys - Users Guide
Formula Result Comment
isvector(23)
isvector(1:10)
isvector([2;3;4])
isvector([1,2:3,4])
isvector('hello")

scalar is a 1-part vector

10-part row-vector

3-part column-vector
2-dimensional array, not a vector
string is a 5-part vector

[Y = R = =

isvector({'This','is','a",'sentence’,".'})
Compatibility
Numeric and string valued variables.

cell is a 5-part vector of strings

See Also:

iscell (users)
ischar (users)
isempty (users)
isfield (users)
isfloat (users)
isinteger (users)
islogical (users)
isnumeric (users)
isreal (users)
isscalar (users)
isstr (users)
isstruct (users)

kurtosis

Syntax

y = kurtosis(x)

y = kurtosis(x, Flag)

y = kurtosis(x, Flag, iDim)

Definition
Returns the sample kurtosis of a vector x. Kurtosis is the fourth central moment of X
divided by the fourth power of the standard deviation.

If Flag is 0O (default), kurtosis normalizes by N-1 where N is the sample size. If Flagis 1,
kurtosis normalizes by N.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

The iDim argument is optional and specifies which dimension to operate along. For
example, if iDim is 1, this function operates on each column of the argument. If the
argument is omitted, the first non-singleton dimension is chosen as the dimension to
operate along.

Examples:

Formula Result

y = kurtosis([3;4;8;9])|y =1.1479
y = kurtosis([1, 2, 3], 1) y =1.5
Compatibility

Numeric arrays

215

Genesys - Users Guide

See Also

std (users)

var (users)
skewness (users)

length

Syntax
y = length(x)

Definition

This function returns the longest dimension of the array x. When presented with a single
string, it returns the character count. When presented with a list of strings it returns list
length even if one of the words has a character count (inner dimension) greater than the
word count of the string (outer dimension).

Examples:

Formula Result Comment

length(16) 1 scalar number

length([1 2 3]) 3 3-length vector

length([123;456]) 3 2x3 matrix, number of colmns > number
of rows

length('hello") 5 string length is 5

length({'This','string','is','a’, 'test','string",".'}) 7 word count is 7, all words have character
count < 7

length(7 word count is 7, even though one word

{'This','string','is','a’,'verylongwordedtest','string’,".'}) has character count > 7

Compatibility

Numeric and string scalars, vectors, arrays

See Also

size (users)

linspace

Syntax

y = linspace(u,v)
y = linspace(u,v,x)

Definition

This function creates vectors that have values that are linearly spaced, similar to the colon
operator. However, unlike the colon operator, this function gives control on specifying the
number of points. The points are generated between, and including, u and v. The number
of points generated are determined by the parameter x. If not specified, this value
defaults to 100.

Examples:

Formula Result

y = linspace(1, 10, Y =

10) [1,2,3,4,5,6,7,8,9,10]
Compatibility

u - Real valued scalar
v - Real valued scalar

216

Genesys - Users Guide
x - Positive integer

See Also:
logspace (users)

log

Syntax
y = log(x)

Definition

This function returns the natural logarithm (base e) of the argument x. It operates on an
part-by-part basis on arrays. Exceptions of "-1.#INF" (negative infinity) and "-
1.#IND"(indefinable) are thrown for zero and negative arguments respectively, as is to be
expected. For complex valued arguments, the returned y = a + bi is such that a is
log(sgrt(real(x)”~2+imag(x)”"2)), i.e. the natural log of the magnitude and b is
atan(imag(x)/real(x)), i.e. the argument assumed to be in natural log.

Examples:

Formula Result
log(1) 0
log([10,1.5]) [2.3,04]

log([2.3,0.5;3.7,0.8])/0.832909 -0.693147

1.30833 -0.223144
Compatibility
Real and complex-valued scalars, Vectors, Arrays

See Also:
log10 (users)
log2 (users)

log2

Syntax

y = log2(x)
[f, e] = log2(x)

Definition

When used with one output argument, this function returns the base-2 logarithm of the
argument. It operates on an part-by-part basis on arrays. Exceptions of "-1.#INF"
(negative infinity) and "-1.#IND"(indefinable) are thrown for zero and negative arguments
respectively, as is to be expected. For complex valued arguments, the returned y = a + bi
is such that a is log2(sqgrt(real(x)”~2+imag(x)”2)), i.e. the base-2 log of the magnitude
and b is atan(imag(x)/real(x))/log(2), i.e. the argument assumed to be in base-2 log.

When used with two output arguments, the mantissa and exponent of the floating point
argument are returned into f and e respectively.

Definition

This function returns the natural logarithm (base e) of the argument x.
Examples:

217

Genesys - Users Guide
Formula Result
log2(2) 1
log2([4,5121)1[2,9]
Compatibility
Real and complex-valued scalars, vectors, arrays

See Also
log (users)
log10 (users)

log10

Syntax
y = log10(x)

Definition

This function returns the 10-base logarithm of the argument x. It operates on an part-by-
part basis on arrays. Exceptions of "-1.#INF" (negative infinity) and "-
1.#IND"(indefinable) are thrown for zero and negative arguments respectively, as is to be
expected. For complex valued arguments, the returned y = a + bi such that a is
log10(sqrt(real(x)”~2+imag(x)”"2)), i.e. the log10 of the magnitude of the vector and b is
atan(imag /imag)/log(10) i.e. the log10 of the argument, where log(10) is the natural
logarithm of 10.

Examples:

Formula Result

logl0(1) 0

log10([10, 1.57) [1,0.176]
log10([2.3,0.5;3.7,0.81)|[0.362, -0.301 ; 0.568, -0.097]
log10(3+2i) 0.556972 + 0.255366i

Compatibility
Real and complex valued scalars, vectors, arrays

See Also
log (users)
log2 (users)

logspace

Syntax

y = logspace(u,v)
y = logspace(u,v,x)
y = logspace(u,pi)

Definition

This function creates a real-valued vector that is spaced logarithmically. It is the
logarithmic equivalent of linspace and the colon operator (:), and is useful for generating
frequency vectors.

This function generates values that are spaced from 10”u to 10/ v. It creates an x
number of points, and if x is not specified, it defaults the value to 50.

If pi is specified instead of v then the values are spaced from 10”u to pi (approx. 3.14).
This is useful for digital signal processing where frequencies go around the unit circle.

218

Genesys - Users Guide

Examples:

Formula Result

logspace(1,6,6) |[10, 100, 1000, 1e4, 1e5, 1e6]

logspace(-3,3,7) [0.001, 0.01, 0.1, 1, 10, 100, 1000]

logspace(0,1,10) |[1, 1.29155, 1.6681, 2.15443, 2.78256, 3.59381, 4.64159, 5.99484, 7.74264, 10]
logspace(0,pi,5) |[1, 1.33134, 1.77245, 2.35973, 3.14159]

Compatibility

u - Real valued scalar

v - Real valued scalar
Xx - Positive integer

See Also
linspace (users)

lookup

Syntax
index = lookup(x,Vv)

Definition

This function returns the index of the real value of v in the vector x after sorting the
vector in ascending order of real values. If real(v) does not explicitly exist in real(x),
then the returned index is 0 if the sought value is less than the minimum value in the
vector. Otherwise, the index of part which would serve as the lower bound of the range
containing the value, is returned. Accordingly, if real(v) is larger than the maximum
value in x, then the returned index is that of the last part of real(x).

Examples:

Formula Result
lookup([0.1,0.2,0.4,0.3], 4

0.4)

lookup([-4; 3; -2; 1; 0], 2.5 |4

lookup([-4; 3; -2; 1; 0], -4.5 |0
Compatibility

X - Real or complex valued vector

v - value whose position is being sought.

lu

Syntax
[L,U,P] = lu(A)

Definition
Let A be an m x n matrix and k=min(m,n).

[L,U,P] = Iu(A) produces matrices L, U, and P such that L-U = P:A, where

L is a lower triangular (when m<n) or lower trapezoidal (when m>n) m x k matrix with
unit parts in the primary diagonal

U is an upper triangular (when m=n) or upper trapezoidal (when m<n) k x m matrix

P is a permutation m x m matrix

Examples:
219

Genesys - Users Guide

>> A=randn(3,3)+j*randn(3,3)

A =
0.723014 + 1.18447j 0.934672 + 0.460644] 0.441228 + 0.256457]
-0.328791 - 0.851946j -0.861837 + 2.87705j 0.955427 + 1.76944]
0.179696 - 0.856819j 1.68603 - 0.932334j -0.0821437 - 1.2154j
>> [L,U,P] = 1u(A)
L =
1 0 0
-0.647459 - 0.117631j 1 0
-0.459545 - 0.43222j -0.150244 - 0.569137j 1
U =
0.723014 + 1.18447]j 0.934672 + 0.460644] 0.441228 + 0.256457]j
0 -0.310862 + 3.28524] 1.21094 + 1.98739]j
0 0 -0.939387 + 0.080946j
p =
1 0 0
0 1 0
0 0 1
>> max(max(abs(L*¥U-P*A)))
ans =

1.11022e-016
>> A = rand(6,3)

A =
0.60099 0.440156 0.864022
0.127121 0.130142 0.348069
0.946835 0.559306 0.632182
0.766416 0.852558 0.260926
0.857445 0.0636686 0.47777
0.447486 0.372438 0.510765
>> [L,U,P] = 1u(A)
L =
1 0 0
0.905591 1 0
0.634736 -0.192272 1
0.809451 -0.902882 -0.756563
0.134259 -0.124312 0.565567
0.472613 -0.244116 0.424851
U =
0.946835 0.559306 0.632182
0 -0.442834 -0.0947284
0 0 0.444539
P =
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
>> max(max(abs(L*¥U-P*A)))
ans =
1.11022e-016
MaX
Syntax
y = max(x)

y = max(x,z)
y = max(x,dim)
[y, il = max(...)

Definition
Returns the maximum part of a vector x. In the case of arrays, the function returns a row
220

Genesys - Users Guide
vector with the maximum part in each column. When dealing with multidimensional
arrays, it treats the parts along the first non-singleton dimension, or the specified dim, as
vectors and returns the maximum of each.

y = max(x,z) returns an array with the same dimensions as x and z containing the
maximum parts from vectors x or z. The size of x and z have to be the same.

The dim argument is optional and specifies which dimension to operate along. For
example, if dim is 1, this function operates on each column of the argument. If the
argument is omitted, the first non-singleton dimension is chosen as the dimension to
operate along.

[y, i] = max(...) also returns the indices of the maximum parts in a vector i. If more than
one maximum of the same value exists, then only the first parts index is returned.

Examples:
Formula Result
x =10 y =10
y = max(x)
X = [18 -20 23 54 4 71 -43] y=171

y = max(x)

X = [27 86; complex(600 , -435), 34] |y = [600 - j435, 86]
y = max(x)

x = [27 86; complex(1, 1), -34] y = [27, 86]

y = max(x)

Compatibility

Numeric Scalars, Vectors, Arrays

See Also
min (users)

mean

Syntax
y = mean(x)
y = mean(x,dim)

Definition
Returns the arithmetic mean of a vector x.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
dim, or the first non-singleton dimension if dim, is not specified.

Examples:

Formula Result
y=mean([3;4;8;9]) y=6

y = mean([complex(1,2); complex(1,1); complex(2,1)])|y=1.333+j1.333
y=mean([1,2,3;4,56;7,891) y =[4, 5, 6]
Compatibility

Numeric arrays

See Also
221

Genesys - Users Guide
median (users)

median

Syntax
y = median(x)
y = median(x,iDim)

Definition
Returns the median of a vector x.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:
Formula Result
y=median([3;4;8;91]) y=6

y = median([complex(1,2); complex(1,1);complex(2,1)])y=2+j1

y = median([1,2,3;4,5,6;7,8,91) y = [4, 5, 6]
Compatibility
Numeric arrays

See Also
mean (users)
mode (users)

min
Syntax
y = min(x)
y = min(x,z)
y = min(x,dim)
[y,i] = min(...)

Definition
Returns the minimum part of a vector x. In the case of complex-valued arrays, the
magnitude of each part is used.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
dim, or the first non-singleton dimension if dim is not specified.

The dim argument is optional and specifies which dimension to operate along. For
example, if dim is 1, this function operates on each column of the argument. If the
argument is omitted, the first non-singleton dimension is chosen as the dimension to
operate along.

[y,i] = min(...) also returns the indices of the minimum valued parts in x. If there are
more than one minimum parts of the same value, the index of the first one found is
returned.

Examples:

222

Genesys - Users Guide

Formula Result
x=[10] y =10
y = min(x)
x=[18,-20,23,54,4,71,-43] y =-43
y = min(x)

x =[27,86 ; complex(600, -435),34]y =[27, 34]
y = min(x)

x=1[27,86; complex(1,1),-34] y = [1+4j1, -34]
y = min(x)

Compatibility

Numeric Scalars, Vectors, Arrays

See Also
max (users)

mkpp

Syntax
y = mkpp(x, coefs [, b])

Definition

builds a piecewise polynomial y (a structure with six fields) from its breaks x, and
coefficients cofes. breaks is a vector of length a+1 with strictly increasing parts which
represent the start and end of each of a intervals. coefs is an a-by-k matrix with each row
coefs(i,:) containing the coefficients of the terms, from highest to lowest exponent, of the
order k polynomial on the interval [breaks(i),breaks(i+1)]. the optional parameter | gives

the value of each of its coefficients is a vector of length b.

Examples:

Formula Result
b=[45] >> pp

c=[3 5 6] ?ans =

pp=mkpp(b,c) ? form: [pp]
pp2=mkpp(b,c,3) |? breaks: [1x2 double]
? coefs: [1x3 double]
? pieces: [1]
? order: [3]
? dim: [1]
>> pp2
?ans =
? form: [pp]
? breaks: [1x2 double]
? coefs: [3x1 double]
? pieces: [1]
? order: [1]
? dim: [3]

Compatibility
Numeric scalars, Vectors, Arrays

See Also
spline (users)
ppval (users)
unmkpp (users)

mod

Syntax
223

Genesys - Users Guide
m = mod(a,b)

Definition

This function applies the modulus operation on a by b.

It returns, m = a - (floor(a./b) .* b). If b is a scalar, then all parts of a are treated by
its value. If b is nor

Examples:

Formula Result

m = mod(13,5) m=3

m = mod([1:5],3)/m =[1,2,0,1,2]
Compatibility

Real valued scalars, vectors, arrays

See Also
rem (users)

mode

Syntax

y = mode(x)

y = mode(X,iDim)

[y, n] = mode(x, ...)
[y,n,ca] = mode(x, ...)

Definition
Returns the mode of a vector x. If there are several values with equal maximum number
of occurrences, the smallest value is returned.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

[y, n] = mode(x, ...) also returns an array of same size as y which contains the number of
occurrences of each part iny.

[y,n,ca] = mode(x, ...) also returns a cell array with the same size as y and n, and it
contains, in each part, a sorted vector of the values that have the same frequency as each
partiny.

Examples:
Formula Result
y=mode ([8;4;8;91]) y=28

y = mode ([complex(1,2); complex(1,2);complex(2,1)])ly=1+j2

y = mode ([1,2,3;2,2,3;7,8,9]) y =1[1, 2, 3]
Compatibility
Numeric arrays

See Also
mean (users)
median (users)

224

Genesys - Users Guide
moment

Syntax
y = moment(x,order)
y = moment(x,order,iDim)

Definition
Returns the central moment of order order of a vector x.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:
Formula Result
y=moment([1;2;3;4]) y =1.25

y = moment([complex(1,2); complex(2,3)],2)ly=0+j0.5

Compatibility
Numeric arrays

NaN

Syntax

array = NaN(n, distdim)

array = NaN(m, n, distdim)

array = NaN(..., classname, distdim)

Definition

This function creates an n-by-n, or m-by-n as specified, distributed array, which is of class
double by default. The distributed dimension dim and partition PAR are specified by
distdim in the parameters, but if not then it automates to the second dimension and
defaultPartition(n) is used.

array = NaN(..., classname, distdim) also allows you to specify the class of the array.
These can either be 'double' or 'single.'

Examples:

Formula Result

ndims

Syntax
y = ndims(x)

Definition
This function returns the number of dimensions of x. Note that scalars are treated as 1x1
arrays, so the function returns a dimesnion count of 2.

Examples:
225

Genesys - Users Guide

Formula Result
ndims(5) 2
ndims([1, 2]) 2

r=1[12342;12342;223423;123142]
rdim = ndims(r)

% rdim = 2

m = reshape(r,[2,2,5\1)

mdim = ndims(m)

[}

% mdim = 3
Compatibility
scalars, vectors, arrays

See Also:
permute (users)
shiftdim (users)

false

Syntax
false

Definition
false as a boolean value.

Examples:

Formula Result
x=false [false

See Also
true (users)

nextpow?2

Syntax
y = nextpow2(x)

Definition

This function returns the power of two that produces the number immediately higher than
the absolute value of the supplied scalar number x. If x is a one-dimensional vector, then y
is the power of two that would cover length(x). Multi-dimensional arrays are not

supported by the function.

Examples:

Formula Result [Comment

nextpow2(17) 5 275 =32 > 17
nextpow2([3,4,5,6,7]) |3 273 =8 > 5 = length([3,4,5,6,7])
nextpow2([17;33;15]) |2 272 =4 > 3 = length([17;33;15])
Compatibility
Real-valued numbers and vectors

numa2str
Syntax

ystring = num2str(x)
226

Genesys - Users Guide

Definition

This function can convert a real-valued scalar, vector or array to a string representation.
Only real portions of complex valued humbers will be entered to the string. Arrays are
traversed along the innermost (column) dimension. Commas, semicolons, brackets and
other non-whitespace delimiters are ignored when drafting the string.

Examples:
Formula Result
num2str(500) '500"
num2str([500,200;100,400]) '500 100 200
400"

num2str(500+200i) '500"
Compatibility
Real valued scalars, vectors, arrays
See Also
str2num (users)

numel
Syntax

y = numel(x)

Definition
This function returns the total nhumber of parts in the array x.

Examples:
Formula Result
numel(2) 1

numel([1 2 3]) 3
numel(diag([1 1])) 4
Compatibility

scalars, vectors, arrays

See Also
ndims (users)

ones

Syntax

y = ones(m)

y = ones(m, n)

y = ones(m, n, p, ...)

y = ones([m,n,p,...])

y = ones(m, n, p, ..., class)
y = ones([m,n,p,...], class)

Definition

This function returns a m by n by ... array with every part equal to 1. If only one
argument is specified and it is a scalar m, then an m x m matrix is returned. A vector of
dimensions may also be passed in. The optional class argument is a string that specifies
the data type of the array to return.

227

Genesys - Users Guide

Examples:

Formula Result
y=ones(3,2)y=[1,1;1,1;1,1]
y =ones(2) y=[1,1;1,1]
y=ones([51]))y=[1;1;1;1;1]
See Also

zeros (users)

pchip

Syntax
y2 = pchip(x,y,x2)
pp = pchip(x,y)

Definition

By using cubic interpolation with x and corresponding y, y2 = pchip(x,y,x2) returns y2
with is corresponding with x2.

pp = pchip(x,y) returns a polynomial structure pp. both x and y can be row or column
vector.

Examples:

X = -3:3;
y=1[-1-1-101117;
t = -3:.01:3;

p = pchip(X,y,t);

s = spline(x,y,t);

% Grapht

A
ﬁ

04

04 j
03 V.

—— —— ——g

Compatibility
Numeric scalars, Vectors, Arrays

228

See Also
spline (users)
ppval (users)
interp1 (users)

permute

Syntax
y = permute(x,n)

Definition

Genesys - Users Guide

This function rearranges the dimensions of the array x, using an order specified by the

vector n.

Examples:

is a 2x3 matrix

o
X

= permute(x,[2,1])
y 1s a 3x2 matrix
y = [1, 45 2, 5; 3,

oo < X
|

o° oo

oe

z is a 3x2x4 matrix
z=zeros(3,2,4);

=[1, 2, 3; 4, 5, 6];

6]

4, 5, 6];
)3

z(l,:,:) =[1, 2, 3;
2(2,:,:) = 0.1%z2(1,:,:
z(3,:,:) = 10*z(1,:,:);

o

=

oe

w(l,:,:) = [1, 0.1,
w(2,:,:) [5, 0.5,

o°
Il

o

o

w's 3rd (outermost)

oe

See Also
ipermute (users)
shiftdim (users)

poly

Syntax
p = poly(matx)
p = poly(vec)

Definition

Create a permuted version of z
= permute(z,[2,3,11);

10; 2, 0.2, 20; 3, 0.3, 30; 4, 0.4, 40];
50; 6, 0.6, 60; 7, 0.7, 70; 8, 0.8, 801];

Note that w is a 2x4x3 matrix since according to the vector [2,...]

dimension is the same as z's 2nd (middle) dimension,

w's 2nd (middle) dimension is the same as z's 3rd (outermost) dimension

p = poly(matx) returns a row vector containing the coefficients of the characteristic
polynomial, det(sl-a), ordered in descending powers.

p = poly(vec) returns a row vector containing the coefficients of the polynomial which has
roots that are the parts of vec.

% returns the characteristic equation of matrix X in a row vector p.

Examples:
X=1923;156; 780]
p = poly(X)

r = roots(p)

% The roots of this polynomial (eigenvalues of matrix X) are returned

229

Genesys - Users Guide

in a column vector r
Result

>> p

? ans =

? 1 -6 =72 -27
>> r

? ans =

? 12.1229

? -5.73451

? -0.388384

Compatibility
Vectors, Matrices

See Also
conv (users)
polyval (users)
roots (users)

polyval

Syntax
y = polyval(v,x)

Definition

y = polyval(v,x) returns the value of a polynomial of degree n evaluated at x. The input
argument v is a vector of length n+1 whose parts are the coefficients in descending
powers of the polynomial to be evaluated.

Examples:

v=[2 4 7] % same as v = 2x"2+4x+7
y=polyval(v,[0, 1, 2]) % v is evaluated at x=0,1,2

result:

>>y
? ans =
? 7 13 23

Compatibility
Vectors

See Also
polyvalm (users)

polyvalm

Syntax
Y = polyvalm(v,X)

Definition
Y = polyvalm(v,X) evaluates matrix X in the polynomial v.
Polynomial v is a vector whose parts are the coefficients of a polynomial in descending

powers, and X must be a square matrix.
230

Genesys - Users Guide

Examples:

X=[4 5; 1 2]
v=[3 4 1] % as same as v = 3x"2+4x+1
Y=polyvalm(v,X) % evaluates v = 3x"2+4x+1 with x = X

Result:

>> Y

? ans =

? 80 110
? 22 36

Compatibility
Matrices

See Also
polyval (users)

true

Syntax
true

Definition
The value true (logical 1).

Examples:

Formula Result
x = true |x is a true (logical 1)

See Also
false (users)

ppval

Syntax
v = ppval(pp,xx)

Definition

v = ppval(pp,xx) returns the value of the piecewise polynomial f, contained in pp, at the
entries of xx. You can construct pp using the functions interp1, pchip, spline, or the spline
utility mkpp.

v is obtained by replacing each entry of xx by the value of f there. If f is scalar-valued, v
is of the same size as xx.

Examples:

o

s Compare the results of integrating the function cos
a=20; b= 10;
intl = quad(@cos,a,b)
intl =
-0.5440
% with the results of integrating the piecewise polynomial pp that approximates the cosine
function by interpolating the

231

Genesys - Users Guide

% computed values x and y.
X = a:b;
y = cos(x);

pp = spline(x,y);
int2 = quad(@(x)ppval(pp,x),a,b)
int2 =
-0.5485
% intl provides the integral of the cosine function over the interval [a,b], while int2 provides
the integral over the same % interval of the piecewise polynomial pp.

Compatibility
Vectors

See Also
spline (users)
mkpp (users)
unmkpp (users)

prctile

Syntax

y = prctile(x,p)
y = prctile(x,p,iDim)

Definition

Returns the p'th percentiles of a vector x (p can be a scalar or a vector of percent values).
Percentiles must be between 0 and 100. For an N-part vector, this function computes
percentiles by assigning percentile values to the sorted input data as 100*(0.5/N),
100*(1.5/N), ..., 100*((N-0.5)/N). Linear interpolation is then used to compute
percentiles between these values. The minimum or maximum values in the data are
returned for percentile values outside that range.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

Formula Result
prctile([1, 2, 3, 4, 5], 50) 3
prctile([10, 20, 50, 100, 200], 60) |75
Compatibility

Vectors, Arrays

See Also
qguantile (users)
median (users)

prod
Syntax
y = prod(x)
y = prod(x,dim)
Definition
Returns the product of parts of a vector x.

232

Genesys - Users Guide
For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
dim, or the first non-singleton dimension if dim is not pecified.

The dim argument is optional and specifies which dimension to operate along. For
example, if dim is 1, this function operates on each column of the argument. If the
argument is omitted, the first non-singleton dimension is chosen as the dimension to
operate along.

Examples:
Formula Result
y=prod([2,3,5]) y =30

y=prod([1,3;7,5]) y = [7, 15]
y=prod([-3.3,0.7,5,3]) |y =-34.65
a = complex(1,3) y=1+13j
b = complex(4,1)

c=complex(1,0)

y =prod([a,b,c])

Compatibility

Numeric Scalars, Vectors, Arrays

See Also
sum (users)

quantile

Syntax
y = quantile(x,q)
y = quantile(x,q,iDim)

Definition

Returns the g'th quantiles of a vector x (q can be a scalar or a vector of quantile values).
Quantiles must be between 0 and 1. For an N-part vector, this function computes
quantiles by assigning quantile values to the sorted input data as (0.5/N), (1.5/N), ...,
((N-0.5)/N). Linear interpolation is then used to compute quantiles between these values.
The minimum or maximum values in the data are returned for quantile values outside
that range.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

Formula Result
quantile([1, 2, 3, 4, 5], 0.5) 3
quantile([10, 20, 50, 100, 200], 0.6) |75
Compatibility

Vectors, Arrays
See Also

median (users)
prctile (users)

233

Genesys - Users Guide
rand

Syntax

y = rand(nl)

OR

y = rand(n1,n2)

OR

y = rand([n1,n2,..nN])

Definition

This function returns an array of random numbers with uniform distribution. The size of
the array can be specified either as a list of one or two scalars or a vector for higher-
dimensions. If a single scalar n1 is used as the only parameter, a square matrix of size n1
x n1 is returned.

Examples:

oe

Create a 5x5 matrix of uniformly distributed random numbers
= randn(5)

oo <

o

Create a 5-part row vector of uniformly distributed random numbers
= randn(1,5)

o0 <

oe

Create a 3x4x2 matrix of uniformly distributed random numbers

y = randn([3,4,5])
Compatibility

nN - positive integer valued scalar or vector for all N >= 1.

See Also:
randn (users)

randn

Syntax

y = randn(nl)

OR

y = randn(nl,n2)

OR

y = randn([n1,n2,..nN])

Definition

This function returns an array of random numbers with Normal (Gaussian) distribution.
The size of the array can be specified either as a list of one or two scalars or a vector for
higher-dimensions. If a single scalar n1 is used as the only parameter, a square matrix of
size n1 x n1 is returned.

Examples:

o

Create a 5x5 matrix of normally distributed random numbers
= randn(5)

oo <

oe

Create a 5-part row vector of normally distributed random numbers
= randn(1,5)

o <

o

Create a 3x4x2 matrix of normally distributed random numbers

234

Genesys - Users Guide
y = randn([3,4,5])

oe

Compatibility
nN - positive integer valued scalar or vector for all N >= 1.

See Also:
rand (users)

real

Syntax
y = real(x)

Definition
This function returns the real part of a complex number. This function operates on an
part-by-part basis on arrays.

Examples:

Formula Result
real(20) 20
real(3+2j) 3
real([-2+4]j 5-3j 2+j1) |[-2 5 2]

Compatibility

Numeric scalars, vectors, arrays

See Also

imag (users)
rectwin

Syntax

¢ = rectwin(L)
Definition

This function returns a column vector, ¢, a rectangular window with a length of L.
Each sample of the vector has the nominal window height of 1.

Examples:

Formula |Result
rectwin(5)|[1111 1]

See Also:
bartlett (users)
blackman (users)
gausswin (users)
hamming (users)
hann (users)

rem

Syntax
r = rem(a,b)

235

Genesys - Users Guide
Definition
This function returns the remainder when dividing a by b. Both parameters are required to
be real arrays or real scalars subject to the restriction that if b is a vector or array, it must
be the same size as a for part-by-part division and remainder computation. when b is a
scalar, all the parts of a are divided by it. When b is explicitly zero, the result is NaN.

Examples:
Formula Result
rem(2, 1.45) 0.55
rem([2,5,6], 1.45] [0.55, 0.65, 0.20]
rem([2,5,6], [1.45,1.55,1.65] [[0.55, 0.35, 1.05]
Compatibility
Real valued scalars, vectors, arrays
See Also
mod (users)
repmat
Syntax
repm = repmat(orig,dim1l)
OR
repm = repmat(orig,diml,dim?2)
OR
repm = repmat(orig,[dim1,dim2,...,dimN])
Definition

This function repeats the input matrix orig in a tiled fashion as many
times along as many dimensions as are specified by the following parameters.

Examples:

% Define a 2x3 matrix

orig = [1, 2, 3; 4, 5, 61;

% Create a 2x1x2 tiling of this matrix

repm = repmat(orig, [3, 1, 2])

reom(:,:,1) = [1, 2, 3; 4, 5, 6; 1, 2, 3; 4, 5, 6; 1, 2, 3; 4, 5, 6];
reom(:,:,2) = [1, 2, 3; 4, 5, 6; 1, 2, 3; 4, 5, 6; 1, 2, 3; 4, 5, 6];
Note that the inner-most dimension is repeated twice such that
reom(1,1,:) = [1, 17;

The middle dimension is not-repeated such that

repm(1,:,:) = [1, 1; 2, 2; 3, 3];

and the outermost is repeated thrice.

Compatibility

orig - Must be a numeric scalar, vector or array

dimN - Positive integer >= 1

d® o° o° o° o oP

oe

See Also:
permute (users)
shiftdim (users)

reshape

Syntax
y = reshape(x, i,j)
236

Genesys - Users Guide

y = reshape(x, i,jk, ...)
y = reshape(x, [ijk, ...])
y = reshape(x, ...,[],...)
Definition

y = reshape(x , i,j) returns a i-by-j matrix with elements taken column wise from x. The
number of elements in the resulting i-by-j matrix y must be same as humber of elements
in the input matrix x.

y = reshape(x, i,j,k, ...) and y = reshape(x, [i,j,k, ...]) will return a i-by-j-by-k-by....
matrix with same elements as in input matrix x. The number of elements in the resulting
i-by-j-by-k-by.... matrix y must be same as number of elements in the input matrix x.

y = reshape(x, ...,[],...) replaces [] with an integer scalar number representing the
number of elements in the corresponding dimension such that the total number of
elements in output matrix y is same as the number of elements in input matrix x. You can
have only one instance of [] in argument.

Swept-dimensions are NOT counted. (eq. if S is the variable produced by a 100 point
linear analysis of a 2-port circuit, reshape(S, [4;1]) would return a variable containing S,
but having dimensions 100x4x1)

Examples:

Formula Result
x=[1,2,3;4,5,6] y=[1,4,2,523,6]
y = reshape(x, 1, 6)

x=[1,2,3;4,5,6] y=1[1;4;2;5;3;6]
y = reshape(x, [6, 1])

Or

y = reshape(x, 6, 1)
x=[1,2,3;4,5,6;7,8,9;10,11,12]ly=[1,8;4,11;7,3;10,6;2,9;5,12]
y = reshape(x, 6, [])

Compatibility

Real and complex-valued Scalars, Vectors, Arrays

See Also
permute (users)
shiftdim (users)

roots

Syntax
polyroot = roots(polycoef)

Definition
This function returns a column vector, polyroot, whose parts are the roots of the
polynomial expressed in the form of the coefficient vector polycoef.

Examples:

% Find the roots of the polynomial:
Sy =1 - 6%x - 72*%x"2 - 27*x"3
polycoef [1,-6,-72,-277;

polyroot roots(polycoef);

% polyroot = [12.1229;-5.7345;-0.3884]
Compatibility

Real or complex valued vector

237

Genesys - Users Guide

See Also
poly (users)

rot90

Syntax
y = rot90(x)
y = rot90(x,n)

Definition

This function takes the matrix x, and rotates it 90 degrees in the counterclockwise
direction. You can also supply the parameter n to specify how many times you want to
rotate the object 90 degrees.

Examples:

>
1

[1, 2, 3; 4, 5,65 7, 8, 91;

oe

rot90(X)
=[3, 6, 9; 2,5, 8; 1, 4, 7];

do <
< |

N oo
|

rot90(X, -1)
=[7, 4, 1; 8, 5, 2; 9, 6, 31;

o
Nl

o° o

rot90(X,2)
w=19, 8, 7; 6, 5, 4; 3, 2, 11;

oo =
It

o

See Also
fliplr (users)
flipud (users)
flipdim (users)

round

Syntax
y = round(x)

Definition
round rounds the argument to the nearest integer. This function operates on an part-by-
part basis on arrays.

Examples:
Formula Result
round(2.2) 2

round(2.2 + 3.7j) |2 + 4j

round(-2.3 - 3.9j) |-2 - 4j
Compatibility

Numeric scalars, Vectors, Arrays

See Also
floor (users)
ceil (users)
fix (users)

238

Genesys - Users Guide
runanalysis

Syntax
runanalysis(‘AnalysisName')
runanalysis(‘AnalysisName', ContinueOnError)

Definition

The runanalysis function is used to force an analysis to run from an equation block. It can
be used to control simulations in a sequential manner. The function does not return until
the analysis finishes, whether successful or in error.

The second argument, ContinueOnError, is optional and defaults to false. If
ContinueOnError is false and an error is encountered when running the analysis, the
equation block throws an error and terminates. If ContinueOnError is true, the equation
script continues to run.

Examples:

SourceAmpls = [1 2 5 10]; % We'll step our source's amplitude with these values

for 1 = 1 : length(SourceAmpls)

CurAmplitude = SourceAmpls(i); % This variable is used by our source's Amplitude parameter

runanalysis('Analysisl');
% Post process data from the current analysis run

[

% Post-processing equations would go here
end

Compatibility

See Also

secC

Syntax
y = sec(X)

Definition
sec returns the secant of a radian-valued argument. This function operates on an part-by-
part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

secd

Syntax
y = secd(x)

Definition
secd returns the secant of a degree-valued argument. This function operates on an part-
by-part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

sech

Syntax
239

Genesys - Users Guide
y = sech(x)

Definition
sech returns the hyperbolic secant the argument. This function operates on an part-by-
part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

setindep

Syntax
setindep("dependentvar"”, "independentvarl", "independentvar2", ...)

Definition

setindep manually sets the independent variable(s) for a swept variable. Both are passed
by name. A long name can be used for the independentvar. If independentvar is empty
(blank) the dependentvar becomes unswept. All independents should have the same
length, equal to the number of rows in the dependent.

Examples:
Formula Result
ind = [0.025;1;2;5] set x to have a 4 part independent vector. x should be of size 4xm or 4xmxn
setindep("x" ,"ind")
abest = myS[2,1] set abest to use MyData.F as an independent vector. F must have the same
setindep("abest", number of parts as abest has rows.
"myData.F")
Compatibility
Vectors and Arrays. The independent var must be numeric.
See Also
getunits
setunits
Syntax

setunits('varname’, unit)

Definition
setunits sets a variable named varname to have units specified by the parameter unit.
unit may be an integer or a string.

© setunits is used only to set the units of variables in equations and datasets. It will not change units of a
part's parameters.

Examples:

Formula Result

y = [0.025] sets units of y to um
setunits('x', 6006) ly = 25000

y=5 sets units of y to mm
setunit('y', 'mm') |y =5000

y = 0.0001 sets units of y to uF
setunits('y', 'uF') |y = 100
Compatibility

Numeric Scalars, Strinas
240

Genesys - Users Guide

See Also
getunits

setvariable

Syntax
setvariable(Dataset, Variable, value)

Definition
setvariable sets a variable value in a dataset

Examples:

Formula Result

setvariable('OutData’, 'OutVar', 3) set the variable named Outvar in the dataset OutData to the value 3
setvariable('Out', 'Var', [1 2 3]) |set the variable named Var in the dataset Out to a vector [1 2 3]
Compatibility

Dataset and Variable are strings. value is any valid value.

See Also
getvariable (users)

shiftdim

Syntax
y = shiftdim(x,n)
[y,n]=shiftdim(x,n)

Definition
This function can shift the dimensions of the matrix x by the specified dimension number n

When n is positive, the dimensions are shifted to the left and wrapped around to the right.
Thus, a 3x2x4 sized matrix will have its parts restructured into a 2x4x3 sized matrix.

When n is negative, the new matrix y has as many singleton dimensions to the left and
the basic structure of x is otherwise left intact. Thus, a 3x2x4 sized matrix will be
restructured into a 1x1x3x2x4 matrix witha n = -2;

Examples:

k=1;

a=zeros(3,2,4);

for x=1:3

for y=1:2

for z=1:4
a(x,y,z) = k;
k = k+1;

end

end

end

% a is a 3-dimensional matrix defined in the form of the following three 2x4 2-dimensional

matrices.

a(t,:,:) =11, 2, 3, 4, 5, 6, 7, 81;

a(2,:,:) [9,10,11,12; 13,14,15,16];

a(3,:,:) [17,18,19,20; 21,22,23,24];

o0 oo o
I

oe

241

Genesys - Users Guide

% Now shift dimension of a by 1 to the left so that the resulting matrix is 2x4x3

% b is a 3-dimensional matrix defined in the form of the following 4x3 2-dimensional matrices.
(1,:,:) = [1, 9,17, 2,10,18; 3,11,19; 4,12,20];
(2,:,:) = [5,13,21; 6,14,22; 7,15,23; 8,16,24];

% Now shift dimension of a by -2 to the right so that the resulting matrix is 1x1x3x2x4
c=shiftdim(a,-2);
c is a 5-dimensional matrix now
$ c(1,1,1,:,:)=10[1, 2, 3, 4; 5, 6, 7, 8];
c(1,1,2,:,:) =1[9,10,11,12; 13,14,15,167;
% c(1,1,3,:,:) = [17,18,19,20; 21,22,23,247;

permute (users)

sign

Syntax
y = sign(x)

Definition

sign returns the signum of the argument. The signum function returns -1 if the argument
is negative, 1 if the argument is positive, and 0 if the argument is 0. This function
operates on an part-by-part basis on arrays.

Compatibility

Numeric scalars, Vectors, Arrays
sin

Syntax

y = sin(x)

Definition
sin returns the sine of the radian-valued argument. This function operates on an part-by-
part basis on arrays.

Examples:

Formula Result

sin(0) 0

sin(pi/2) 1

sin(-pi/2) -1

sin([pi/4 2*pi/3])|[0.707 0.866]
Compatibility

Numeric scalars, Vectors, Arrays

See Also
asin (users)
sind (users)

sinc

Syntax
y = sinc(x)

Definition
242

Genesys - Users Guide
sinc returns the sinc function of the argument. The sinc function is defined as
sin(pi*x)/(pi*x) or 1 if x is equal to 0. This function operates on an part-by-part basis on
arrays.

Examples:
Formula Result
sinc(0) 1

sinc(pi/2) 0.198
sinc(pi/4) 0.253
sinc(2*pi/3) |0.044
The following figure shows sinc(-10:0.01:10).

Sinc Function

SinGE)
[
P

= 10.071

\
\
\
|
\
l
\
|
|
|
\

o 0.09 !
1 0

Compatibility
Numeric scalars, Vectors, Arrays

See Also
sin (users)

sind

Syntax
y = sind(x)

Definition
sind returns the sine of the degree-valued argument. This function operates on an part-
by-part basis on arrays.

Examples:

243

Genesys - Users Guide
Formula Result
sind(0) 0
sind(90) 1
sind(-90) -1
sind([45 60]) |[0.707 0.866]
Compatibility
Numeric scalars, Vectors, Arrays

See Also
asin (users)
sin (users)

sinh
Syntax
y = sinh(x)

Definition
sinh returns the hyperbolic sine of the number, or (exp(x) - exp(-x)) / 2. This function
operates on an part-by-part basis on arrays.

Examples:

Formula Result
sinh(1) 1.175
sinh(5) 74.203
sinh([pi/3 0])|[1.249 0]
Compatibility
Numeric scalars, Vectors, Arrays
See Also
asinh (users)

size
Syntax
y = size(x)
Definition

size returns a vector containing the number of parts in each dimension of x. part one of y
corresponds to the number of parts in the first dimension, part two to the second
dimension, and so on.

Examples:
Formula Result
size([1234]) [14]

size([123;456])|[2 3]
size(ones(4,3,2)) [[4 3 2]
Compatibility

Numeric Scalars, Vectors, Arrays

skewness

Syntax
244

Genesys - Users Guide
y = skewness(x)
y = skewness(x,Flag)
y = skewness(x,Flag,iDim)

Definition
Returns the sample skewness of a vector x. Skewness is the third central moment of X
divided by the cube of the standard deviation.

If Flag is 0 (default), skewness normalizes by N-1 where N is the sample size. If Flag is 1,
skewness normalizes by N.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

Formula Result

y =skewness([3;4;8;9])y=0

y = skewness([1, 2, -5], 1) y = -0.652
Compatibility

Numeric arrays

See Also
kurtosis (users)
std (users)

var (users)

sort

Syntax

y = sort(x)

y = sort(x,dim)
[y,index]=sort(x)
[y,index]=sort(x,dim)

Definition

This function sorts contents of the array x in ascending order along one specific dimension
of the array. When unspecified, the innermost non-singleton dimension is chosen. The
function can be required to additionally specify the original indices in the sorted order.

Examples:

In the following example note that b is the column-wise (default dim is 1 for a 2x3 matrix)
sorted whereas ¢ and d are sorted row-wise. The index matrix associated with d is
interpreted as follows: if the value k appears at a specific location along row i column j, it
means that the number now placed (row /,column j) was originally the number at (row /,
column k).

245

Genesys - Users Guide

Units:Use Display Go 1 a=[5, 8, 3; 2, 7, 51:
lUp to date 2 k=sort(a):
Variable | 3 e=sare (a,2):
a=Real [2x3] 4 [d, index]=sort(a,2):;
b= Fmnt fram
‘EF -[o«]| ERT =
ﬁ at | a2 | a3| 1] c2 | 3
5] 3 5]
2 7 5 2 5 T
3 b I BIEIEN 5 I Sz K] & index -0l x|
b1] b2 | b3 | d1 a2 | d3 | index1| index2| index3 |
2 7 3 3 5 8 3 1 2
5 8 5 2 5 7 1 3 2

Strings can be sorted alphabetically according to ASCII dictionary if the collection is
presented as cells as shown in the following example. Note that here the string "This" is
retained as the first part because large-cap letters occur before small-cap letters in the

ASCII dictionary.

1 a={'Thi=s","i="', 'a','te=sc', '1line'};

2 (b, index]==20rt (a)
2
al

*» [b, index]=sort (a)
B =

[This]
index =

[a]

1 3 2
«

Compatibility:

[1=] [lin=]

[test]

Real-valued numeric vectors and arrays or strings

spline

Syntax

polynomial = spline(originallndep,originalDep)

OR

fittedDependent = spline(originallndep,originalDep, fittedIndep)

Definition

This function performs spline polynomial extraction from a one-dimensional function
defined as the mapping of an original independent vector onto an original dependent
vector. If supplied with a third argument explicitly specifying the independent vector to
which fitting is required, the function returns the fitted dependent vector. If the third

parameter is not supplied then a structure describing the piece-wise polynomial function is

returned, which may then be used in a call to the ppval(polynomial,fittedIndep) function
to generate the fittedDependent variable.

Examples:

In the following example, the original mapping of x and sinc(x) are shown in sparsely

spaced blue dots, one dot per unit along the independent axis. When four times as much
granularity is required, an extended fitting vector xx is introduced. Spline curves produced
using this extended independent vector are compared against the true sinc() function of

246

Genesys - Users Guide
the extended vector. Note how there is substantial match when some variation is present
in the original data, e.g. just one non-zero data point in the original dependent vector. In
regions where there is absolutely no off-axis data in the dependent vector i.e. in the side-
lobes, the spline() function is still able to partially recover the existence of the side lobes,
if not the full amplitude of each.

ﬁf‘ Equationi

Units:\Use Display | Go | | 1 ¥==5:5;
Up o date 2 y=sinc(x):
Variable | 3 xx=-5:0.25:5;
ww = Real [1x41] 4 yy=spline (X, vy, XX} :
x= Real [1x11) 5 ww=ppval(spline (%, ¥) , %) ;
o= Real [1x41] 1] zz=sinc (xx) ;
[A

L T
¥y = Real [1x41]

z = Real [1x41]

Sinc Function

0.875 [
0.75

—
..--""""

0.125

/
|
S 0ars !
1
[
i’

-0.125

-0.25

-5 4 -3 -2 =1] 1 2 3 4 5

— splnEx, y. 00 ——— T i Sl sy b ¥ .‘ G}

Compatibility
Real-valued 1-dimensional vector: originallndep, fittedIndep
Real or complex-valued array: originalDep

sqrt

Syntax
y = sqrt(x)

Definition
This function returns the square-root of the argument.
This function operates on an part-by-part basis on arrays.

Examples:

\Formula \Result

sqrt(0) 0

sqrt(4) 2

'sqrt(2+3i) |1.67415+j0.895977
sqrt(-1) j

sart([9 16 -41) |[3 4 -2j]
Compatibility

Real and complex-valued scalars, vectors, arrays

247

Genesys - Users Guide
sscanf

Syntax:

A = sscanf(string, format)

A = sscanf(string, format, size)
[A, count, msg, next] = sscanf(...)

Definition:
Used to read formatted input from a string. Converts the input string using format
argument (format) and puts the results into a matrix (A).

size (optional) argument is used to determine how much data is read. Valid values are:

n read at most n fields from the string
inf read all of the input string

[m,n] |read at most m*n fields. Fill a matrix with at most m
rows.

count (optional) result is the number of matching fields.
msg (optional) is for an error message
next (optional) is one more than the number of characters match in the input string

Format:

« Whitespace characters (space, tab or new lines) are used to delimit fields. There
are not included in the output.

 Non-whitespace characters that are not a part of a format specifier are matched
with the next character in string and then discarded. If the character does not match
sscanf stops process string.

« Format specifers: %[*][width][modifiers]conversionChar, where:

* (optional) match the data in string but do not put the corresponding match in the
output matrix. The format must match but it isn't included in the output.

width (optional) maximum number of characters to match in string
modifiers (optional) For compatibility only. valid values (h, I, L)
conversionChar see table below

Conversion Characters:

Type Qualifying Input

C Single character: Reads the next character. If a width different from 1 is specified, the function
reads width characters and stores them in the successive locations of the array passed as
argument. No null character is appended at the end.

d Decimal integer: Number optionally preceeded with a + or - sign.

e,E,f,g,G Floating point: Decimal number containing a decimal point, optionally preceeded by a + or - sign
and optionally folowed by the e or E character and a decimal number.

o Octal integer.

String of characters. This will read subsequent characters until a whitespace is found (whitespace
characters are considered to be blank, newline and tab).

u Unsigned decimal integer.
X, X Hexadecimal integer.

std

Syntax
y =std(x)
248

Genesys - Users Guide
y = std(x, Flag)
y = std(x, Flag, iDim)

Definition
Returns the standard deviation of a vector x.

If Flag is 0 (default), std normalizes by N-1 where N is the sample size. If Flag is 1, std
normalizes by N.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

Formula Result
y=std([3;4,;8;9])y=2.9439
y=std([1,2, 3], 1) y = 0.8165
Compatibility

Numeric arrays

See Also
kurtosis (users)
var (users)
skewness (users)

str2num

Syntax
y = str2num('xstring")

Definition

This function can convert a single real-valued number from string format to numeric
format.

When supplied with a string containing preceeding non-numeric characters, other than
whitespace or tab, the function returns zero.

Examples:
Formula Result
str2num('500") 500
str2num(’ 500
500")
Compatibility
String
See Also
num?2str (users)
strcmp
Syntax

out = strcmp(strl, str2)
out = strcmp(str, ca)
out = strcmp(cal, ca2)

249

Genesys - Users Guide

Definition
out = strcmp(strl, str2) compares two strings, strl and str2, and returns true (logical 1)
if they are identical. If not, then it returns false (logical 0).

out = strcmp(str, ca) compares str with each string in a cell array. It then returns a logical
array, out, that contains the corresponding logical values on whether the two strings are
identical.

out = strcmp(cal, ca2) compares each part in cal to the corresponding part in ca2. It
then returns a character array that is the same size as cal and ca2 with the corresponding
logical value on whether the two strings are identical.

This function does not ignore case. To ignore case, use the strcmpi function.

Examples:

Formula Result
out = strcmp('One’, "Two') out =0

out = strcmp('Yes', {'No', 'Yes'}) lout = [0,
1]

Compatibility
string array, cell array

See Also
strcmpi (users)

strcmpi

Syntax

out = strcmpi(strl, str2)
out = strcmpi(str, ca)
out = strcmpi(cal, ca2)

Definition

out = strcmpi(strl, str2) compares two strings, strl and str2, and returns true (logical 1)
if they are identical. If not, then it returns false (logical 0).

out = strcmpi(str, ca) compares str with each string in a cell array. It then returns a
logical array, out, that contains the corresponding logical values on whether the two
strings are identical.

out = strcmpi(cal, ca2) compares each part in cal to the corresponding part in ca2. It
then returns a character array that is the same size as cal and ca2 with the corresponding
logical value on whether the two strings are identical.

This function ignores case. To take the case into account, use the strcmp function.

Examples:

250

Genesys - Users Guide
Formula Result
out = strcmpi('One’, 'Two') out =0

out = strcmpi('Yes', {'No', 'YES'}) |out = [0,
1]

Compatibility
string array, cell array

See Also
stremp (users)

strncmp

Syntax

out = strncmp(strl, str2, n)
out = strncmp(str, ca, n)
out = strncmp(cal, ca2, n)

Definition
This function compares the first n characters in strl and str2 and if they are identical, it
returns true (logical 1). Otherwise, it returns false (logical 0).

The function can also compare a string and each part in a cell array, or the parts in two
cell arrays.

This function is case sensitive. To ignore case, use the strncmpi function.

Examples:

Formula Result
out = strncmp(‘example’, 'exam’, 4) out = 1;

out = strncmp('test’, {'exam’, 'testing'}, out =
4) [0,1];

Compatibility
string array, cell array

See Also
strncmpi (users)

strncmpi

Syntax

out = strncmpi(strl, str2, n)
out = strncmpi(str, ca, n)
out = strncmpi(cal, ca2, n)

Definition

This function compares the first n characters in strl and str2 and if they are identical, it
returns true (logical 1). Otherwise, it returns false (logical 0).

The function can also compare a string and each part in a cell array, or the parts in two
cell arrays.

This function is not case sensitive. To take case into account, use the strncmp function.

251

Genesys - Users Guide
Examples:

Formula Result
out = strncmpi(‘example’, 'EXAM', 4) out = 1;

out = strncmpi('test’, {'exam', 'TeStING'}, out =
4) [0,1];

Compatibility
string array, cell array

See Also
strncmp (users)

struct

Syntax
y = struct(field1,valuel, filed2,value2,.... fieldN,valueN)

Definition

This function creates a structure parts of which can be of various types ranging from
strings through complex cell arrays. Each field is assigned the type of the value which
succeeds it. If the structure contains more than one cell array, like a matrix, all such cell
arrays must be of the same size. Note that fields are always specified as strings.

Examples:
In the figure below, observe how records of two people who share the same last name can
be saved to and retrieved from a single structure.

"

b

Unils Use Display | Go || 1

Lip to date 2

Variable |
DoeRecords = struct [1x2)

RA1 = struct [1x1) E M=K Pi=lEl] & Lastiames - |0 x]

R2 = sirud [1x1)
[[RaFist_ | R2First_ | | Risge| R2Age Rilasih.. | R2Lasth
] 1 k1) 3 1 D]
A £ 0 o
3

h [
-

4= G B3
[=T - .

Compatibility
Numeric scalars, Vectors, Arrays

sum

Syntax
y = sum(X)
y = sum(x,dim)

Definition
Returns the sum of parts of a vector x.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
dim, or the first non-singleton dimension if dim is not specified.

The dim argument is optional and specifies which dimension to operate along. For
252

Genesys - Users Guide
example, if dim is 1, this function operates on each column of the argument. If the
argument is omitted, the first non-singleton dimension is chosen as the dimension to
operate along.

Examples:

Formula Result
y=sum([10,3,5]) y =18
y=sum([2;9;11]) y =22

y = sum([complex(3,3), complex(5,2)])y=8+j5
y=sum([3,2,19;5,7,1.5]) y = [8, 9, 20.5]
y=sum([3,2,19;5,7,151],2) y = [24; 13.5]
Compatibility

Numeric scalars, Vectors, Arrays

See Also
prod (users)

svd

Syntax

s = svd(X)

[U,S,V] = svd(X)
[U,S,V] = svd(X, 0)
[U,S,V] = svd(X, 'econ')

Definition
Let X be an m x n matrix and k = min(m,n).

S = svd(X) returns, in the vector S, the singular values (in decreasing order) of the matrix
X. S is a column vector of size k.

[U,S,V] = svd(X) produces matrices U, S, and V that form the singular value
decomposition of X, thatis, X = U-S:V', where

U is a unitary m x m matrix

S is a diagonal m x n matrix whose primary diagonal parts are the singular values (in
decreasing order) of X

V is a unitary n x n matrix

[U,S,V] = svd(X, 0) OR [U,S,V] = svd(X, 'econ') produce matrices U, S, and V that form
the 'economical' singular value decomposition of X, that is, X = U-S-V', where

U is an m x k matrix containing only the first k columns of the unitary matrix U returned
by [U,S,V] = svd(X)

S is a diagonal k x k matrix whose primary diagonal parts are the singular values (in
decreasing order) of X

V is an n x k matrix containing only the first k columns of the unitary matrix V returned by
[U,S,V] = svd(X)

Examples:

>> X = [0.60099 0.766416 0.440156; 0.12712 0.857445 0.130142; 0.94683 0.447486 0.559306]
X =

0.60099 0.766416 0.440156

0.12712 0.857445 0.130142

0.94683 0.447486 0.559306

253

>> S = svd(X)
S =
1.6967
0.663471
0.0347664
>> [U,S,V]=svd(X)
U =
-0.628061 -0.11714
-0.41523 -0.78565
-0.658122 0.607481
S =
1.6967 0
0 0.663471
0 0
\/ =
-0.620837 0.610289
-0.667115 -0.740937
-0.411726 0.280286
>> X =
X =
0.723014 0.179696
-0.328791 0.934672
>> [U,S,V]=svd(X)
U =
-0.293781 0.955873
0.955873 0.293781
S =
2.25294 0 0
0 1.07425 0
\/ =
-0.233779 0.553425
0.373129 0.415505
0.827729 -0.305779
0.347831 0.653893
>> [U,S,V]=svd(X, 'econ'")
U =
-0.293781 0.955873
0.955873 0.293781
S =
2.25294 0
0 1.07425
\/ =
-0.233779 0.553425
0.373129 0.415505
0.827729 -0.305779
0.347831 0.653893
tan
Syntax
y = tan(x)
Definition

tan returns the tangent of the radian-valued argument. This function operates on an part-
by-part basis on arrays.

Examples:

-0.769297
0.458627
0.444796

0
0

0.0347664

0.492046

Genesys - Users Guide

0.0772603

-0.867134
[0.723014 0.179696 -0.861837 0.441228;

-0.861837
1.68603

0.721934
-0.509149

0.463201
-0.0708765

-0.328791 0.934672 1.68603 0.955427]

0.441228
0.955427

-0.343335

-0.654903

-0.0825176
0.668142

254

Genesys - Users Guide

Formula Result

tan(pi) 0

tan(pi/4) 1

tan(-pi/4) -1

tan([5*pi/11 -5*pi/11]) |[6.955 -6.955]
Compatibility

Numeric scalars, Vectors, Arrays

See Also
atan (users)
tand (users)

tand

Syntax
y = tand(x)

Definition
tand returns the tangent of the degree-valued argument. This function operates on an
part-by-part basis on arrays.

Examples:

Formula Result
tand(180) 0
tand(45) 1
tand(-45) -1
tand([180 45]) [0 1]
Compatibility

Numeric scalars, Vectors, Arrays

See Also
atan (users)
tan (users)

tanh

Syntax
y = tanh(x)

Definition
tanh returns the hyperbolic tangent of the argument, defined as (exp(x) - 1) / (exp(x) +
1). This function operates on an part-by-part basis on arrays.

Examples:

Formula Result
tanh(1) 0.762
tanh(5) 1

tanh(pi/3) 0.781

tanh([pi/6 0]) |[0.48 0]
Compatibility

Numeric scalars, Vectors, Arrays

255

Genesys - Users Guide
See Also
atanh (users)

tcpip

Syntax
t = tepip(ipAddr, nPort)

Definition

tcpip creates a class object to do tcpip i/o over a lan. ipAddr is a string with the IP
Address in dotted format, and nPort is a port number for the connection. Once created,
use fopen, fwrite, fread, fprintf, fscanf, fclose to manipulate the port.

Examples:

Formula Result

t = tepip('127.0.0.1', 80) |Create an object to connect to the web server on this computer (port 80 on 'this')
Compatibility

TCP/IP connections via LAN. ipAddr is a char array, and nPort is an integer.

tcpip Properties
Modify the way the tcpip link works by setting properties in the created class object. tcpip
supports the following properties

Property Description
LocalHost Local host descriptor
LocalPort Local port descriptor

LocalPortMode Specify automatic local port assignment
ReadAsyncMode |Specfiy whether an asynchronous read operation.

RemoteHost The remote host ip address (char array)
RemotePort The remote port # (integer)
Terminator Terminator string, such as 'CR/LF'. ASCII value 0 - 127, or 'CR', 'LF', 'CR/LF', or 'LF/CR'

TransferDelay Specifies whether or not to use Nagle's algorithm.

InputBufferSize |Size of the input buffer in bytes.

OutputBufferSize |Size of the output buffer in bytes.

Timeout Time to wait before timing out on receive (in seconds, floating point).

tic
Measure performance using stopwatch timer

Syntax:
tic
start_time = tic

Definition:

Starts a stopwatch timer. The output will be the time in ms since the operating system
started.

Most commonly used with the function toc to measure the performance time of a set of
statments.

Examples:
tl = tic
<statments>

256

Genesys - Users Guide
t2 = tic
<statmets>
dtl = toc(tl) % the time elapsed since the first tic was called (or t1)
dt2 = toc(t2) % the time elapsed since the second tic was called (or t2)

Compatibility:
output is a double

See Also:
toc (users)

toc

Measure performance using stopwatch timer

Syntax:

toc

dt = toc

dt = toc(start_time)

Definition:

1. toc if there are no input and output, toc will just stop the timer.

2. dt = toc if only one output is asked, then dt will become the time elapsed since last
tic was called.

3. dt = toc(start_time) this call will have the output dt to be the time elapsed since
start_time, where start_time usually is the output of a tic call (eg. start_time = tic)

Examples:

« Ex 1:
tic
<statments>
dt = toc % calculates the time elapsed since tic was used, or the time to run the
code in the <statments>

« Ex 2:
tl1 = tic
<statments>
t2 = tic
<statments>
dtl = toc(tl)
dt2 = toc(t2)

Compatibility:
doubles

See Also:
tic (users)

toeplitz
Syntax
tm = toeplitz(x)

OR
tm = toeplitz(x,y)

257

Genesys - Users Guide
Definition
This function returns an m x m Toeplitz matrix based on an m-length vector x or a
combination of m-length vectors x and y.

When only a single vector is used, the result is a symmetric, Hermitian matrix as shown in
the Trl table below. Note that the vector parts are distributed symmetrically with respect
to the principal dialoginal which is occupied by the first part of the input vector.

When two vectors are present, the first part of the first vector populates the principal
diagonal as evidenced in the differences between Tr12 and Tr21. The other parts of the
first vector populate the lower-triangle whereas those of the second vector populate the
upper-triangle of the resultant matrix.

Examples:
5 Equation1 - o] x|
Units:Use Display | Go || 1 realvectorl={l -2.1 3.8 4 5]:
U to date 2 T--—tc&p--tz-realvectc:-1
Variable | 3 realvectord=[0 1 2 -4 3]
realvector! = Real [1%5] 4 Iriz= tneleczurealvecte-- realvector?);
realvector? = Real [1x5] 5 Tr2l=toeplitz (realvector?,realvectorl);
Tr1 = Real [5x5] -
Tr12 = Real (515 -[o] x|
Tr21 = Real [5x5] Tr11 | Tr12] Tr13 | Tr4 | Tr5 |
<] 1 21 38 2 5 |
e 24 1 -2 3.8 4
28 21 1 2.1 38
4 28 2.1 1 2.1
5 4 38 -2.1 1
S Tr12 - |o| x| iRl - O x|
Tri21] Tri22| Tri23| Triza| Trizs| T11| T212| T3] Traa| Tr215]
1 1 2 -4 3 0 21 38] 5
21 1 1 2 4 1 0 2.1 38 4
3.8 21 1 1 2 2 1] 2.1 38
4 38 21 1 1 4 2 1] 2.1
5 4 ag 21 1 3 4 2 1 0
unmkpp
Syntax

[breaks,coefs,pieces,oredr,dimension] = unmkpp(pp)

Definition

This function extracts, from the supplied piecewise polynomial pp, its break points,
coefficients, number of pieces, order, and dimension of target. Create pp using spline or
the spline utility mkpp.

Breaks and coefficients are presented as row vectors.

Examples:

pp = mkpp([2 4],[4 61);
[bks,coefs,1l,k,d] = unmkpp(pp)

Result:

258

Genesys - Users Guide

& SystemVue™ 2008 Beta

File Edit View Table Acton Tools Window Help
AEH LB e 3¢ BEBEA> O
(G &

e i

ﬁ'|@ '| : Units:Use Display | Go pp = mkpp([2,4],[4,6]):

?_EITEﬂZ {lUp to date [breaks, coefs, numpieces, order, dim] =unmkpp (pp)
EE Designs ‘ariable I
..... /5] Table1 ans = Char [1x12]

hreaks = Real [1x2]
o= Complex [1x3] _'I
coefs = Real [1x2]

dim=1 BE Table1 !EE

numpieces=1 breaks’ coefs’
order=2 1 Pl 4
pp = struct [1x1] 2 4 B
¥ = Complex [1x3]
y=0.65
Ready | P
Compatibility
Structure
See Also

spline (users)
ppval (users)
mkpp (users)

using

Syntax
using('DatasetName');

Definition

This function sets the current context in an equation block to the named dataset. When
set, you can use the variables within the dataset as if there were defined in the equation
block. This function can be used to context switch between datasets in any post
processing Equation page.

Examples:

If there are two datasets, called "Datal" and "Data2" which both contain a variable called
"Varl".

Then the way to access these variables without confusion is as follows:

using('Datal');

% Assume "Varil" of "Datal" is [3, 6, 9, 12]
z1=Var1/3;

using('Data2');

% Assume "Varl" of "Data2" is [2, 4, 6]
z2=Var1l/2;

The results are:

259

z1 = [1, 2, 3, 4]
z2 = [1, 2, 3]
Compatibility
String

var

Syntax

y = var(x)
y =var(x, W)
y = var(x, W, iDim)

Definition
Returns the variance of a vector x.

Genesys - Users Guide

If W is 0 (default), var normalizes by N-1 where N is the sample size. If Wis 1, var
normalizes by N. If W is a vector, it is treated as coefficient weights for computing the
variance. In this case, the coefficients of W are scaled so that they sum to unity.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

Formula Result
y=var([3;4,;8;9]) y = 8.6667
y=var([1,2, 3],1) y = 0.6667
y =var([1, 2, 3], [0.7,0.1,0.2])|y = 0.65
Compatibility

Numeric arrays

See Also
kurtosis (users)
std (users)
skewness (users)

warning

Syntax
error('message')

Definition

Posts the warning message to the error log and also places the yellow warning symbol on

the menu button.

Examples:

Formula Result

warning('out of range') the message "out of range" is posted to the Error Log as a warning

260

Genesys - Users Guide

&' SystemVue™ 2008 Beta - [Equation1]
4.2 File Edit View Eguation Action Tools Window Help == x|
NS H $@ 9 e 5@ HEH
Slals @ b (5 "
Workspace... w & X || Units:Use Display | Go | | 1 x=[1, 2i, 3]: -
: - |[Up to date b v=[4, 5, &]:
Y- & B B E T
Variable | 3 =1if (=(l) < ¥(1])
(38 Test2 ans = Char [1x12] 4 warning('out of range'):
[_7] Designs _ 5 end;
¥z Equation: ¢ = Complex [1x3] 4
* ¥ = Complex [1x3] 1 >
y=Real [1x3] e
KN I 2l
Errars - 0 X
Type | Error | Location |
1 Warning |out of range Equation1 (Equation)| Show
lv¥ Automatically Display Errors X Clear All Errors

Compatibility
Strings

See Also
error (users)

XCOorr

Syntax
¢ = xcorr(X, y, maxlags, 'option')
[¢, lags] = xcorr(...)

Definition
xcorr estimates the cross-correlation sequence of a random process. Autocorrelation is a
special case of cross-correlation.

y, maxlags, and 'option' are optional parameters.

When only x is specified i.e. ¢ = xcorr(x) then c is the autocorrelation sequence for the
vector Xx.

The various 'options' are:

'biased' - Biased estimate of the cross-correlation function Rxy_biased(m) =[1/

N]*Rxy(m)

« 'unbiased' - Unbiased estimate of the cross-correlation function Rxy_unbiased(m)
=[1/(N-|m])]*Rxy(m)

» 'coeff' - Normalizes the sequence so the autocorrelations at zero lag are identically
1.0.

e 'none' - Use the raw unscaled cross-correlations. This is the default.

maxlags - Limits the autocorrelation lag range to [-maxlags:maxlags].

261

Genesys - Users Guide
[¢, lags] = xcorr(...) returns two variables c and lags. lags is a vector of the lag
indices at which c was estimated. The ' ... ' represent the X, y, maxlags, 'option’
arguments.

Examples:

Formula Result

x=1[1,2i,3] c=[6+i333.1e-18,5 +i12, 22 +i10, 15 +i8, 12 - i333.1e-18]
y=1[4,56]

c = xcorr(X, y)

Xor

Syntax
y = xor(A, B)

Definition

This function performs an exclusive OR operation on arrays A and B.

It returns a vector of logical values that are true if only one of the corresponding values in
A OR B is nonzero, but not both. Otherwise, the value is false. A and B have to be vectors
or arrays of the same size.

Examples:

p
o

[0 O pi eps], B=[0 -2.4, 0, 1]
xor(A, B) = [0, 1, 1, 0]

ZEeros

Syntax

y = zeros(m)

y = zeros(m, n)

y = zeros(m, n, p, ...)

y = zeros([m,n,p,...])

y = zeros(m, n, p, ..., class)
y = zeros([m,n,p,...], class)

Definition

This function returns a m by n by ... array with every part equal to 0. If only one
argument is specified and it is a scalar m, then an m x m matrix is returned. A vector of
dimensions may also be passed in. The optional class argument is a string that specifies
the data type of the array to return.

Examples:

Formula Result
y=zeros(3,2)y=[0,0;0,0;0,0]
y = zeros(2) y=[0,0;0,0]

y =zeros([51]))y=[0;0;0;0;0]
See Also

ones (users)
eps (users)

Using Engineering Language

262

Genesys - Users Guide
Engineering Language is a simple programming language with structured control
statements. Variable types are defined in context and matrices and arrays can be easily
manipulated with equations.

Example: here's a simple equation block

x=3

if x==3 then

y = 4*x + cos(z)
else

y = 4*%x + sin(z)
endif

In this block we set x to be 3, then if x is 3 we set y to be 4* x +cos(z).

© Recommendation: we recommend you create two separate equation blocks if you have input equations
(such as tunable variables) and output equations (such as post-processing). This will generally speed up
simulations and guarantee validity of the input variables even if the output data is messed up.

Equations (in both languages) are case-sensitive. So X=3 and x=3 define two different variables.

!\ Important: You can use a one-line equation in most part parameters and in many other parameter entry
fields.

In a part parameter that expects a string (such as substrate) precede the line with an =.
For example,

=mysubst

will attempt to parse the mysubst formula and then find the substrate named that. If you
have mysubst defined in an equation somewhere as mysubst="simple", then this will use
the substrate named simple . Similarly, to define a string in parameters that may allow
equations, precede the line with a single quote or use double-quotes around the line.

'simple
"simple"

both produce the string "simple”.

|) Note: parameters that expect strings by default draw the string in green.

Statements

An equation block consists of one or more statements. Statements are separated by line
breaks or semicolons. The following two equation blocks are equivalent:

X = 2
Yy =3
and

Complicated statements can span multiple lines and use control structures like while
loops, for loops, and if statements.

263

Genesys - Users Guide

The following statement types are supported by Engineering equations: assignment,
comment, label, goto, if, for, while, function, or return. The format of each statement type
is described below.

Assignments

An assignment statement assigns a value to a variable. The syntax of an assignment
statement is as follows:

_Variable_Name_ = Expression

For example,

X = 3.6

Y = sin(3*PI)

Z = [1;2;3]

s21 = [My Folder].Linearl_ Data.S21

are all assignments.

A variable name must start with a letter or an underscore character, and can contain
alphanumeric characters and underscore characters. An expression can contain numerical
operations involving numbers, other variables, and function calls.

Vectors and matrices can be defined inline, as the following example illustrates:

[1, 2, 3] '"A row vector
[1; 2; 3] '"A column vector
[1,2,3; 4,5,6] 'A 2x3 matrix

<
o

Comments

A comment starts with an apostrophe character (') and continues for the rest of that line.
The following are examples of comments:

X =R * cos(theta) ' here is one comment
' Here is another comment

In the example above, the assignment statement is executed, while both comments are
ignored.

label statement

A label statement defines a point in the equation block for goto statement destinations.
See the goto statement for more details. The syntax of the label statement is:

label _labelname_

goto statement

This statement causes the equation parser to jump to a label defined by a label statement
and continue execution from that point. The syntax of the goto statement is:

264

Genesys - Users Guide

goto _labelname_

if statement

The if statement is a control structure that allows one set of statements to execute if a
condition is met, and optionally, another set of statements to execute if the condition is
not met. Valid syntax for the if statement is:

1.
if _expression_ then
one_or_more_statements
else
one_or_more_statements
endif

if _expression_ then
one_or_more_statements
endif

if _expression_ then _statement_

If expression evaluates to a nonzero value, the statement block following then is
executed, otherwise that statement block is skipped. If an else block is specified and
expression evaluates to zero (false), the else block is executed. Expression is
generally a Boolean expression.

Example:

X =
y =
if x ==y then ' Note that double equals are used for comparison
x =x + 1

y =y -2

else

x =10

endif

3
2

for statement

The for loop statement is a control structure that allows a set of statements to repeatedly
execute according to the value of the loop variable. The syntax is as follows:

1.
for _variable_name_ = _expression_ to expression
one-or-more-statements
next

for variable_name = expression to expression step expression
one-or-more-statements
next

A loop variable named variable-name is initialized to the first expression value. The
statement block following the for loop definition is executed, and the loop variable is
incremented by 1 in the first syntax, or by the value of the expression after step in
the second syntax. The statement block repeatedly executes until the loop variable
exceeds the value of expression after to. The following example clarifies this:

265

Genesys - Users Guide
x=0; y =20
for 1 =1 to 5
x = x + 10
y =y + 100
next

After execution completes in the above example, i is equal to 5, x is equal to 50, and
y is equal to 500.

while statement

The while loop statement is a control structure that executes a set of statements
repeatedly based on a condition. The syntax is as follows:

while _expression_
one-or-more-statements
wend

As long as expression evaluates to a nonzero number, the statements execute. Once the
last statement in one-or-more-statements is reached, expression is once again evaluated.
When expression evaluates to zero (false), execution continues after wend.

function statement

The function statement is used to define functions or procedures. A function takes zero or
more parameters as input and returns exactly one value as output. All variables used
within a function are local; that is, you cannot use variables defined in a function in
another function or in the main equation block. The syntax of the function statement is as
follows:

function _function-name_ (_paraml_ , _param2_)
one-or-more-statements
end

If the function takes no parameters, the parentheses must still be present after function-
name . If the function returns a value, you should use a return statement in the one-or-
more-statements block.

The following example is a function used to calculate the inductor value necessary to
produce a resonance at a given resonant frequency and capacitor value:

function ResL(C, F)
"L is in nH, C is in pF, F is in MHz
FHz = 1e6 * F
CFarads = 1le-12 * C
Omega = 2 * PI * FHz
LHenries = 1 / (Omega”™2 * CFarads)
return LHenries * 1e9
end

|'ﬂ' Note: One or more return statements may be present in the function's statement block.

The function defined above may be called as follows:

L = ResL(50, 25.8) ' get me the L value in nH for 50 pF and 25.8 MHz
266

Genesys - Users Guide

return statement

This statement returns a value from a function and exits the function. The format of the
return statement is:

return expression

The function call then evaluates to the value of expression .

Operators

Operators and their descriptions are listed in the table below.

are also listed.

Operator Description

+
.+

e

® A|AAlV]V
v

Addition

Addition (ignores whether operands are swept or not)
Subtraction

Subtraction (ignores whether operands are swept or not)
Multiplication or Matrix Multiplication

part-by-part Matrix Multiplication (ignores whether operands
are swept or not)

Division

part-by-part Division (ignores whether operands are swept or
not)

Exponentiation

Modulus

Boolean And

Boolean Or

Boolean Not

Assignment Operator

Boolean Comparison

Boolean Greater Than

Boolean Greater Than or Equal
Boolean Less Than

Boolean Less Than or Equal
Boolean Not Equal

Returns indices for which var = operand , F@50 returns indices

at which F=50, F@[50,100]

Examples for each operator

Example

a
a

+b
+b

a-b

a
a
a

-b
*b
*b

a/b

a

a

./ b

A 2 (means a-squared)

a%b
a&b

a

~

[«V RN « VIR «) IR « IR VRN o)

a

| b

a

1l Il
o I~
o

ANV V
Il
o

b
<=b
<>b

Returns indices at which F is
between 50 and 100.

Vectors, Matrices, and Multidimensional Arrays

Engineering Language allows you to create vectors, matrices, and multi-dimensional
arrays. Vectors and matrices are arrays of 1 and 2 dimensions, respectively. Arrays are
designed to work with numeric data, including complex numbers. Vectors and matrices
may be defined inline, or may be defined and sized explicitly with the vector, matrix, and
array functions. Here is an example equation block that defines several vectors and
matrices, as well as a multi-dimensional array.

<
I

267

= vector(3) 'x is a column vector of 3 parts, all zero. The datatype is Complex.
matrix(4, 3) 'y is a 4x3 matrix with all parts zero.

The datatype is Complex.

Genesys - Users Guide

z = array(3, 4, 4, 2) 'z is a 3x4x4x2 array. The datatype is Complex.

a=[1; 2; 3] 'a is a column vector containing the parts 1, 2, and 3

b =1[2.5, 3, 8] 'b is a row vector containing the parts 2.5, 3, and 8
M=1[1,2,3; 4,5,6; 7,8,9] 'M is a 3x3 matrix with the first row containing 1, 2, and 3.
M = ["hello"; "goodbye'"; "Hi"] 'M is a 3-part string array

Note that semicolon denotes the end of a row, while comma separates row parts. The
exception to this is string arrays which are always 1-dimensional arrays, regardless of
whether semicolons or commas are used to separate the parts when defining the array.

Indexing into Arrays

An part in an array variable is accessed with the following syntax:

var[index1, index2, ..., indexN]

where var is the name of the array, and var is an array of dimension N. The first part in a
dimension has index 1. A colon may be used to indicate every part in the
dimension. If the leading dimensions correspond to independent values (eg. the S
matrix produced by Linear Analysis, which has the first dimension correspond to the
independent value of F, a frequency vector) then these dimensions may be omitted, and a
colon is assumed for these dimensions.

The following example illustrates indexing into arrays.

M=1[1,2,3; 4,5,6; 7,8,9] 'M is a 3x3 matrix with the first row containing 1, 2, and 3.
a = M[2,1] ' a equals 4

b =M[1,:] ' b is the row vector [1,2,3]

c =M[:,[1;3]] ' c is the 3x2 matrix [1,7; 2,8; 3,9]

M[1,1] =5 ' the part in the first row and first column of M is now 5

Note that only scalar assignment is supported when assigning a value into an part in an
array.

Vectors may also be used for specifying multiple parts in a dimension. The following
example illustrates this:

M=11,2,3; 4,5,65 7,8,9]
a=M[[1; 3], [1; 2]] 'a is the matrix [1,2; 7,8]

Searching Vectors and Indexing into Sweeps

Sometimes it is useful to know at what index or indices in an array a particular value is
contained. To find what indices a vector contains a certain value or range of values, the
@ operator may be used. This is especially useful for indexing into sweeps to extract
desired data. A single number following the @ operator searches a vector for that single
number. If a two-part vector follows the @ operator, the two numbers are treated as a
range. The following example illustrates the use of the @ operator:

F = [100; 200; 300; 400; 500; 600]

i = F@300 ' i equals 3

n = F@[200,350] ' n is the vector [2;3]

X = F[n] ' X is the vector [200;300]

268

Genesys - Users Guide
Suppose S is an S-matrix produced by linear analysis of a 2 port network. S contains data
for 10 frequencies: 10 MHz through 100 MHz in steps of 10 MHz. That is, S has an
independent value F, the frequency vector, of length 10. Therefore, S is a 10x2x2 array.
The following example shows how to extract the S21 parameter at frequencies 30 - 50
MHz:

s_21 = S[F@[30,507, 2, 1]

Suppose we have a sweep that produced a swept variable PPORT which contains the
power at ports. This variable is contained in a dataset called HB1_Data and has two
independent variables because both frequency and input power were swept. Let us say
that the frequency variable is Freq while the input power variable is called Pin. Suppose
we wanted to extract the trace where the frequency is 2000 MHz and the power is swept
from -15 to -11 dBm. We can make use of the intersect function to find the indices of
PPORT corresponding to this trace as follows:

using("HB1_Data")
indices = intersect(Freq@2000, Pin@[-15,-11]1)
trace = PPORT[1indices] ' trace contains the desired values of output power

String arrays may be searched in the same manner, but no ranges are allowed for strings:

strings = ["hello", "goodbye", "Hi'"]
i = strings@"Hi" ' 1 equals 3
j = strings@"hi" ' 1 equals 0, since the string "hi" is not found in the array.

Range Vectors

A range defines a column vector in either of the following two ways:

start:stop
start:stepsize:stop

where start, stepsize, and stop are expressions. If stepsize is left out, it is assumed to be
1. A range creates a column vector with the first part value being equal to start , each
successive part being stepsize greater than the previous part, until stop is reached.
Ranges may also be used to index into arrays and extract desired sub-arrays. The
following example illustrates the use of ranges.

x = 1:10 'x is the column vector [1;2;3;4;5;6;7;8;9;10]

y = 1:2:10 'y is the column vector [1;3;5;7;9]

M=1[1,2,3; 4,5,6; 7,8,9] ' M is a 3x3 matrix with the first row containing 1, 2, and 3.
a = M[1:2, 2:3] ' a is the 2x2 matrix: [2,3; 5,6]

b = M[1:2:3, :] ' b is the 2x3 matrix: [1,2,3; 7,8,9]

Mathematical Operations on Arrays

Mathematical operations on arrays are supported. In general, any scalar operation or
function may be performed on an array, and the operation will be performed on an part-
by-part basis, producing a resulting array that has the same dimensions as the original
array. The following example illustrates this:

x = [1,2; 3,4]
269

Genesys - Users Guide

y = [1,1; 1,1]

z =Xty 'z is the matrix [2,3; 4,5]

z =z -1 'z is now the matrix [1,2; 3,4]

w = sin(z) 'w is the matrix [sin(1), sin(2); sin(3),sin(4)]

Multiplication is a special-case operator. When using the multiplication operator on a
matrix or vector, matrix-multiplication is assumed. To do an part-by-part multiplication,
the .* operator is used. Here is an example:

x = [1,2; 3,4]

y = [1;1]

z =x ¥y 'z is the vector [3;7]
w=x .%¥ [1,0;0,1] 'w is the same matrix as x

To find out the dimensions of an array, use the size function. To find out how many parts
are in an array, use the prod function to calculate the product of the parts of the vector
returned by the size function:

x=11,2,3; 4,5,6]
x_dims = size(x) 'x_dims is the vector \[2;3\]
num_parts = prod(x_dims) 'num_parts is 6

Shortcuts, and Functions

The following are built-in variables and functions that you can use in any equation block.

Variables

FREQ - Frequency variable (in Hertz) set by the frequency-domain simulators
TIME - Time variable (in Seconds) set by the time-domain simulator
TEMPERATURE - Temperature (in Celsius) set by simulators

PI - Constant equal to 3.1415926535897932

Shortcuts

SUB_ER substrateer(SUBST) (compatibility with 2004 which used mm for units)

SUB_TAND substratetand(SUBST) (compatibility with 2004 which used mm for units)

SUB_RHO substraterho(SUBST) (compatibility with 2004 which used mm for units)

SUB_TMET (1000*substratetmet(SUBST)) (compatibility with 2004 which used mm

for units)

e« SUB_ROUGH (1000*substraterough(SUBST)) (compatibility with 2004 which used
mm for units)

e SUB_H (1000*substrateh(SUBST)) (compatibility with 2004 which used mm for
units)

« SNM where N and M are digits S[N,M] (index into S-parameters)

e« YPNM where N and M are digits YP[N,M] (index into Y-parameters. YP will be created

and set to stoy(YP, ZPORT))

Measurement Functions
Measurement functions are typically used when looking at the output of linear simulations.

Remember that all measurement data is in MKS fundamental units, so these functions use
MKS input and produce MKS output. S21, for example, is not in dB.

270

Genesys - Users Guide
sm_gammal(S), sm_gamma2(S)

Returns simultaneous match gamma (reflection coefficient into port 1 or 2) for 2-port S
parameters. Shortcut:

GMi sm_gammai(S)

sm_y1l(S), sm_y2(S)

Returns simultaneous match input admittance (into port 1 or 2) for 2-port S parameters.
Shortcut:

YMi sm_yi(S)

sm_z1(S),sm_z2(S)

Returns simultaneous match input impedance (into port 1 or 2) for 2-port S parameters.
Shortcut:

ZMi sm_zzi(S)
stab_fact(S)
Returns stability factor (K) from 2-port S parameters. Shortcut:

K stab_fact(S)

stab_meas(S)
Returns stability measure(B1) from 2-port S parameters. Shortcut:

Bl stab_meas (S)

stoh(s, zport)

Converts 2-port S parameters to H parameters.

stoy(s, zport)
Converts S parameters to Y parameters. Shortcut:

YP stoy(S,ZPORT)

stoz(s, zport)
Converts S parameters to Z parameters. Shortcut:
ZP stoz(S,ZPORT)

voltage_gain(s, zport, i, j)
271

Genesys - Users Guide

Returns port-to-port voltage gain from i to j. Shortcut:

Eij voltage_gain(S,ZPORT,i,j)

vswr(s)
Returns the vswr of an S-parameter. Shortcuts:
VSWR vswr(diag(S)) 'returns a vector of all port VSWR value

VSWRIi vswr(s[i,i]) 'VSWR at port _i

ytoz(Y)
Converts Y parameters to Z parameters.
zin(s, zport), yin(s, zport)

Returns the input impedance or admittance looking into a port. Parameters are S and
Zport. Shortcuts:

ZIN zin(diag(S),ZPORT) 'returns a vector of all input impedances
YIN yin(diag(S),ZPORT) 'returns a vector of all input admittances
ZINi zin(S[i,i],ZPORT[i]) 'returns input impedance at port

YINi yin(S[i,i],ZPORT[i]) 'returns input admittance at port _i

Variables in Datasets and other Equations

It is possible to refer to a variable that is located inside a dataset or an equation by using
the dot operator (.) to specify the path of the variable in the workspace tree. If the object
in the workspace tree that contains the desired variable does not have an alphanumeric
name (eg. it contains spaces), then the name of the object must be surrounded by square
brackets or braces. The following example illustrates the use of the dot operator:

X = Linearl Data.S ' The S variable in dataset Linearl_Data is copied to X

Y = [Equation set 1].x ' Y equals the variable x defined in an equation block named "Equation
set 1"

Z = {Equation set 1}.x ' same as Y

A graph series may refer to variables in the same manner. For example, entering the
following measurement as a graph series is valid:

Linearl_Data.S21

Units of Measure

Data that comes from a dataset (simulation) will always be in MKS. So, for example,
272

Genesys - Users Guide
PPORT (power at a port) is in Watts. F (linear analysis frequency vector) is in Hz, T (Time)
is in seconds. When you use this data in an equation, manipulate the MKS data. When you
view the data in a graph or table you can see the table with a display unit of measure.

Example:
PPORT[2,2] - fundamental power at port 2 is stored in Watts but displayed in dBm
F[12] - 12th frequency is stored in Hz but displayed in MHz

To have an equation variable use a unit of measure, use the setunits function. So

F = [100e6;110e06]
setunits("F","MHz")

will create a two part vector at 100 and 110 MHz. Doing the setunits both identifies the
type of data (time, here) and the desired (time) unit to display in (MHz). When you want
to contrast measured and calculated results, remember to create your data in MKS.

Swept Arrays

A Swept Array is an array variable with an independent variable link. Typically,
simulations create swept variables when they run. In Linear Analysis, S is a swept variable
and the independent variable (link) is the F variable. When we plot S the X dimension is
Frequency and the X coordinates are the values of the F array (the Y coordinates are
usually dB(Sxx)).

Swept variables are used in equations differently from non-swept variables. With a swept
variable the first dimension (the swept dimension) is often elided (left out) and the
variable is treated like many variables with shape equal to the non-swept shape. Also,
when swept variables are plotted the swept dimension (variable) is used for the X axis.
Example: in a transient analysis (CAYENNE simulator) of a 2-port device we have a VPORT
vector of size Tx2 where T is the size of the time (T) vector. If we assume we have 100
times then T is of size 100x2 and we can do...

VPORT[2] - the Port_2 voltage array swept over time (size 100x1)

VPORT[1,2] - the first voltage at port 2 (scalar)

[1,2]*VPORT - produce a swept array of size 100x1 where each value is VPORT [f,1] + 2 *
VPORTIf,2]

treating VPORT as a bunch of 2 part vectors

|'ﬂ Note that in this example both VPORT[2] and VPORTI[1,2] are valid constructs because VPORT is swept.

To create a swept variable in equations, use the setindep function. This assigns an array
as the independent vector for a second array.

Example: to create a swept voltage array

vV = 1:100 ' create a vector of length 100 consisting of the numbers 1 through 100.
T = 1e-9%(1:100) ' and again, except scaled by 1le-9
setunits("T","ns") ' set T to ns(time)

273

Genesys - Users Guide
setunits("V","mv") ' set V to mV(voltage)
setindep("V","T") ' say the voltage was swept by time

Example: if we want to contrast transient voltage with voltage squared (for some reason)

Vout = mydata.VPORT[2] ' get the output port voltage from mydata
Vsg = Vout .* Vout ' part-by-part mult. (Square each part)
setindep("Vsqg","mydata.T") ' use the same indep as VPORT so we can graph it

Using Math Language

Math Language, along with most of its built-in functions, was designed to be compatible
with m-file script syntax.

Statements

An equation block consists of one or more statements. Multiple statements placed on the
same line are separated by line breaks, commas, or semicolons. The following two
equation blocks are equivalent:

X=2
Y=3

and
X=2,Y=3

If you end a statement with a semicolon, it does not generate output in the command
window.

Complicated statements can span multiple lines and use control structures like while
loops, for loops, and if statements.

The following statement types are supported by Mathematics Language equations:

assignment, comment, label, goto, if, for, while, function, or return. The format of each
statement type is described below.

Assignments

An assignment statement assigns a value to a variable. The syntax of an assignment
statement is as follows:

variableName = Expression

For example,

X = 3.0;
Y Sin(3*PI);
Z =1[1 2 3];

are all assignments.

A variable name must start with a letter, and can contain alphanumeric characters and
underscore characters. An expression can contain numerical operations involving
numbers, other variables, and function calls.

274

Genesys - Users Guide

Vectors and matrices can be defined inline, as the following example illustrates:

x =[1 2 3] % a row vector
y [1;2;3] % a column vector
z =1[123; 45 6] % a 2x3 matrix

Tune Assignments

A Tune Assignments assigns a variable a specific value while marking it as Tunable. A
tunable variable can then be tuned from the Tune Window and can be used by
evaluations, such as Sweeps, that operate on tunable variables.

When a Tunable variable is tuned from the Tune Window, the resultant value is then
updated in the Equation block where it was originally defined.

The syntax for a Tune Assignment is as follows, where Constant represents a real-valued
constant:

variableName = ?Constant

For example:

X = ?23 % x is tunable with initial value 23
y =°?-1.5 % y is tunable with initial value -1.5

Comments

A comment starts with a percent character (%) and continues for the rest of that line. The
following are examples of comments:

X =R * cos(theta) % Here is an in-line comment
% Here is another comment

In the example above, only the assignment statement is executed, while both comments
are ignored.

if statement

The if statement is a control structure that allows one set of statements to execute if a
condition is met, and optionally, another set of statements to execute if the condition is
not met. Valid syntax for the if statement is:

1.
if _expression_
_one_or_more_statements_
elseif
_one_or_more_statements_
else
_one_or_more_statements_
end

if _expression_

_one_or_more_statements_
end

275

Genesys - Users Guide

if _expression_, _statement,_ end

If expression evaluates to a nonzero value, the following statement block is executed,
otherwise that statement block is skipped. If an else block is specified and expression
evaluates to zero (false), the else block is executed. The expression is generally
Boolean in construction.

Example:

X
Y
if x ==y % Note that double equals are used for comparison
X
Y

for statement

The for loop statement is a control structure that allows a set of statements to repeatedly
execute according to the value of the loopVariable. The syntax is as follows:

for _loopVariable_ = _startValue_ : _stepValue_ : _stopValue_
_one_or_more_statements_
end

The loopVariable is initialized to the startValue. When stepValue is explicitly mentioned,
loopVariable increments by it until it reaches or exceeds the stopValue. When left
unspecified, stepValue is assumed to be of unit magnitude. The following example clarifies
this:

x =0,y =20

for i =1 : 5% i, the _loopVariable_ takes the values [1 2 3 4 5]
x = x + 10

y =y + 100

end

After execution completes in the above example, i is equal to 5, x is equal to 50, and y is
equal to 500.

while statement

The while loop statement is a control structure that executes a set of statements
repeatedly based on a condition. The loop is exited when the condition is no longer
satisfied. The syntax is as follows:

while _expression_
_one_or_more_statements_
end

As long as expression evaluates to a honzero number or a Boolean true, the statements

execute repeatedly. When expression evaluates to zero (false), execution continues after
end. The following example clarifies this:

276

Genesys - Users Guide

x =1, vy = 15;
while (vy)

X = x ¥y

y =y - 1;
end

After execution completes, when y reaches 0 in the above example, x equals factorial of
the original value of vy.

function statement

The function statement is used to define functions or procedures. A function takes zero or
more parameters as input and returns exactly list of values as the result. All variables
used within a function are local; that is, you cannot use variables defined in a function in
another function or in the main equation block. However, you can use variables defined in
the equation block in the function. The syntax of the function statement is as follows:

function <resultlList> = functionName(<paramList>)
_computation_statements_
_calls_to_other_functions_

end $ Note: this end is optional

If the function takes no parameters, the parentheses must still be present after
functionName . If the function returns a value, you should set the values in the
<resultList> block.

<paramList> and <resultList> are lists of variable names separated by commas. If the
last variable in <paramList> is 'varargin', then the function can take in an unspecified
number of arguments, and the remaining arguments are placed into the 'varargin' cell
array which can be accessed from within the function. Similarly, if the last variable in
<resultlist> is 'varargout', then the function can return an unspecified number of return
values which are set in the function by assigning to the 'varargout' cell array.

Inside a function definition, you may use the variables named 'nargin' and 'nargout’ which
hold the number of arguments passed in to the function and the number of return values
requested by the caller, respectively. These may be used for error checking or other
purposes.

The following example is a function used to calculate the inductor value necessary to
produce a resonance at a given resonant frequency and capacitor value:

function resonantInductor = ResL(resonantCapacitor, resonancefrequency)
% inductance is in nH, capacitance is in pF, frequency is in MHz
FHz = 1e6 * resonancefrequency;

CFarads = 1e-12 * resonantCapacitor;

Omega = 2 * pi * FHz;

LHenries = 1 / (Omega”2 * CFarads);

resonantInductor = LHenries * 1e9; % the return value

end

The function defined above may be called as follows:
L = ResL(50, 25.8) % computes the L value in nH resonanct with 50 pF at 25.8 MHz

You may return multiple values by listing them in the result expression, as in

277

Genesys - Users Guide

function [Ind, Q] = ResL(C, F, R)
Ind =1

Q=2

end

this is used as [MyInd, MyQ] = Resl(a,b,c)

The following example illustrates a function that takes in a variable number of arguments
and returns a variable number of results.

function varargout = f(varargin)
SumOfArgs = 0;

for i = 1 : nargin

SumOfArgs = SumOfArgs + varargin{i}
end
varargout{1}
if nargout >
varargout{2}
end

end

SumOfArgs

=

2 * SumOfArgs

Suppose we call this function as follows:

la, b, c] = f(L1, 2, 3, 4)

a would be set to 10 (the sum of the input arguments), b would be set to 20, and c would
be blank since it was not assigned to in the function.

Operators

Operators and their descriptions are listed in the table below. Examples for each operator
are also listed.

278

Genesys - Users Guide

Operator Description Example

+ Addition a+b

- Subtraction a-b

* Matrix Multiplication a*b

¥ part-by-part Matrix Multiplication a.*b

/ Matrix Right-Division a/b

./ part-by-part Division a./b

\ Matrix Left-Division a\b

A part-by-part Left-Division a.\b

A Matrix Exponentiation a N 2 (means a-
squared)

N part-by-part Exponentiation a. b

! Matrix conjugate-transpose (hermitian) |a'

S Matrix transpose (no conjugation) a.'

& part-wise Boolean And a&b

&& Boolean And a&&b

| part-wise Boolean Or alb

[Boolean Or allb

~ Boolean Not ~a

= Assignment Operator a=2

== Boolean Comparison a==>b

> Boolean Greater Than a>b

>= Boolean Greater Than or Equal a>=b

< Boolean Less Than a<b

<= Boolean Less Than or Equal a<=b

~= Boolean Not Equal a~=b

Vectors, Matrices, and Multidimensional Arrays

Mathematics Language supports vectors, matrices, and multidimensional arrays. Column
vectors are treated as Nx1 matrices, while row vectors are 1xN matrices. Vectors and
matrices can be defined inline using bracket notation, as shown below.

= [1;2;3] % a is a column vector containing the parts 1, 2, and 3
= [2.5 3 8] 5 b is a row vector containing the parts 2.5, 3, and 8
= [1, 2, 3] % c is a row vector containing 1, 2, and 3. Commas are optional

[123; 456; 789] $Mis a 3x3 matrix with the first row containing 1, 2, and 3.
= ['helpl'; 'help2'; 'help3'] $ M is a 3 by 5 character array
= ['helpl' 'help2' 'help3'] $ M is the string 'helplhelp2help3'

ZTXIX0 0w
Il

Note that semicolon denotes the end of a row, while comma separates row parts.

Indexing into Numeric Arrays

An part in an array variable is accessed with the following syntax:

matrixVariable (index1, index2, ..., indexN)

where matrixVariable is the name of the N-dimensional array.
A colon may be used to indicate every part in the dimension. If only one indexing
dimension is specified, then the array is linearly indexed, which means that the array is

279

Genesys - Users Guide
treated as a flat list (in column-wise order) and the N'th part of the list is returned.

© Note: If only one indexing dimension is specified and it is a colon, then the array is returned as a single
column vector with N parts, where N is equal to the number of parts in the array.

The following example illustrates indexing into arrays.

M=1[123; 456; 789] %$Mis a 3x3 matrix with the first row containing 1, 2, and 3.

a = M(2,1) $ a equals 4

b =M(1,:) % b is the row vector [1,2,3]

c = M(:,[1;3]) $ c is the 3x2 matrix formed by taking the columns of the 1st and 3rd columns of
all the rows [1,3; 4,6; 7,9]

d=M(:) $ dis the column vector [1;4;7;2;5;8;3;6;9]

e = M(6) % e equals 8 because it is the 6th part when M is traversed column-by column

M(1,1) = 5 % sets the value of the part in the first row and first column of M to 5

Vectors may also be used for specifying multiple parts in a dimension. The following
example illustrates this:

M=111,2,3; 4,5,6; 7,8,9]
a = MC [1; 31, [1; 2]) % a is the matrix [1,2; 7,8]

Multi-dimensional arrays are formed by combining arrays of smaller dimensions in nested
fashion using [s and semi-colons. For instance, a three dimensional array of size 3x2x2
would have two levels of []s:

M3D = [[1, 2, 3; 4, 5, 6]; [-1, -2, -3; -4, -5, -6]]

Searching Vectors and Indexing into Sweeps

© The example named Indexing Sweeps with Math Lang.wsx located in the Examples\Equations folder walks
through the material discussed in this section.

Sometimes it is useful to know at what index or indices in an array a particular value is
contained. To find what indices a vector contains a certain value or range of values, the
find function may be used. This is especially useful for indexing into sweeps to extract
desired data. The following example illustrates a simple case using the find function:

= [100; 200; 300; 400; 500; 600]

find(F == 300) % 1 equals 3

find(F >= 200 & F <= 350) % n is the vector [2, 3]
F(n) % X is the vector [200;300]

X 3 -
I

Suppose V1 is a waveform of voltages as a function of time. V1 contains data for 101
timepoints: 0 ns through 100 ns in steps of 1 ns. That is, V1 has an independent value T,
the time vector, of length 101. Therefore, V1 is a 101x1 array. The following example
shows how to extract a subset of the voltage waveform and construct a new time
independent variables corresponding to that subset:

o)

% Suppose V1 and T already exist, as described above

time_indices = find(T >= 10e-9 & T <= 20e-9); % indices where T is between 10 and 20 ns
V1 _subset = V1i(time_indices); % extract waveform between 10 and 20 ns

time_subset = T(time_indices); % ditto for the time indep

o)

setindep('V1l_subset', 'time_subset'); % now if we plot V1_subset, we see a nice x-axis

280

Genesys - Users Guide
We can use the same approach for indexing into multi-dimensional sweeps. The key is to
use the find function to extract the correct indices.

Indexed Assignments

Mathematics Language supports assigning a value or values into arrays. If you assign data
to parts outside the current dimensions of an array, the array is automatically re-sized to
accommodate the new data, while any new parts in the array are initialized to zero.

When assigning from one array to another in the form A = B, the following rules must be
obeyed:

« The number of subscripts specified for array B not including trailing 1's may not
exceed the number of dimensions of B

« The number of non-scalar subscripts specified for A is equal to the humber of non-
scalar subscripts specified for B

« The length and order of all non-scalar subscripts specified for A is equal to the length
and order of all non-scalar subscripts specified for B

The following code example illustrates various aspects of indexed assignments.
Initially the variable x does not exist.:

x(2,3) = 5; % x 1is created to be a 2x3 matrix with the entry at (2,3) equal to 5 and the other
parts equal to zero so x is [0, 0, O0; 0, 0, 5]

x(:,2) = [11; 22] % x is now [0, 11, 0; 0, 22, 5]

x(1, [1 3]) = [100 200] % x is now [100, 11, 200; 0, 22, 5]

x(1:6) = 1:6 % x is now equal to [1 3 5; 2 4 6]

x(1,1,2) = 23 % now x is a 2x3x2 array with x(1,1,2) equal to 23

Range Vectors

A range defines a row vector in either of the following two ways:

start:stop

start:stepsize:stop

where start, stepsize, and stop are expressions. If stepsize is left out, it is assumed to be
1. A range creates a row vector with the first part value being equal to start , each
successive part being stepsize greater than the previous part, until stop is reached.

Ranges may also be used to index into arrays and extract desired sub-arrays. The
following example illustrates the use of ranges.

|
[N
;;
o
oe

X is the row vector [1 2 3 45 6 7 8 9 10]
1:2:10 $ y is the row vector [1 3 5 7 9]

O o0 =< X
|

=[123; 456; 789] $Mis a 3x3 matrix with the first row containing 1, 2, and 3.
= M(1:2, 2:3) % a is the 2x2 matrix: [2,3; 5,60]
= M(1:2:3, :) % b is the 2x3 matrix: [1,2,3; 7,8,9]

Mathematical Operations on Arrays

Mathematical operations on arrays are supported. In general, any scalar operation or
function may be performed on an array, and the operation will be performed on an part-
by-part basis, producing a resulting array that has the same dimensions as the original
array. The following example illustrates this:

281

Genesys - Users Guide

= [1,2; 3,4]

= [1,1; 1,1]

X +y % z is the matrix [2 3; 4 5]

=z -1 % z is now the matrix [1 2; 3 4]

= sin(z) % w is the matrix [sin(1), sin(2); sin(3),sin(4)]

= N N < X
Il

Multiplication is a special-case operator. When using the multiplication operator on a
matrix or vector, matrix-multiplication is assumed. To do an part-by-part multiplication,
the .* operator is used. Here is an example:

[1 2; 3 4]

= [1;1]

X * y %z is the vector [3; 7]

x .* [1 0;0 1] $ w is the same matrix as x

= N < X
|

To find out the dimensions of an array, use the size function. To find out how many parts
are in an array, use the /ength function:

x =1[123; 45 6]

[}

x_dims = size(x) % x_dims is the vector [2 3]

Q

num_parts = length(x) % num_parts is 6

Cell Arrays

Cell arrays are arrays that support each part having a differing data type. Each part in a
cell array is called a cell. As an example, you may have a 1x3 cell array in which the first
cell is a number, the second cell is a character array, and the third cell is a structure.
Furthermore, parts of cell arrays may be cell arrays themselves. Cell arrays, just like
numeric arrays, may have any number of dimensions. Cell array vectors and matrices
may be defined inline as shown here:

X = { [1 2; 3 4] "abc' 3j } $ X is a 1x3 cell array containing a 2x2 real matrix, a 1x3 character
array, and a complex scalar
Y = { {1 2}; {1 2; 34} } %Y is a 2x1 cell array containing a 1x2 cell array and a 2x2 cell array

Indexing into Cell Arrays

There are two ways to index into a cell array, described here:

M{indices} % returns the contents of the cell at the index specified by indices
M(indices) % returns the cell or cells at the index or indices specified by indices

Numeric arrays contained in cell arrays may be indexed inline as well:

M{2,3}(6) % returns 6th part of the array contained in the cell array M at location (2,3)
M{2,3}{2}(6) % returns 6th part of the array contained in the 2nd part of the cell array located
in the cell array M at location (2,3)

The following example illustrates indexing into cell arrays.

M= {1 '"abcd' [2] 565 3 j] {6 7} } ¥ M is now a 1x4 cell array
a = M{1} % a equals 1

282

Genesys - Users Guide
= M{2} % b equals the 1x4 character array 'abcd'
= M(2) % ¢ equals a 1x1 cell array that contains 1 part: a 1x4 character array 'abcd'
M{3}(1,1) % d equals 2j
M{4} % e equals the cell array {6 7}

®© Q O T

Structures

A structure is a data type with named fields. Each field has a name and a value. The value
may be of any type, including a cell array or another structure. Structure arrays of any
number of dimensions are supported. In a structure array, all structures in the array have
the same field names.

Structures may be defined inline as shown here:

x.fieldl = 23; % x is a structure with a field named "fieldl1l" with value 23
x.hello = {1 2}; % x now has another field named "hello" whose value is a 1x2 cell array

x(3).hello = 1; % x is now a 1x3 structure array with fields "fieldl1" and "hello". The third
part's hello field has value 1.

You may use the fieldnames function to determine what field names are in a structure.
fieldnames returns a cell array of strings.

Structures may also be built using the struct function.

Network Commmunication and Instrument Control

The Math Language includes TCP/IP communication capabilities. This enables control of
instruments.

When you create an equation set to do communication you will almost always want it to
be not Auto-Calc. It should only calculate when specifically requested, otherwise every
time an input variable changes it will rerun. It will also run on load. Turn off auto-calc by
clicking the Check-Calculator tool button when viewing the equation set.

TCP/IP communication is done via the tcpip class, which is constructed using the tcpip
function. A simple example follows (waitfor is a wait-for-character routine, PSAip contains
the IP address string of an instrument, while PSASpciPort contains the port humber to use
for communications):

- set up the tcpip pipe to the instrument

)

= tcpip(PSAip, PSASpciPort) % build tcpip object using the PSA ip address and spci port
.Terminator = 'CR/LF'; % set Terminator field

.InputBufferSize = 100000; % use a big buffer

- open the port

fopen(t)

% - set real data format
fporintf(t, 'form:data real,64')
% - swap byte order

forintf(t, 'form:border swap')

o)

% - read the trace

forintf(t, 'trace? tracel') % tell it to send the first trace
a3 = waitfor(t, '"#') $ the # is followed by some count chars
% - get the # of count bytes

aBytecnt = fread(t, 1, 'uchar=>ushort')

tTotal = str2num(aBytecnt)

$ - if valid # count bytes, read them
if tTotal > 0 && tTotal < 7 $ we will never have more than 6 digits of stuff

o ~+ ~+ + o°

283

Genesys - Users Guide

o)

ascCount = fread(t, tTotal, 'uchar=>ushort'); % read n count bytes

o)

nCount = str2num(ascCount); % convert to numeric

nCount = nCount / 8; % convert to doubles at 8 bytes each
else

nCount = 0;

end

% - finally read the actual data
if nCount > 0

dInput = fread(t, nCount, 'double') % get nCount data values

setvariable('OutData', 'aOut', dInput) % save it in our dataset
end

% - close t so we rerun cleanly

fclose(t)

Analyzing the previous example

We start by creating a tcpip class object connected to our PSA device. PSAip=='127.0.0.1"
or some valid ip address as a char array. PSAspciPort is an integer port number. Once the
object is built, we set the terminator (for telnet in this case) and the input buffer size
(plenty to avoid overflow).

We do fopen(t) which opens the socket connection.
Once connected you can use

fread - read nnn values from the data stream
fwrite - write nnn values to the data stream

fprintf - write a string to the data stream

fscanf - read a string from the data stream

When finished, close the socket by using fclose. If you are totally done with the socket you
can use the Math Language clear function to remove the class object entirely.

Hierarchy in Equations

Equations obey hierarchy as defined by their place in the Workspace Tree. Note that this is
true for Equation objects as well as equations that are embedded inside a Design object
(ie. an Equation tab in a Design).

Workspace Tree = X [Equation BottomEquation contains:
'}
Y- B B @
(38 Equations x=3
o4 Top if x==3 then
= y = 4*x + cos(z)
i Mext else
=<3 Bottam y = 4%x + sin(z)

32 BotkomEquations | |endif
E“Z MextEquations

[ii= 5chl

§f TapEquations

S:'J Mokes

In the example above, the value of z will be coming from another equation set
(NextEquations or TopEquations) to execute without errors. The Equations engines look up
the workspace hierarchy until the value of z is found, otherwise an error is reported.

In other words, in this example, if z is defined in NextEquations, then z will come from

284

Genesys - Users Guide
there. If NextEquations does not define z then the Equations engine looks up another
folder level to TopEquations for z .\

Equations on the same level of hierarchy should all be visible to each other.

Design-time vs. Run-time hierarchy

The above discussion of hierarchy is called design-time hierarchy, because while you are
not simulating, the workspace tree defines the scoping of variables. However, when you
run a simulation, the situation can be different.

Suppose, for example, that we have 2 designs as shown in the below picture. Both
designs have an Equation tab (and possibly a Parameters tab, which is equivalent, since
Parameters get passed into the design's Equations at run-time).

Ny B B By @
| Default

=43 Models

= SubMNetwork (Model)

{:} Toplevel (Schematic)

In the situation shown in the above picture, when you are NOT running a simulation (ie.
you are in design-time), the design called SubNetwork will be able to see variables that
are defined in the Equations tab of the design called TopLevel, simply because
SubNetwork is located in a folder beneath the level of hierarchy that TopLevel is in.
However, suppose that, as shown, SubNetwork defines a subnetwork model. Also suppose
that the schematic in TopLevel defines an instance of SubNetwork (ie. it has a part that
references the SubNetwork model). When you run a simulation (ie. during run-time), a
Model hierarchy is defined in which SubNetwork is a child of TopLevel, since an instance of
a SubNetwork model is instantiated inside of TopLevel. Because of this, SubNetwork can
see all of TopLevel's variables. This is what makes the passing of parameters from
TopLevel to SubNetwork possible.

It is important to note that when you are editing a design (ie. you are in design-time), the
values of parameters you see in your design are those calculated using the design-time
hierarchy. For example, if you define a Design that contains Parameters, and you use one
of those parameters inside your Design, you will see the value of that parameter
correspond to the "Default" value of the Parameter that you defined in the Parameters
tab. This is, of course, not necessarily the value that will be seen at run-time when you
run a simulation, since that depends on the run-time hierarchy defined by the topology of
the network you are simulating.

Automatic Calculation

If an Equation object is set to Auto-Calculate, the equations are always kept up to date
whenever a value is requested from them. This is desirable when the equation block
defines variables that you use in part parameters on a schematic: when you change these
values, you want the part parameters that use them to update. However, sometimes
this is undesirable. If, for example, you are using an Equation block to import data from
a file or to transfer data to and from an instrument, you do not want the Equations to
calculate unless you specifically tell them to. In these cases, you should disable Auto-
Calculate. The Auto-Calculate toolbar button located on the Equation Toolbar (users)
toggles automatic calculation on and off.

285

Genesys - Users Guide

Equation

© There are some cases where you probably want to DISABLE automatic recalculation of an equation block:
equations which do file I/O or TCP/IP communications, equations which run simulations via the runanalysis
function, equations that do time-consuming processing.

If you disable Automatic Calculation , the only way to recalculate the equation is manually
with the calculate button, or with the F5 or Ctrl+G keyboard shortcuts. Equations that
have Automatic Calculation turned off will not update during simulations. As mentioned
before, you would normally disable Automatic Calculation for Math Language equations
that control hardware, for example, so the hardware doesn't get re-controlled every time
a variable changes.

© 1f you disable Auto-Calculate in an equation that is a function definition, the function won't exist until you
manually calculate the equation.

Debugging Equations

A fully featured and intuitive debugger is built-in to the equation editing user interface.

Using Breakpoints and Single-Stepping

You can use the Equation Toolbar (users) or its associated keyboard shortcuts in the
equation script editor to set breakpoints and to step through your code one line at a time.
Breakpoints can be set both in equations contained in the workspace and in a model's
equations (eg. sub-circuits). In all cases, evaluation of equations will be halted when a
breakpoint is hit. The user may then execute statements line by line using single-stepping,
abort execution, or continue execution until the next breakpoint is hit.

« Workspace Equations: to run the equations click the Go button in the Equation
Toolbar (users). If a workspace equation is set to Auto-Calculate, they will calculate
whenever something they are dependent on triggers a calculation. If any breakpoints
are set, the evaluation of the equations is halted and the user interface is brought to
the front, clearly marking what line of code the equation processor is currently halted
at.

It is important to keep in mind that an equation block may be calculated may times due to
various factors, such as a simulator changing a variable. The evaluation of the equations
will halt whenever the breakpoint is hit. Typical scenarios include:

o Equations in sub-circuit models: the breakpoint will be hit once per run of the
simulator except when the equation is dependent on the simulator independent
variable. For example, in the linear simulator, frequency dependent equations will
calculate at each frequency. For CAYENNE (time domain), time dependent equations
will calculate at each T.

« Equations in a Math Language block: the breakpoint will be hit at each 'tic' of the
simulator as data is delivered to the block.

Setting Breakpoints

Click the Breakpoint Margin at the line you wish to set a breakpoint at in the script editor

286

Genesys - Users Guide
window to toggle a breakpoint on/off. A red dot will appear when the breakpoint is on. The
Breakpoint margin is located between the Line Number and Folding margins. You may also
set a breakpoint at the current line by using the Ctrl+B keyboard shortcut or clicking the
Add/Remove Breakpoint toolbar button.

When the equation processor hits a breakpoint, the current line it is halted at will display a
yellow arrow P in the breakpoint margin as can be seen in the picture below. At this point
you may single-step, step-into functions, continue, or abort execution. If you step-into a
function, a green arrow P marks the line that the function was called from.

blo
] Units: s Display

1 = function y=£(x)
Wariahle 2= Aif w» 3
nargin=1 3 ¥ o= XME:
nargaut=1 4 = else
x=2 5 T
y=[Empty] 5] end

7

S Equationi
Urits:|Ize Display 5 v = 5:

W & = while ¥ > 3
=3 7 % Poxo=x4+ 1
q=5] vy =¥ - 1;
W=] end
w=32 10 =elzae
w=3 11 ¥ = 3:
=3 1z end

13

14 b g=fi2)

15 =for i = l:y

16 z = 1i;

17 w o= 2%z

Using Debug Print functions

The debug print functions shown below produce lines of debug text in the Equation Debug
docking window.

Please note that debug lines will only appear in the window after the simulator runs, due
to current multi-threading locks.

Equation Debug docking window

The Equation Debug docking window can be shown/hidden using the Edit/View/Docking
Windows/Equation Debug menu path or using the show/hide dockers button on the main
toolbar. This window has a list of debug lines that your equations generate using functions
described below. A sample Equation Debug Window is shown here.

Equation Debug

Equation Line Message

Equationi 1 Entered Function
Equationi z Value of x = Array[1x5] of bype 8-Byte Real. ..

287

Genesys - Users Guide

Debug Functions

There are two functions available (in both Engineering Language and Mathematics
Language) for writing to the Equation Debug docking window. Both functions add lines to
the Equation Debug Docking Window so you can trace progress as the program runs. The
code samples are written in Mathematics Language.

1.

dbg_print('Message')

dbg_print('Message', 'Equation')

dbg_print('Message', 'Equation', Line)

prints the Message in the Equation Debug window. The Equation and Line parameters
may be omitted, in which case the equation engine will attempt to auto-detect which
equation set and line number called the function.

dbg_showvar('Message', Variable)

prints Message=VariableValue in formatted output

Tips for Effective Equation Writing

As a program becomes more complex, it becomes necessary to carefully debug and test
the results. Breakpoints and Debug-Print functions can be very helpful, as has already
been discussed. In general, however, there are several things one should get accustomed
to doing when writing equations. Below are some tips to follow when an equation is
causing difficulty:

1. Make sure the input and output equations are in separate blocks

It is a bad idea to have something like:

c = ?4 ' value of some capacitor in the schematic

s21 = Linearl_Data.S[2,1] ' s21 from analyzing the schematic

The "c" is an input to a schematic; it MUST exist before Linearl_Data is ever created,
so this equation block will not compile reliably. Any equation statements that call
variables from analysis datasets should be in a separate block.

Let each line compile cleanly before typing more text

Avoid the temptation to write a long set of statements before verifying that it works;
type one line at a time and check that there are no error messages, and that the
variables are showing up in the left side of the equation editor.

* Qutput_Equations

E

Units: | Use Display v
count = numcols (Sweepl Data.Cap) "call a function
Variable Step5ize = Sweepl DataTStepjlj 'get the step =ize
_B angles = Swept Array [3] -
CapArray = Array [9] CaplArray = array(l,count) ' allocate arrays based
ount=4 angles = array|(l,count)
=3
j@stepsizla:lug for k = 1 to count
angles[1l,k] = ang(Sweepl Data.S5[k*StepSize-Step
CaplArray[l,k] = Sweepl Data.Caplk]*®le-12 ' conv

next

Debugger's Best Friend

CaphArray = transpose (CaphArray) 'get the data in co .,
e — »
Before writing a large loop or in-line vector statement, check the boundary
values

Instead of writing a large loop then wondering why there are out of bounds errors or
wrong calculations, first type something like:

testA = myVector[firstIndex]

testB = myVector[lastIndex]

288

Genesys - Users Guide

The values will display in the Variable view; this way you first verify that the initial
and final values are as expected; then you can let the loop or vector operation run
with more confidence.

4. Don't try to pack everything into one line of code
It is very difficult to find the problem when there are too many calculations packed
into a one line statement. By breaking up a line into several variables and lines you
give yourself the chance to debug and find problems, rather than just look at a huge
line that doesn't work as intended.

5. Check dimensions of variables carefully
Always pay attention to the size and dimension of variables being used; a common
pitfall is to use incorrect multiplication or division of vectors and thus accidentally
create wrong-sized matrices or other unwanted results.
> Outpus Equation CEE

2 = u i L bt _Data.5[1,1] Lirmarl 3chl Daca.ZPCRI[L)})
L [= 12/ (2*PI*Linenzl_Schi_Date.F})<leS

Careless use of the "/" operator causes a 1601x1601 matrix to be created; the
variables view alerts the user of the problem, so part-wise division can be used
instead:

Z = im(zim (Lin=ar]l Scha Data.5[1,1];Llinenr] SohZ Data.ZPO0BLI[L1]}|
Verisdle v = {Z.7{2*PI*Linaarl dechd Data.Fj}viad

© Note that the functions numcols(myMatrix) and numrows(myMatrix) can be used to find the
dimensions of a variable. For matrix operations, the number of columns of a left-hand operator
should equal the number of rows of a right-hand operator, while for part-wise operations the
dimensions should be identical.

6. Use the Command Window to output or change variable values
See Equations User Interface for more information about the Command Window.

7. Use the online help
The online help for equations is extensive. You can select a keyword in the equation
editor and press F1 for context help on that keyword. General equation help is in the
User's Guide manual Using Equations section.

Equations User Interface

The following image shows a typical Equations window:

289

Genesys - Users Guide
82 Equation] |

Unitz:Use Display 1 " this window is used for 3 purposes:
Lip to date 2 ' 1) Scripts leg. Post-Processing, Inputs)
W 3 ' 2) Defining Functions
®=3 4 ' 3) Defining Equations for a Custom Model
y=3 5

] x=3

? y=24%

4 ¥

=

< >

The Equations window has three subwindows:
« The Variable Viewer, located on the left.
o The Script Editor, located on the upper right.
« The Command Window, located on the lower right.

The Equations window also has an associated toolbar, see Equation Toolbar (users).

i] Among the simplest application of equations is to define a variable in the Script Editor area (upper right),
such as myvar=123 (then press "Go")
Then myvar can be entered into component properties on the schematic, to drive component values.
Entering myvar=?123 (ie. adding the question mark) makes the value myvar tunable in the tune window.
After pressing "Go", the variable value should appear in the Variable Viewer (left side). If nothing appears
in the Variable Viewer after pressing "Go", this usually indicates some problem with equation syntax.
Typically the error messages window will provide some clues.

Variable Viewer

The Variable Viewer displays any variables that currently exist in the Equations object. If
the variable is a scalar, the value is displayed. If the variable is an array, the type and
dimensions of the array are displayed.

If you right-click on any variable displayed in the Variable Viewer, you will be presented
with a menu containing options to plot the variable on a graph or display it in a table. If
you wish to see the variable's value without creating a table, you can do so in the
Command Window, as discussed below.

The following buttons are located at the top of the Variable Viewer window: Equation
Language, Units, and Go.

The Equation Language button allows you to set the language of the Equations to be
defined, as shown here:

290

Genesys - Users Guide
e Equation

[T Faimenl

Enginesting Language

The Units button allows you to define how the values of the variables shown in the
variable list are to be interpreted when used elsewhere, such as part-parameters. If the
Units are set to "Use MKS", then the value of the variables in this Equations block will be
treated as MKS values. If, on the other hand, the Units are set to "Use Display", then the
units will be defined where the value is actually used.

&8 Equation1

Use MKS

"Use Display" means to interpret the unit of measure of a parameter as a scale factor. So,
if an equation variable X=20 is used in an Inductor set to nH in Use MKS the inductor
value is 20H (MKS) in Use Display the inductor value is 20nH. "Use MKS" is very important
for Model portability and units portability.

You will almost always want to use "Use Display", since you will usually want a unit to be
attached wherever the variable is used. "Use MKS" may be used for model equations to
ensure portability of models regardless of an end user's unit preferences.

The Go button provides an easy way to force execution of the equations. Its function is
equivalent to the Go button on the Equation Toolbar (users).

© In Engineering Language, the variable block is always cleared before the equations are run when you hit
the Go button. This is not true in Math Language. You must add the clear statement as the first line in
your Math Language equations to achieve this same behavior.

Script Editor

The Script Editor is used to type in a sets of equation statements to be executed. More
specifically, the Script Editor window is used to:

« Post-Process data, or define variables as inputs to be used elsewhere.
o Create user-defined functions.
« Define equations inside a Model.

The Script Editor includes Find and Replace support, accessible from the Edit menu or with
the Ctrl+F or Ctrl+H keys, respectively.

*® New If you want context sensitive help on a function, select the keyword and press F1
in the Script Editor.

*® New Use Ctrl_MouseWheel to zoom in and out on the equations Script Editor.

Command Window

The Command Window is used to execute statements line-by-line. It interacts with the
291

Genesys - Users Guide
same variables that are visible to the Script Editor. It is a useful debugging tool since the
contents of a variable can be displayed here.

If an assignment statement does not end in a semicolon, the results of that assignment
are outputted in the Command Window, as can be seen in the above figure. If an
assignment statement does end in a semicolon, then the dump of the contents of the
result is suppressed.

Any errors or warnings caused by executing a line in the Command Window are outputted
to the Command Window.

292

Genesys - Users Guide

Examining Datasets

Datasets are containers which hold data, such as the results of a simulation or a table of
input. The results are stored in Variables which can be viewed in tabular form within the
dataset, plotted on a graph, displayed in an output Table, etc. Examine a dataset by
opening it with a double-click. You can also add new variables to a dataset (for sweeping
or just for analizing the data in greater detail).

Open the Linear Simulation Template (via the Start Page). On Linearl_Data, click the
variable "S" on the left-side of the window, to see its values. Hovering the mouse over a
variable pops up some info, which varies according to the measurement.

[Datai
Yariable Index F (MHz) S11(dB) S12(dB) S21(dB) S22(dB) ~

Cs 1 100 -6455 1114 1114 G455
F 2 100 5043 1275 -1275 5943
S 3 118 5499 1436 -1438 5499
ZRODT 4 127 5113 16 16 5113
5 5 136 4775 1759 -1759 4775
Units: Relative " dB | 5 145 4479 1915 1915 4479
Indep: F 7 154 422 2065 2065 @ 422
8 163 -3093 22090 -27209 -3993
g 172 3795 2346 2346 -A705

10 181 3621 2475 2475 36X
11 180 3469 -2585 2595 3469
12 199 3338 2706 2706 3338
13 208 3224 2806 2806 3224

14 217 3128 2896 2896 3128
17 IR ANAT QT4 QT4 ANAT

Variable:3
Complex Array[101,2,2]

In the display above the left-hand pane shows all of the result variables (including F, the
frequency or independent variable). The right-hand pane shows whatever piece of data
you have selected in the left pane. The upper left-corner box in the grid is the units of
measure (MHz down and dB for the values). The lower right pane (which is usually
collapsed - drag the divider bar upwards to see it) displays a summary of the variable
information.

Each type of analysis creates a different dataset with differing variables which are
determined by the Analysis. Often, the variable is directly associated with a particular
measurement. Linear analysis (as seen above) creates data with F (frequency), S, ZPORT
(port impedance) and CS (noise correlation matrix).

Each dataset contains variables, which can be matrices, vectors, or scalars. These
variables are either automatically created by simulation runs or manually by the user.
Note that when a dataset is created by a simulation, the data within that dataset is always
in MKS. You may display the data in a unit of your choice, but the actual data values are
MKS values.

Click S on the left to show the tabular display of values in the grid on the top-right. It
shows that the frequencies analyzed were 100, 109, 118, ..., 1000 MHz. The S-
Parameters are shown in columns. The single grid-cell (top left corner of the grid) which
says MHz:dB shows that the units for Frequency are MHz and the data values are shown

293

Genesys - Users Guide
in dB. The display on the bottom-right (which is usually collapsed) shows the type and
size of the clicked data.

In addition to seeing the simulation results, Datasets can have short equations to help you
analyze and diagnose issues with your circuits. For details, see Creating Variables (users).

Contents

Creating Datasets (users)
Creating Variables (users)
Using Dataset Variables (users)
Importing Variables (users)

e Variable Properties (users)

Creating Datasets
Datasets are usually created automatically when Analyses run. Some analyses

(particularly SPECTRASYS) can create more than one dataset. Within the dataset are the
fundamental results — measurements created by the simulation.

In addition, a blank dataset can be created manually from the workspace tree (in the
docking window) via the "new item" button (although that is rarely neccesary).

The actual data within a dataset is determined the Analyses settings. CAYENNE and
HARBEC and SPECTRASYS all let you limit which data is created during the simulation run.
This can reduce the size of datasets significantly and also reduce their complexity.

To examine a dataset, open it by double-clicking it in the workspace tree.

Here's a minimal SPECTRASYS dataset:

=4 System1_Data

Variable)]

ElemList 1 System Analysis | System 15272009 301 P
DMame

IDMo

LogQutput="System Analysis. .
RFPwrin

If we rerun SPECTRASYS with all of the output options enabled, we get this:

294

Genesys - Users Guide

[System1_Data |.-_| |.E| Pgl
Variable A (MH F2 D2 PZ| &
ElemList 1 0 5 -113826
F2 2 400 5 -113.826
F3 3 0 11 S36.171
D2 4 01 11 -36.318
D3 5 0z 1 -36.729
IDiame B 0.3 M -37.35
Do 7 04 11 -38.155
LogOutput="Systermn Analysic g 05 11 -39.181
P2 9 06 1 -40. 493
P3 10 07 11 42123
RFPuwirln 11 08 11 -44 025
W2 e 12 09 1 -46.09
{_ | ? 179 1 11 Ag ana ¥

Now we can't even fit the entire dataset contents in the window.

Although more complex and intimidating there are many cases where more data is better
than less. However, file storage requirements go way up with this sort of data.

Creating Variables

Variable Properties Dialog Box

For complete description of Variable Properties dialog box, see Variable Properties
(users)

Why add variables to a dataset?

1. Add a variable to examine more closely a piece of data (such as ang(S[2,1]) to
examine S21's angle). Don't forget that all measurement data is fundamentally in
MKS units.

2. Add a variable to propagate it during a sweep (enable the propagate option in the
sweep and it will sweep the variable along with the rest of the measurement data).

3. Add a variable to use in an optimization.

How to add a variable to a dataset

1. Open Linear Simulation Template / Linearl_Data, as described above.
2. Right-click the white area on the left and select Add New Variable...

Add Mew Yariable, ..
Snapshot. ..

Expoart...
Import Mariable, ..

Dataset Properties, ..

3. Add a variable named Varl.

4. Type ang(S[2,1]) for the formula.

5. Leave the Independent Variable field blank; it will be automatically filled in based on
the indep associated with the "S" variable.

Optionally, vyou can choose a display option for the dataset view of the variable. If the
295

Genesys - Users Guide

6.
variable type is integer or floating point, select a display unit; if it's complex, select a
complex number formatting option.
7. Click OK.
Variable Properties [g|
MName: |\.-'ar1 |
Formula: | ang(s[z,11) |
Independent Yariable: | LineariDataliEqnstvarBlockiF |
Description: | angle of 521
Display Propetties
Unit of Measure: |(deg) v|
[o] 4 l [Cancel] [Help]
8. To get...

* Linear1 _Data

War1
iHcs 04 B4EIE
THF oigs| gean
s 07| ez
S var | =[ang(5(2, 11)] — Ba.455
TRzPOAT 0,455 £4.945
053s| et
0,694 56512
u7E| sium
oEsz| 45847
0,951 4,955
1.0 a4 25
ii88| 41.T4s
1288| 39461
1367 745
1488| 355
1.565 33.793
1.684 32214 v
~
Variable:Varil
Real Array[101]
b

9. For most formulas, the Unit of Measure and Independent Variable will fill themselves
in once the formula is parsed.

How to delete a variable from a dataset

e Right-click the variable and select Delete
Importing Variables

Variables can be imported to the dataset from any text file. Access this feature by right-
clicking in the variable block of the data set and choosing "Import Variable".

296

Import Variable

Genesys - Users Guide

X

Filename: |

-]

Variable Mame: |

Complex Variable Format
(*) Real (default)
() Complex (Re + Im)
() Complex (Mag + Ang)

[]First column is independent data

Cancel

Browse and select a file. Enable "First Column is Independent Data" if the first column of
the data is independent data (swept). Name the variable in the Variable Name field.

The data should be formatted as a list or matrix of numbers. Semicolons (" ; ") and
spaces (" ") are used to indicate breaks between values Other characters are treated as
zeroes. Begin the data with !'Units unitindep unitdep to define a unit of measure for the
data. Other rows that begin with a ! are ignored as comments.

Example (Choose Real, check First column as independent)

I GenesysYariable.txt -... |Z||§|fg|
File Edit Format Wiew Help

lunits MHz dBem
1001 1.5
200;2 3
300;2.3:4
400;2.735.5
500 4.8 &
00 7.2 12

Variable

Add Mew Variable. ..

Graph 4

Export to XML...

Import Variable. ..

Dataset Properties. ..

297

Genesys - Users Guide

-, . |

Yariable MHz:dBm Respunse[1]| Respunse[2]|
FalindResponse 100 1 15
ijRespunse 200 2 3

300 23 4
400 27 R
500 4 & 9
600 72 12

Importing Complex Variables

Complex data can be imported in several formats. A typical usage is shown below, where
the independent vector is frequency (MHz) and the dependent is S21 in DB and ANG
format. The same conventions apply here as for reals; spaces, tabs, and semicolons define
breaks between entries.

I sdataTest.txt - Notepad |:] |E| r')__(|

File Edit Format WView Help

! Eagleware GENESYS 2004 ~

! complexExportTesting:Tablel (Filterl_analysis.Filterl_schematic) =

! Mmarch 27, 2006 09:07:57

I

!_Freq_(MHz) DB[521] ANG[521]

lUnits MHz dB

8&5 -21.63 -59.213

865. 25 -21.097 -63.604

865.5 -20.572 -68.062

B65.75 -20.056 -72.584

Bab -19.549 -77.167

866.25 —19:7053 -81.805

866.5 -18. 567 -86.494

B66.75 -18.091 -91.228

Bav -17.627 -96.002 -

Import Variable |
Filename: | C:\sdataTest. txt |B

Variable Mame: | SomeComplexData |

Complex Variable Format
() Real (default) First column is independent data
() Complex (Re + Im)
(%) Complex (Mag + Ang) [

oK] l Cancel

298

Genesys - Users Guide

EEX

Variable MHz:dB| SomeComplexDatal1]|
[FindsomeComplexData 865 -21.62 <-59.213°
[SomeComplexData 865,25 21,097 <-63.604°

B865.5 -20.572 = 58.062°
B865.75 -20.056 =-72 584°
866 -19.549 <-77.167°
866.25 -18.053 =-81.805°
B866.5 -18.5687 «-25.404°
B866.75 -18.091 <-91.228°
867 -17.827 =-86.002°
867 .25 AT ATI <-100.81°
B67.5 -16.731 <-105.648°
B867.75 -16.299 =-110.508°
868 -15.678 =-115.387"
B868.25 -15. 467 <-120.28°
868.5 -15.066 =-125.182°
B868.75 -14.6753 =-130.081°
869 -14.292 =-135.002°
B869.25 -13.918 <-139.914°
869.5 -13.851 =-144.8258° b

Example using rectangular coordinates (Re + Im)

I testData.txt - Notepad |._ E'E'
File Edit Format WView Help

1p -24
5-210

Variable Re{:‘tangular[1]| Re{:‘tangular[21|
FHindrectangular 1 143 T
EERecEngular 2 52 1
Notes

1. Complex data should come in pairs of columns; two parts are needed to specify a
point in the 1D complex space. A warning is given if there is an odd number of

columns (excluding the independent vector).

2. To use the dB scale for complex numbers, the unit should be specified as dB;
otherwise the absolute scale is used based on whatever unit is defined. For example,
input impedance should have a unit of "Ohm" which can also potentially have a

phase; thus it cannot be in Ohms and dB simultaneously.

3. Typical units: dB, dBm, dB10, dB20, Abs, Ohms, V, A, mil, pF, nH
4, The independent variable must be real (this will typically correspond to time or

frequency, both of which are real quantities).
Using Dataset Variables

You can create variables and analyses will create variables when they run.

To graph a Dataset variable

299

Genesys - Users Guide
« Right-click the variable and see creating a graph from a dataset (users).

To duplicate a Dataset variable

« Right-click the variable and select Duplicate

To edit a Dataset variable

e You can not edit Measurement variables (variables created during a simulation run).
You can edit variables you create. Double-click the variable or right-click it and select
Properties from the menu.

To delete a Dataset variable

e You should not delete Measurement variables (variables created during a simulation
run). You may delete variables you create. Right-click it and select Delete from the
menu.

To view a Dataset variable

« If the variable is an array, click it and the right pane will fill with the array values. If
the variable is a scalar the value should be shown in the list on the left.

To export a Dataset variable

» Right-click the variable and select Export. This will export it into an XML data form.

Using Datasets

Datasets are extremely useful for comparing different circuit configurations. You can run a
simulation, save the data, then change some parameters, rerun the simulation and
compare the two sets of data easily.

Normally, an analysis has the dataset name stored within it. You might set that name to a
formula based on the parameters, but it's simpler to just Snapshot or Checkpoint the
dataset.

To Checkpoint a Dataset

Right-click the dataset and select Snapshot. Another dataset named mydata_Snap is
created. This Snap dataset contains the numerical data from the first dataset (all
formulas are parsed and converted to data and the formula text is stored in the variable
description).

300

Genesys - Users Guide

73] Second=9.999=[100*magVPORT[3, ..
I VeORT
T PoRT

To compare PPORT[2] for the two datasets just enter two measurements in a graph or
table like this:

HB1_Data_P2 Properties

General

Graph Properties

Default Dataset or Equations: |HBI_DaI:a

Measurement Label (Optional) 0On Right Hide ? (
Ao YPORTZD O [] |-
db(HB1 _Data_Snap VPORT2]) F ¥ I

The HB1_Data_Snap.VPORT entry says to use the VPORT variable from HB1_Data_Snap.

Note we use db() here because the data in the dataset is in MKS and we want dBV for
display.

301

Genesys - Users Guide

Variable Properties

This window defines a variable and its display properties:

]

& variable Properties
Marne: | Zport_2
Eatriula: | ZPORT*2
Independent Yariable: | Linear\DatalEgnsivarBlockiF

Description:

Display Propetties
Complex Murmber Format: | Real+Imaginary b

Unit of Measure; |{Ohm) b

[K l ’ Cancel] [Help

« Name - The variable name.

o The name must start with a letter and contain only letters, numbers, and/or the
underscore "_" character.

o Names are case-sensitive. (V1 is a different variable than v1.)

« Formula - The equation which defines the variable's value.

o The Engineering Language or Math Language equation may refer to other
variables, functions, define vectors, matrices, etc. Please see the appropriate
section in the User's Guide for details on using Equations.

« Independant Variable - One or more associated variables, which define related
data, such as the X-Axis variable (which is the first indep).

o If there is more than one independant variable, each indep should be separated
by a vertical-bar character "|".

« Description - The discription of the variable, usage notes, etc.
« Complext Format - If the value is one or more complex numbers, the values can be
displayed in several formats:

o Default - Allows Genesys to automatically determine the most appropriate
format to use.

o Real + Imaginary - Displays the values using real and imaginary values.

o Magnitude + Angle - Displays the values using magnitude and angle. The
magnitude is displayed using the units specified in the "Display Magnitude In"
dropdown. The angle is displayed using the global Angle units, as specified in
Tools / Options.

o Magnitude Only - Only the magnitude is displayed.

« Units Of Measure - The units used for displaying the variable in the DataSet view
window.

o Display Magnitude In - If the value is a complex number and the Complex Format
includes magnitude, this specifies the units to use (for magnitude).

302

Genesys - Users Guide

Graphs

Graphs display data from datasets (users) or equations (users), which are usually
measurement data derived from the analysis of a design. For more information on menu
items, refer Graph Menu (users) or Graph Toolbar (users) in the Appendix sections.

Contents

e Types of Graphs (users)
Creating Graphs (users)

Graph Properties (users)

Graph Series Wizard (users)
Using Markers on Graphs (users)
Annotating Graphs (users)
Zooming Graphs (users)
Measurement Wizard (users)

Types of Graphs

Genesys has several types of graphs, including:

 Rectangular Graphs - a Cartesian coordinate plot.

« 3D Graphs - can display a measurement versus frequency versus a parameter
sweep.

Antenna Plots - displays Far Field measurements.

Polar Charts - displays complex data, such as S-Parameters or impedances.
Smith Charts - similar to a Polar Chart, displays impedance and/or admittance.

In addition, data can be displayed in a spreadsheet-style Table (users) view. These
differing output options allow you to display data in a variety of formats.

Rectangular Graphs

A rectangular graph is a Cartesian coordinate plot. You can use a rectangular graph to
display two-dimensional data versus frequency (for example: magnitude or phase of a
complex measurement, but not both).

In the figure below, the S-parameter insertion loss and return loss of a bandpass filter are
plotted. There are 3 types of markers shown: a peak marker, a regular (fixed frequency)
marker, and a valley marker. You can add to any rectangular graph. Regular markers can
also be placed on circular charts.

303

Genesys - Users Guide

> BPF_Cheby S M=E3

RES

B | 21996 25MHz
-12 -0.03748
f\ fﬁ.\ 21091 250MHe
g f 158

- -2 S55dB
i t ALLEY
1 -24

52,1 (dE)
o
Moy
]
=
(=[]

- J -42
My
! 3

-24 -': -43

27 54
|

925 850 8§75 900 925 950 975 1000 1025 1050 1075
Freguency (MHz)
- S[1,1] 4 521

0 1f you do not like the small circles, squares, or triangles that show each data point, hide them using the
Show Symbols On Trace option on the Graph menu.

3D Graphs

A 3D graph is used to display a measurement versus frequency versus a parameter
sweep. You can sweep any tunable parameter or variable. In the figure below, the gain of
a 5th-order Butterworth bandpass filter is displayed from 62.5 to 87.5 MHz while 2
capacitors are varied (swept).

® A3D graph requires a parameter sweep to generate three-dimensional
data.

304

Genesys - Users Guide

Gain in 3D

Frequenay (hHZ)

(pFy C4_C(pF)

C2_C

g2.5

160; 50

—- =21

, you can plot a sweep on a rectangular graph

3D graphs cannot display markers. However

if you need markers. Here's the same sweep:

=
-
G_
o
ot
gz
&
8

Sweep2 - Gain (S21)

r SY AT 7
W
Wis1
=
T \?\ /
/ /.
_}
7/
R §
N
S
T T Y88 88T S

B7.4 100 1125 125 1375 1480 1625 175 1874

75

62.5

Freguency (MHZ)

- 521

Antenna Plots

305

Genesys - Users Guide
Antenna plots display two dimensional far field radiation patterns. The electromagnetic
analysis must be setup to gather this radiation data. See the Empower Viewer and
Antenna Patterns section of the Empower Simulation manual for information on setting up
the Empower analysis and the Radiation Patterns and Antenna Characteristics section of
the Momentum GX manual. The measurement wizard can be used to slice three
dimensional data for plotting on two dimensional graphs.

B SweepPhi

Mormalized E-Total [Sweep Phi)

—— ETOTAL- H-Plane (Freq2000)

Polar Charts

A polar chart is used to display complex data, such as S-Parameters or impedances. In the
figure below, S11 (input reflection coefficient) and S22 (output reflection coefficient) are
plotted. The horizontal axis on a polar chart represents purely real numbers, while the
vertical axis represents purely imaginary numbers. Numbers that lie between the two axes
have both imaginary and real components.

Smith charts and polar charts generate the same plots for S-parameters (only the
background and scales are changed). Additionally, certain measurements (such as 'Y
Parameters) may be plotted on polar charts and not on Smith charts (where those
measurements don't really make sense).

306

Genesys - Users Guide
> BPF_Cheby_S_1 M=

—- 5[1.1]

-, 52

A002.5MHz: -0.511dB, -151 .533"|

Smith Charts

A Smith chart is used to display complex data, such as S-Parameters or impedance. In the
figure below, S11 (input reflection coefficient) is plotted on a Smith chart. The horizontal
axis on a Smith chart represents real numbers from zero (0) to infinity, and numbers off
the horizontal axis represent humbers having a nonzero imaginary part.Smith charts in
Genesys have two grid options:

o Impedance
e Admittance

You can enable or disable both grids using the Smith Chart Properties window.

307

Genesys - Users Guide

> BPF_Cheby_Smith M=
7(: %
- 5[1,1]
Vi)
v
GShHz: -14.02548, 22 .705"°
p
L 0w == 0 =2 [a] = o o o}
= = = =] o — — | = = o

Smith charts can plot special circular measurements, like gain, noise, and stability circles.
When displaying one of these measurements, place one or more makers to set a locus for
the measurement circles.

Creating Graphs

Graphs can be created manually, however the easier way to provide a context first. See
sections on creating a graph from a dataset or creating a graph from a schematic.

The easiest way to add an arbitrary measurement to an existing graph is via the
Measurement Wizard (users).

Manually create a graph

Click the New Item button () on the Workspace Tree toolbar.

Select Graphs.

Click on the graph type, e.g click on menu item Add Rectangular Graph...
A property page for that graph type will pop-up.

Click on the Graph Properties tab.

Add the measurement you want to plot.

Click OK.

NoukwNE

Create a graph from a dataset

Right click a variable in a dataset. Select Add Graph... and click on New Graph.

308

Genesys - Users Guide

(=19

B Design1_Data

ariable (=21 52 Time 52 5
LogDutput="Executi 1 n n =3
E i = 1e-6 0.031
52 Add Mew Yariable, .. | 3ef 0.083
53 F'-ljlj ko Table » Fe-G 0.094
Bl .~ Add Lo Er‘aph k|~ New 'EI'-E||:I|'I
snapshot., ..)
P =4 Add to 'Sraphi’
Delete. .. TeE 0ZTs
Duplicate Set e
Qe 0.279
10e-6 0.209
Expott... 11e-6 0.339
bl 12e-G 02363
Import Yariable, .. 15e 0507
Promertics 1de-G 0.426
F 15e-6 0.454
Daktaset Properties. .. 16K 0487
¢ | N] 13 17 e-G 0.504 v

Create a graph from a schematic

1. Right-click a port or node on a schematic and select Add New Graph/Table then
the measurement you want to graph from the menu.

© The actual items available on the menu are context-sensitive, based on the part or node you clicked
and the simulations available. For example, the Relevant S-Parameters option generates
measurements for all S-parameter measurements that are pertinent to the indicated port. Also, the
workspace must contain at least one analysis referring to this schematic design to make this feature
available. (Otherwise there is nothing to plot.)

Add Mew Graph [Table »

RFAmDT Formak

Wign
Find Part In Layouk

v Keep Connected
v Show Part Text

Properties...
Schematic Properties. ..

—4uo

e [T [T

Systeml_Data: Mew Power Plot at Mode 5

Systeml_Data: Mew Yaolkage Plak at Mode 5
Systeml_Data: Mew Phase Plot at Mode 5

—aao

ut

2. To create another graph, right click the port again and select a different option. Your
screen should now have a spectrum similar to this:

309

Genesys - Users Guide

* System1 PWR_at_Hode 5

System1 PWR at Node 5

1] 1600 3000 4500 000 7500 S000 10500 12000 13500 15000
Frequency (MHz)

3. Double-click a graph to change the graph's properties. Right-click a trace or legend to
make specific changes to the appearance of the trace or legend. Hover over a symbol
(a dot on the trace) to get a pop-up showing the value at that point. Check out the
Graphs tutorial video for tips and techniques.

Graph Properties

Graph properties define a graph object. The Graph Properties window permits changes
to properties such as the title or a series, i.e. a plot of a measurement variable.

Changing Graph Properties

The Graph Properties window initially appears when a graph is created, so that you can
add a series and/or customize the graph. You can make additional changes after the graph
is created by right clicking the graph window or double clicking an "empty" area of the
graph window and then selecting Graph Properties... as illustrated below.

310

Genesys - Users Guide

=19

4
22
Edit Title... |
24 W Title Colar...
Title Font...
I | ! | | 1 | i L,
B 10 Marker Fart...
&
L - Zoom »
f:: Legend 3
T |
. [Main Background Color...
E . [|Chart Background Color...
SI' ' Set &ll Colors To Defaults
N f
.%'1-3 b Graph Properties.., 1 I 1
= I' - T I

2.4 |
-3.2
-4
u} 99 Qe-6 199 26209 T e-6399 Ge-564099 Se-6609 4266599 36799 56309 fe-5 9996
Time ()
—— Design2_Data.52 —— Designi_Data .52

Graph Properties Dialog

The following Graph Properties window was created for a General plot type with a
Rectangular graph format and plots two variables from two different datasets.

% Graph1 Properties

Mame: ‘ Graphi | Graph Type: |E Rectangular Graph V|
Graph Title: | Design 1 & 2 - 52 Comparison | Show All Columns
Context \ariable |0I;:i|::nerlbali On Right| Hide? | Color Type
[Edit.. || Remove | Designi_Data 52] [] I ~|General
[Edit..][Remove | Design2_Data 52 N] I ~|General
Add... < Type here or click Add |:| |:|

X-Aadis | Y-Axis |

-Axis

[Logarithmic Label: | | I:I

[Advanced...] [(n]4 H Cancel H Help]

« Name - The name of the graph object, which is shown on the workspace tree
« Graph Title - The plot title, which is drawn at the top of the graph (like a heading)
311

Genesys - Users Guide
o Show All Columns - When this box is checked, infrequently-used columns in the
Series window (such as On Right and Hide?) are shown.
« Advanced... Button - Clicking this button displays the Advanced Graph
Properties dialog, as described below.

Series Settings

The following series window has defined two series for plotting.

Context Variable :Dﬁ:ﬁ:al] On Right| Hide? | Color Type

[Edt.. |[Remove |Designi_Data |52 O] [] B -~|General

[Edit..][Remove |DesignZ Data |S2 W [] I ~|General
Add... < Type here or click Add |:| |:|

« Edit/Add Button - Clicking on the Edit or Add buttons will pop-up the Graph Series
Wizard (users) for a series definition.

« Remove Button - Clicking on this button removes the associated series.

« Context - The text provides context for the Variable text box. If left blank, the
Variable text box must have a fully qualified variable name. Typically, the context is
the dataset name where the variable is defined. To graph an equation variable, set
this text box to [Equations]. The equation hierarchy is searched for the equation
variable. If the equation variable is not found, an error is logged.

« Variable - The text contains the name of the variable that is to be graphed.

« Label (Optional) - The text contains the axis label for the series. If left blank, the
Variable text is used.

« On Right / On Bottom - If the box is checked, the an alternate vertical axis for the
series is placed on the right side of a rectangular graph. Polar charts use On Bottom
to indicate the use of the "lower" radial axis.

« Hide? - If the box is checked, the series is not plotted.

o Color Button - Click on this button to change the color that has been assigned to
the series.

« Type - This informational (read only) text box states the series plot type.

© Note: Checkpoint traces are NOT shown in the series grid. You can remove all the checkpoint traces on a
graph by clicking the % Checkpoint button on the Graph Toolbar (users). You can change the trace color

by right-clicking a trace.

Axis Settings Tabs

The lower portion of the window contains various axis and settings tabs, which depend on
the graph type.

The following is an example of a rectangular graph with a single vertical axis.

XAl | Yelixis
Hefxis

M Aukn-Seale Mir: | O Max: | 99%e-6 Units: |5 w

[CJiogarithmic Label: # Divisiones: | 10

If both vertical axes are used, the Y-Axis tab name is changed to Left Y-Axis, and an
additional tab labeled Right Y-Axis is added. Most of the settings are similar.

« Auto-Scale - When checked, the axis automatically sets its limits to match the
312

Genesys - Users Guide
range of the data which is being plotted
Label - Use this label to customize the axis name
Logarithmic - When checked, the axis is drawn with a logarithmic scale
Min - Sets the lower numerical range of an axis
Max - Sets the upper numerical range of an axis
Units - Sets the units-of-measure used by the axis (and Min and Max)
Divisions - Sets the number of divisions to use on the axis; contains Auto if the
divisions will be determined automatically

i] Tip: To control the axis tick marks, you can set the Min and Max fields to appropriate numbers, e.g. in
the above examples you might want to specify the Max to 1000e-6 s.

Similarly, an Antenna plot has Angle Axis and Top Radial Axis, and a 3D chart has X,
Y, and Z-Axis, but the individual settings are otherwise identical.

angle Axis | Top Radial Axis

Top Radial &xis

[Auto-scale Win: | 30 Max: | 0 Units: | e “

r-Ris | Y-pods || Z-Axis
A-hxis

Auko-Scale Units:| {nsy e

Label: # Divisions: | 10

For a polar plot, there is simply a tab labeled Polar.

Polar Chart
Upper Scale Lowwer Scals
C' Linear C‘ Linear
Maimurm; | O Magimum: | 0
®ds @ds

« Upper and Lower Scale - Polar charts have both an upper and lower scale, so that
different numerical ranges may be compared on the same plot.

« Linear or dB - Indicates which scaling method to use

e Maximum - Typically 0.0 for dB and 1.0 for Linear

Likewise, a Smith chart has a Smith tab, with appropriate settings.

313

Genesys - Users Guide

Smith Chart
Grid
Grid Densik
[+] Show Impedance Grid rid DensLy _
[show admitkance Grid @ Autgmatic
Show Mormalized Impedances () Eine
Reference Impedance: | 5p (Ohmy) Coarse

« Show Impedance Grid - When checked, this option enables the impedance
background "graph paper" (default ON, drawn in black)

o« Show Admittance Grid - Enables the admittance background "graph paper"
(default OFF, drawn in dark red)

« Show Normalized Impedances - Normally checked: The graph will use hormalized
impedances (range will be converted from 0.0 - Reference Impedance to 0.0 - 1.0);
when unchecked, the graph will be drawn using the full numerical range of the data

 Reference Impedance - Allows user to change the labels shown on the Smith chart
if desired. Note that the Reference Impedance entry is only active if the "show
normalized impedances" box is NOT checked. The default is 50 Ohms, although 75
often used for certain applications (like cable TV).

o Grid Density - Sets grid spacing

o Automatic - Determines appropriate grid spacing (ultra fine to very coarse)
and optionally draws text labels

o Fine - Has text labels and uses fine grid spacing

o Coarse - No text labels with widely spaced grid

 Note: The Reference Impedance entry does not affect the position of traces on the Smith chart - it
only affects the labels (for user convenience in reading the chart). For instance, it is possible to have a
schematic with 2 different ports, portl having Zo=50 and port2 having Zo=100. Then S11 and S22 could
simultaneously be displayed on a Smith chart. The center value of the Smith chart is dependent on the
port impedance from which a given measurement is derived.

General Tab

The General tab contains generalized graph settings, such as a description field.

Advanced Graph Properties @

General |Goals | Graph Lines

Descripkion:

[[o]4 H Cancel]

« Description - An optional description which is saved with your graph
314

Genesys - Users Guide
Goals Tab

If the appropriate check boxes are filled, matching optimization or yield targets for all
measurements can be displayed as a goal line or as a goal area.

Advanced Graph Properties

General | Goals | Graph Lines

Goal Lines: v
Goal Fill: | Invisible A

[]show Optimization targets
[] show ¥ield targets

[]show Cirdes on vertices

[E Apply to All Graphs... l

[QK H Cancel]

o Goal Lines - Specifies the thickness of the goal line(s): Thin, Medium, Thick, Heavy,
or None

« Goal Fill - Sets the transparency of the shaded goal area: Invisible, Faint, Semi-
Transparent (Normal), or Heavy

« Show Optimization targets - Enables Optimization target drawing. (Shows targets
set up in separate Optimization evaluation.)

« Show Yield targets - Enables Yield target drawing. (Shows targets set up in
separate Yield evaluation.)

« Show Circles on vertices - This setting is only available for circular graphs (like
Smith or Polar). When checked, this option draws circle(s) at every vertex of a
circular measurement, such as SB1, SB2, etc.

o Apply to All Graphs button - Applies the current Goals tab settings to all the
graphs in the current workspace.

Graph Lines Tab

315

Genesys - Users Guide

X

Advanced Graph Properties

General || Goals | Graph Lines

Marker Lines: v
Spectral Connections: | Automatic (shows if 2 ar more series) W
Spectral Lines: | Thin W

Anti-Aliasing
Smooth Graph Traces

[] Allow smoothing when number of vertices is large

[[]smooth Graph Background

[E Apply to All Graphs... l

o o]

« Marker Lines - Sets the thickness of the graph traces: Thin, Medium, Thick, Heavy,
or None

o Spectral Connections - When displaying more than one set of spectral data on a
graph, it can be difficult to determine the heights of overlapping peaks. This feature
connects the peaks with thin semi-transparent lines, so that spectral plots can be
read more easily: Automatic, Always Hidden, or Always Visible

o Spectral Lines - Determines the thickness of spectral peak lines: Thin, Medium
(Normal), Thick, or Extra Thick

« Smooth Graph Traces - By default, anti-aliasing techniques are used to remove
jagged pixel edges, however by default, traces with a large number of vertices are
not smoothed

« Allow smoothing when number of vertices is large - Also smooth traces that
contain a lot of points

« Smooth Graph Background - Smooths the "graph paper" background; only
available for circular charts

« Apply to All Graphs button - Applies the current Graph Lines tab settings to all
the graphs in the current workspace.

OK, Cancel, Apply and Help Buttons

Clicking the OK button accepts the property changes and exits the dialog. Clicking the
Cancel button dismisses any changes and exits the dialog. Clicking the Apply button
temporarily accepts property changes for previewing. The Help button links to
documentation.

Graph Series Wizard

This wizard initializes properties for a graph object. For a new graph, the wizard is invoked
by adding a graph to the work space tree or by selecting a variable from a dataset and
adding a new graph. For a created graph, clicking on the Add or Edit buttons in the
Graph Properties (users) dialog will pop-up the Graph Series Wizard. The following
shows the wizard when a graph object is added to the work space tree.

316

Genesys - Users Guide

Graph Series Wizard

Select Tvpe of Series: Select Data:
General = Linearl_Data
Histogram []5z21
Level Diagram [Jsat
S Parameters

(523
Spectrum
¥ OWEersUS K D 511
s
[J<s
[]zroRT

o
“ More Measurements, .,

[.;g'* Custam Equations

[JPlot ©n Right -axis

[O H Cancel H Help]

Note that a complete list of series (plot) types is available and that all dataset variables
are ready for selection. This wizard state can be reached by clicking the Clear Mode
button.

A specific series can be directly chosen from the list in the Type of Series window, and
consequently the list of available dataset variables is refined. Conversely, a dataset
variable can be chosen from the Data window, and the list of available plot types is
refined.

Wizard Components
The components are described in top-down order.
Type of Series Window

Choosing a series type limits which dataset variables can be selected for the series. It also
determines how many Data windows are displayed (1 or 2). Note the different series
types will often share some of the same variables (the measurement sets may overlap).

The list of available series types follows.

« General. Variables are plotted against their domains. Every variable is compatible
with this type.

« Level Diagram. A variable generated by SpectraSys (RF System Analysis) which is
a measurement at components along a selected path is graphed as a function of its
path position.

317

Genesys - Users Guide
e Spectrum. Plot a variable whose independent axis is Frequency. This plot type is
also compatible with variables whose independent is Time and will produce a post-
processed set of equations which involve taking an FFT. Various options for the FFT
are available - see the Post Processed equation block.

« S Parameters. A scattering parameter measurement generated by SpectraSys (RF
System Analysis) is graphed as a function of its frequency domain.

e Group Delay. An input-output delay measurement of a component (usually a filter)
is generated by the Linear Analysis or by SpectraSys (RF System Analysis) and is
graphed as a function of its frequency domain.

« Histogram. The range of a real variable is binned. The number of samples in a bin is
plotted against the bin value.

Data Window

Once a series type is selected, the possible dataset variables required for the plot are
displayed in one or more Data windows. Alternatively, if a variable is chosen then a
refined list of plot types is shown in the Type of Series window.

Note that an un-named pull-down menu that is located at the upper right of a Data
window can be used to modify a selected variable. This pull-down menu is activated when
there is a potential need to further specify the selected variable. In the following example,
only the real part of S21 is desired.

Graph Series Wizard (Locked Graph Mode)

Type of Seties Selected: Data Selected: Real Part b

S Parameters =] Linearl_Data

[w] 521
1531
(523
511
Os

o
“% More Measurements, .,

[dﬂ Custam Equations

[CIPlot ©n Right ¥-Axis

[_) Clear Mode] [O] [Cancel H Help

Custom Equations button

While equations are automatically added, one can customize the equations. To edit the
318

Genesys - Users Guide
equations, click on the Custom Equations button.

I Custom, Equations D__(|
1 ' <Enter your '"Engineering Language' equations here>
Z MyWVar =

< |

|

[Juse MathLang ta evaluate equations

‘ariable to Plok: || Telefar ‘ I [a'e] [Cancel]

For the description of the equation language, see Using Mathematics Language
(users). The language functions are described in Math Language Function Reference
(users).

Clear Mode button

The new graph object wizard state can be reached by clicking this button.

Plot On Right Check Box

If this box is checked, the vertical axis on the right is used for this series. This check box
is also available on a per series basis in the Graph Properties (users) dialog.

OK, Cancel and Help Buttons

Clicking the OK button proceeds to the Graph Properties (users) dialog. Clicking the
Cancel button dismisses the wizard. The Help button links to documentation.

Using Markers on Graphs
Markers are a useful way to examine and document data values on a graph.
Adding Markers to Graphs

You can add markers to any graph except 3D graphs. The following figure shows a
rectangular graph before adding a marker:

=0

40

30
— 20
% 10 - J"-.-‘._."'II—L— — _
i -
= 10 —
— .y |
5 o0 f el .
o] (.
= ol L3

-40]

-50

Fe-2 1200 2400 3600 4500 E000
Freg (hHz)

- DB[521] 4 DB[=11]

319

Genesys - Users Guide

Here is the graph after placing a standard marker on the red trace:

-

=20 }'
=30 ,l
-40 ;
-Slilijl
Je-2 1200 2400 3600 4500 Go00
Freq (MHZz)

LE[S21],DB[S11]
=

= DE[S21] = DE[S11]

The Mark All Traces mode displays additional marker flags on all relevant traces of chart
as shown in the following figure:

a0
40
30
20

10 —

e
[
!

2160.02 MHz, 14.5 cB

Ui

=20
=30
-40

-50 /
Ge-2 1200 2400 3600 4300 £000

Fredq (hMHz)

LE[Z21],DB[Z11]

- DB[521] 4 DB[Z11]

Whenever a marker is selected as the currently active marker, the marker text colors are
inverted (white on a colored rectangle). The figure below shows two markers. The marker
on the right is selected.

a0
40
3n
20

10 . AT

e
[
{

4300101

|
|
a0 | |
; } 576002 MHz, -27 57 0B
a0 Ao e | |
. [
.40
0 |
2 1200 24010 2600 4300 B0

Fredq (MHz)

LB[=21],DB[S11]

DB[S11]
4800.01 MHz, -16.71 dB

&= DE[S21] - DB[S11]

To add a marker

o Click a data point on a trace. Clicking on a graph data point will create a new Marker.

320

Genesys - Users Guide
To add a marker to all of the traces on a graph

e Click the Mark All Traces button on the graph toolbar.

To select a marker

o Click the marker you want to select.

To change the properties of a marker

« Double-click the marker to display the Marker Properties window.

To delete a marker

e Select the marker and then press the Delete key
« Alternate: click the Delete All Markers button

Marker Styles (Peak, Valley, etc.)

Genesys has several marker types. These markers are available only for rectangular
graphs. A marker's type can be changed in the Marker Properties dialog box.

o Standard - A non-moving, fixed frequency marker.

e Peak - A marker that automatically tracks the peaks of a graph, even while tuning.

« Valley - A marker that automatically tracks the valleys of a graph, even while tuning.

e Bandwidth - A composite marker for ease-of-use. Bandwidth markers are peak
markers which drop two relative markers to measure the bandwidth of the peak. A
bandwidth marker can also be a valley marker, simply by setting the Relative offset
to be a positive number.

« Relative - A marker that automatically tracks the position of another marker and are
adjusted to the relative offset (dB down). Relative markers are rarely used, except
when automatically placed by Genesys to indicate the limits of a bandwidth marker.

« Delta - Any marker style can be used as a delta marker. A delta marker displays the
x / y distance to another marker.

Placing a Marker on a Trace

Standard marker

1. To place a Standard marker on a graph, just position the mouse over the spot where
the marker is needed and click the graph trace (on or near a data point) with the left
mouse button.

2. The marker can then be changed to one of the other marker types like Peak, as
desired (using the Marker Toolbar or the Marker Properties window).

Peak marker

1. Place a Standard marker on a graph, as described above.
2. Click the marker and set its style to Peak using the Marker Toolbar.

The following figure is an example of what happens when a standard marker (red) is
changed to a peak marker:

321

Genesys - Users Guide

al

40

30
20

440.02 MHz, 12 52

10

o il
o]

F.

DB[S21],DB[Z11]

=30

\V4

-40

-20 f’l
{
J

-50
Je-2

1200

2400 3600

Fredq (hMHz)

4300 £000

- DB[521]

4 DB[Z11]

Notice how the marker travels to the nearest peak.

© Peak/Valley detection works as follows: The "aperture" window is a box that is used for peak / valley
detection. A peak or valley must be at least as large as the box, otherwise it is ignored. In general, a user
should never need to adjust these, as the defaults are pretty good. A local maximum can be rejected by
increasing the aperture window. Small peaks can be detected by decreasing the window size. The same
criteria are used for valley detection (with a sign flip). The parameters are percentages (which are scaled
by the bounds of the graph) and then used to evaluate candidate peaks / valleys and reject those that are
too small to be of interest.

Valley marker

1. Place a Standard marker on a graph, as described above.
2. Click the marker and set its style to Valley using the Marker Toolbar (users).

Bandwidth marker

1. Place a Standard marker on a graph, as described above.

2. Click the marker and then click Bandwidth on the Marker Toolbar (users). The
marker's style and name will be updated and 2 associated relative markers will be
placed automatically.

Here is an example of a Bandwidth marker, along with its associated relative markers:

0 4 | m 19 216.25 hHz
4 B . E 2741 dB
- | | & DELTA-L = -5 97 dB
A2 | |
A6 |
20 i) 240,25 MHz
T 24 e N 37 46 o
. L | DELTA-R = -5.02 dB
- ™!
L~ | 3T
= pad | |
36 . .
| | - DE[(S21]
-40
200 250
Fredq (MHz)

Notice that the actual measured bandwidth of 24 MHz is displayed. It is calculated directly
from the positions of the two relative markers, which are both set to -6.0 dB down. You
can increase the number of data points in the simulation as needed so that the relative

322

Genesys - Users Guide
markers are positioned with sufficient precision. You can adjust the dB down settings of
both relative markers associated with the Bandwidth marker at the same time by setting
the Bandwidth marker's properties. Set an individual relative marker's properties to
independently set the dB down to different values.

0 1f you need the bandwidth based on a fixed center frequency, place a bandwidth marker, change the
marker type to Standard, and then type the frequency in the marker's properties window. The relative
markers automatically follow the marker to its new location.

Relative marker

1. Place a Standard marker on a graph, as described above.
2. Click the marker and set its style to Relative Left or Relative Right using the Marker
Toolbar. The associated relative markers will be automatically placed.

The following figure is an example of a Relative maker (on right) that is relative to the
first marker ("M1"):

50 Ta]
40 g g
30 THE
= 5 T
= 10 -
& gl ["M 144002 MHz, -4.18 oB PESK
o g
= -0 1680.02 MHz, -6.56 B (DELTAR = -2
T / 1Y
S o | H
Py]
Te-2 1200 2400 3600 4300 B000
Freg (MHz)
-4 DE[321] - DE[311]

Notice the delta value (-2.68 dB) is displayed. That is the actual value derived from the
simulation data, even though the marker's default dB down of -3.0103 dB was requested.
The relative marker is always placed on an actual simulation data point.You can
increase*the number of data points in the simulation as needed to get the relative marker
value closer to -3 dB down.*Because this relative marker is attached to a peak marker,
both markers track tuning changes in tandem.Also, notice that the original marker is
automatically named M1 so the relative marker can reference it.

Delta marker

1. Double-click the existing marker that you want to measure the delta to and ensure
that it has a name.

Place a Standard marker on a graph, as described above. This will become the "delta
marker".

Double-click the new marker.

Check Show delta X (and/or delta Y).

Select the original marker name in the Relative To combo box.

Click OK.

N

ouAwW

323

Genesys - Users Guide

Lawpass [Chebyshey], Order 7

: Ve 17" W17 15 SilHz
! E\ /

-5 J"“a_""\.] T r

zm L N/ \ \

N T

1 i/ IEEE

N l il

Naming Markers

Name a marker for reference or documentation purposes. You must name a marker if a
Relative or Delta marker references it.

Bandwidth markers are automatically named in the format BW1, BW2, and so on. Other

markers are automatically named M1, M2, and so on.You can hide marker names using
the Marker Properties window; however, the name always displays on a tool tip.

Graph Marker Properties
The marker properties window lets you change the attributes of a graph marker.
To change the properties of a graph marker:

1. Double-click a marker to open its properties window.

Marker Properties

Marker Placemnent
Name: | M1 Mark All Traces S-Adis Walue: | 100 .
Show Mame
Skyle Peakfvalley Aperture (global shared setting)
(#) standard (Fixed Frequency | %-Axis) Aperture Width: | 10 o -
-Dgfault
) Bandwidth { Tracks Peak) Aperture Height: | 5 o
() Peak,
O valey Delta | Relative Marker Settings
) Relative Marker {on Left)
) Relative Marker {on Right) [shiow delka % (From specified marker)
dg [5hiowe delta ¥ (From specified marker)
[[0]4] [Cancel] [Help]

2. Make the changes you want to the following settings:

« Name - The name of the marker, which is optional, unless the marker needs to
be referenced by a relative or delta marker.

« Mark All Traces - When checke,d the marker will mark all traces (otherwise it
will only mark a single trace).

« Show Name - When checked, the name of the marker will be displayed on the
graph.

324

Genesys - Users Guide
Standard - A normal, fixed-frequency marker.
Bandwidth - A marker which uses 2 relative markers to display the bandwidth
of a peak (or valley if Relative Offset is a positive number).
Peak - A peak marker, which tracks a peak on the graph (even while tuning).
Valley - A valley marker, which tracks a valley on the graph.
Relative Marker (on Left or Right) - A tracking marker, used to measure
bandwidth, etc.
X-Axis Value - The marker's location on the X-axis.
Aperture Width / Height - These values are shared between all graphs and
are used to track peaks and valleys. The values are a percentage of the width /
height of the graph window.
Default - Sets the Aperture Width and Height back to the Factory Default
settings of 10% and 5%.
Relative To - The name of the marker to reference for relative and delta
markers.
Show Delta X / Y - When checked, the distance from the "delta" marker to the
reference marker will be displayed.

3. Click OK.

Customizing Graphs and Markers

Customize your graphs and markers to create a neater, more usable graph. There are
many graph and marker options from which to choose.They include the following:

o Hiding vertical lines and trace symbols using the Graph menu.

Placing marker text on the right using the Graph menu.

Changing graph and marker settings using the Graph menu or Graph toolbar.
Adding titles and annotations by right-clicking the graph and using the menu.
Moving graph legends by dragging them into place.

Removing symbols on traces using the Graph menu.

This following figure shows a less cluttered graph:

Amplifier Gain and Match

=0 1 1) 2160.019 MHz
40 - DBE[E21] &) 14.299 oB
30| - DBIS 1] [, k) -27 567 B
= 20 ¥ > 4200 00 MHT
B0 - Pl 2| 4800 008 MHZ
o f I —
a 0 —
5 T 1h _“'~—E—-’ all
T -0 vt
S { o
-40 ’
.50 |

s
Je-2

3000 Goon
Freg (MHz)

Annotating Graphs

The Annotation button () on the Graph toolbar gives you access to the Annotation
Toolbar (users). The Annotation toolbar provides lines, circles, and text that you can use
to point out details of interest on a graph.

For example, the Text Balloon annotation has a "tail" which can be anchored to a data
point on a graph, to the page, or not anchored by right-clicking on the balloon and

325

Genesys - Users Guide
selecting Anchor Pointer on the menu.

© To create a balloon that's initially anchored to a data point, first ensure that no marker is selected. If the
trace vertices are not visible, right-click the trace and select Show Vertex Symbols. Right-click a trace
vertex (or WhatIF bar) and select Create Info Balloon. The balloon will be anchored to the point and
filled from the info box that is displayed when the mouse hovers over a data point.

i] Tip for advanced users: To copy the text from the balloon to the Windows clipboard, click on the

balloon, right-click on the balloon and select Enter Text, select the text and copy it to the clipboard using
Ctrl_V.

Zooming Graphs

You can zoom on graphs using buttons on the Graph Toolbar (users). Depending on which
graph type you are using, some of these buttons might be grayed out.

L] Normally, only the X-Axis on a rectangular graph is zoomed. Hold down the Ctrl key to also zoom the Y-
AXis.

© As you zoom out, the graph background may selectively skip drawing excessive details. This is intentional.

Similar to using a street atlas, a state map or a world map, only the appropriate details are shown at a
particular zoom setting.

Some different ways to zoom a graph follows:

1. Click one of the following buttons on the Graph toolbar to use a tool:
Click this button To select this tool Keyboard Shortcut

Pan the graph. P
@ Zoom the graph. Z

After selecting the tool, click and drag in the graph to use the tool. When you let up
on the mouse the tool disappears.

Zoom in on a rectangular area of the graph by click-dragging with the zoom tool.
Click the left button to zoom in; click the right button to zoom out.

2. Click one of the following buttons on the Graph toolbar to automatically zoom to a
region

Click this button To do this

Zoom the graph to page.
Maximize the graph to show all the

data.

3. Move the mousewheel in/out to zoom the schematic in/out
4. Use the keyboard + and - keys to zoom in and out.

Graph Axis Favorites

As you work with graphs, you will find that you have sections of the graph you want to
study consistently. You can define an Axis Favorite and easily return to it with one of the
following buttons on the Graph Toolbar (users).

Click this button To do Keyboard Shortcut
Save the current axis settings as a favorite. F
Use an axis favorite setting (cycle through the saved settings). |B

When you click the Save Axis Favorite button (or use a hot key found in the Graph menu),
326

Genesys - Users Guide
the current axis settings will be saved in a short list of favorites. If the list is full, the new
settings will overwrite the oldest Axis Favorite.

327

Genesys - Users Guide

Measurement Wizard

The Measurement Wizard is used to help users find measurements and extract the right
syntax and format.

The process has 4 steps:

. Selecting the source of data

. Selecting the measurement group

. Selecting specific measurements

. Applying any post processing formatting or range limiting

A WNE

© The context of the measurement wizard is dependent on the type of graph selected on the graph
properties before the measurement wizard is invoked. Measurements that are inappropriate for the given
graph type will not be shown in the measurement group. For example, if a rectangular chart was specified
before the measurement wizard was invoked then any type of circular measurements would be excluded
from the measurement group list. This can be overridden by selecting the Show measurements for all

graph types.

Measurement Wizard:

Source Dataset or Equations: | EaElElER R E (AR EE]
Specific measurement(s)?
‘hich measurement group would wou like to display? (Use Chrl ko multi-select,)
¢ Scatkering Parameters a[1,1]
Sij Group Delay 31,2
Sij Loaded §
Hij H Parameters (Hybrid) a[z,2]
YRij Y Parameters
ZFij £ Parameters
YINi Admittance at port i
ZIMi Impedance at port i
WIWRI WIWER ab parti
Eij Vaolbage gain between ports
[E1y ek Maxinur Gain
G Simultaneous match gamma at port i
¥ Simultaneous match admitkance at port i
ZMi Simultaneous match impedance at port i
4 Skahility Fackar
Bl Stability measure
FPORTI Reference impedance at port i
Post-processing operation to apply: |:| Lirmik Sweep Range
<t > J D
[]show measurements For all graph types I:I
[QK] [Cancel] [Help]

Using the Measurement Wizard

1. Click the Measurement Wizard button ([\ More Measurements... |) on the graph series
328

Genesys - Users Guide
wizard dialog box.
2. Select the dataset at the top of the dialog box. All available measurements for that
dataset will be refreshed.
Saurce Dataset or Equations: | 7p2v0Smo. s2p b

Fp2y0Smd.s2p
D21 _Daka

HE 1-tone_Data
HBZ_Data
LinTest_Data
Marrow_Daka
MLTest_Data
Powersweep_Data
Sparams Marraw_Data
S-params_Daka

3. Select the measurement group in the list box to the left. Specific measurements for
that group will be refreshed and appear in the list box to the right.

‘irhich rmeasurement group would wou like to display?

-ement group would wou like to

Scatkering Paramekers
Group Delay

Loaded &

H Parameters {Hybrid)
¥ Parameters

Z Parameters

Admittance at port i

Scakkering Parameters

Sij Garoup Delay

Sij Loaded Q

Hij H Parameters (Hybrid)

YPij Y Parameters

ZFij Z Parameters

YIMi Admittance at port i

ZINi Impedance at port i

WSWR WSWER ak port i

Eij Voltage gain between ports

GMAx Maximum Gain

aMi Simultaneous match gamma at port i
Wi Simultaneous match admittance at port i
M Simultaneaus match impedance at port i
4 Stability Fackor

B1 Stahility measure

ZPORTI Reference impedance at port i

4. Select specific measurement(s) in the right list box.
Specific measurementis)?
(Use Ckrl ko multi-select,)

31,2

© Standard Windows multiselection is available when selecting specific measurements. To select a
continuous block of measurements single click the top item in the list then hold the Shift key down
and single click the bottom item. To select individual measurements hold the Ctrl key down while
single clicking the desired measurements.

5. Select any post processing format to apply.
Past-processing operation ba apphy:

= Maone = W

Real Part

Imaginary Part
Magnitude

Phase (Rad)

Phase {Deq -150 ko 180)
Phase {Deg 0 to 3600

dE Magnitude

6. Click the Ok button to finish.

Limit Sweep Range

At times it is convenient for the user to limit the range of data being display. For sweeps,
like linear analysis this data range can be limited by checking the Limit Sweep Range
checkbox and setting the X axis range. For example a linear simulation may generate data
from 10 to 500 MHz, but only the range from 100 to 200 MHz is of interest.

329

Genesys - Users Guide
Limit Sweep R.ange
Min & | 100

Show Measurements for all graph types

By default only measurement groups for the graph type set in the graph properties
dialog box is used. This prevents users from trying to plot circular measurements on
rectangular types of graphs and vise-versa. To override this behavior the 'Show
measurements for all graph types' can be checked.

[[] show measurements For all graph types

Antenna Measurement Options

When an Antenna Plot graph type has been selected and a radiation pattern
measurement is selected in the measurement wizard the Antenna Measurement
Options dialog box will be invoked. The parameters on this dialog box can be used to
slice 3D data into the desired two dimensional pattern to be plotted.

Antenna Measurement Options (ANT_EPHI)

Sweesps

(1 all values (sweep phi, one trace For each theta value)

) Canic Cut {sweep phi) Theta: {deg)
() Principal Plane Cuk (sweep theka) Phi: {deg)

{JE-Plane {sweep theta, phi =07

() H-Plane {sweep phi, theta = 903

Frequencies

{#) all Freguencies

() single Frequency: {MHz)

() Frequency Range: to {MHz)

330

Genesys - Users Guide

Importing and Exporting

Contents

o Importing Data Files Using Genesys (users)
Exporting Data Files Using Genesys (users)
Layout Designs (users)

Using Files From Earlier Genesys Versions (users)
Using the ADS Link (users)

Importing Data Files Using Genesys

Genesys can import the following file types:

DXF/DWG File
GDSII File

Genesys Netlist
Gerber File

Load Pull Data File
M-File

Directory of M-Files
S-Data File

SPICE File

XML File

6.0 Model Library
Old Genesys S-Data File
CITI File

To import a file

1. Click File on the Genesys menu and select a file type from the Import menu.
2. Follow the instructions in the windows that appear.

Or
3. Right click on a folder in the Workspace Tree and select the Import menu.
4, Follow the instructions in the windows that appear.

Wwiorkspace Tree

O T E BEr Er@

&dd *
Fename... ita]
%2 Equati Delete...

Froperties. ..

Export...

Qpen
M-File...

C
o Directary of M-Files. ..

Paste

DXF/DWG Files Import

The Import DXF/DWG Options dialog enables you to specify units, and layers to control
the import of DXF/DWG format files. A DXF/DWG file must be selected in the main export
dialog for the Import DXF/DWG Options dialog to open.

331

Genesys - Users Guide
To import AutoCAD DXF/DWG files:

1. In the layout window containing your design, choose File > Import > DXF File...
Edi: Wisw Layout Action Tools Window Help

o v LBERA0
& Chr0
Choge Warkspace Chrbeflt+C A O® ’;} * -
Save A5,
Save Al Workspaces Crrbealt+35
Page Sebup...
Prirk. .. CkrlsP
Expoit *
i e
Send a5 Emal. .. 0511 File,

T A w b s FENESTS Metlist, .
2 T Amp w s ; r e
I, Load Pull Data File]
3 CITlimport. wesx MFia,
Cop_Level_t ?mx Carackory of M-Files,,
5 Moise Figure Chaclk.ws:
F S-Duska File, .
? Bipolar ."'.rrl:llflc.r.ws:n SICE Fila, .
7 Hode in pour. s o WML File..
8 Extrapodation Testingl L)esx . Model Library...

Exit Old Gemasys 5-Data Fia...
| CITI File...

2. :Enter path to imported DXF(DWG) file in the opened "Import DXF" dialog window
Fmanually, from Open File dialog, pushing "Browse" button:

Select

File:

Browse, .,

[QK l[Cancel][Help]

3. If the path point to existing file, it enables "Preview" button, pushing on which opens
the importing file in Preproduction Editor

332

Genesys - Users Guide

C: b [Tt 4wl [dul

T T

0. Pow-productien [allas

BR@ Xx0B90 +HaQQY
- B

e 0 T —
Pagmi L Lodor
ey [l
[T |
oL i
TOR SLE

LT |

E|E EE g

Livpar Tabdy LincdoyAmdn Shack
Lhabam & =

Lowded C:pusersy TesisiBecadf2. do
Looyd Tires; 3,172 sacs

4, Push button OK to continue DXF/DWG import. It Opens Import DXF Options dialog,
Layers tab.The Layers tab displays a list all the layers in DXF/DWG file. Layers can
be selectively imported to Genesys using the import column. By default all layers are
imported. Map importing file layers to Genesys layers, choosing them from Layout
Layer combo boxes, or to viahole layers, checking Via? checboxes, and choosing
metal layers from Via From and Via To combos:

Import DXF Optiens ==

| Lavers | DiF Options | Layout Options |

Layer Hame Layout Layer | Via? Via From Via To
INFO < Not Imported M
SUBSTRATE SUBSTRATE [l
TOP METAL TOP METAL 7
TOP MASK TOP MASK |
V1A TOP METAL BOT COVER [¥] |Jepoyesaax]Botiom Cover
TOP SILK TOP SILK M 1o Co
TOP METAL
BOT METAL

) e [o

5. Set layout arc and linear items resolutions, or use default:

333

Genesys - Users Guide

= r
t\ iport DXk

Layers | Layout Qptions

Arc Reschution (45° mac): 15 (degh »

Latvout Resoltion: | 0.1 (mam)

[ok]| cece | [rep]

6. Push OK button to import the AutoCAD file.

GDSII File Import
Genesys Netlist Import

Gerber File Import

1. In the layout window where you woud like to import Gerber design, choose File >
Import > Gerber File...

Edit Wiew Layout Action Tools ‘Window Help

Mew Chrl4h o EE 7o)
Oper... Crl4+0 5

Close Workspace Chelal+C A O® @
Save Chrl45

Save As...

Save ol Waorkspaces ChH+alk+5

Page Setup...

Print. .. Chrl+P

Export 3

Send as Email... GDSII File...
| GEMESYS Metlist, ..
Gerber File, ..

Load Pull Data File r

1 Bipolar Amplifier . wsx
Z Criusersy, ., test_drillwsx
3 PCE3_mod. wsx

: M-File. ..

4 GerberDrillTesk, wsx 3 ;
5 i, ADrillTest Directory of M-Files, ..
° T>.< :sers t |(1r:: esk,ws <_Data File..
T nmp 2 trl hc SPICE File...

rmp w Erlows
g CTTII B . #ML File. ..

RSk | 6. Model Library. ..
Exit Qld Genesys 5-Data File, .,

‘ CITI File. ..

2. In the opened "Import GBR" aialog window select import File or Folder. Folder is
default for Gerber Import:

334

Genesys - Users Guide

Select
) Filefs)
() Folder

Folder:

| [Erowse..,

Preview...

[(0.4] [Cancel J[Help J Options

3. Enter the imported File or Folder path, or push button "Browse" to open File or
Folder entering dialog:

. Browse For Folder

Select the root Folder For the gerber Files:

i ~
s
Fal De
o7
i =L = U
9
) 10
=1
=55

® 3 100 |
ol 11}] l|

Falder: | 55 |

- (o e |y

4, After entering correct File (or Folder) path, it may be previewed by pushing button
"Preview",

335

Genesys - Users Guide

Import GBR _|
Select
I File(s)
() Folder
Falder:
Ciusers| Tests\Eecad)5s | [Browse, .. J

Presview, ..

[o] Help Cptions

J [Cancel J[

=8 A=

Lorer T

EOD +EERY
= [

- -
P e o = ==
alat Mo a [| E
Corieisd I |
i = . J
e H: = W EE
i .| I - -
.' =
= m
v == Y
ax
Ll
——

e st
Laad Trae 8847 53

iy DMETT 0 IR ech

Push button OK of the Import GBR dialog. It opens "Import GBR Options" dialog.
Map imported Gerber files layers to Genesys Layout window layers, selecting it from
pull down combo boxes:

import GBR Options ?
g Gﬁmmmpm |l |
Layer Name Layout Layer | Via? Via From Via To Polarity
[1] Mt Imported =5 | SN Postive
cond TOP SiLK | [|Postive
cond2 TOP WMETAL F] Postive
diei2 SUBSTRATE D | ['poﬂh.e
BOTWETAL [— :
BOT SLK
BOT MASK
w
(o J(aa] a»

and to Genesys Layout viaholes layers, selecting checkbox "Via?", and selecting the
viahole metal layers form pull down Genesys metal layers (including metal covers)

336

Genesys - Users Guide
combo boxes:

import GBR Options [|

Layers | Gerber/Drill Options | Layout Options |

Layer Hame Layout Layer | WViat? Via From ViaTo Polarity
L] 'IQP SIL_H) | |:l Poa'rtnre
cond TOP METAL | D Positive

cond2 BOTMETAL | [|Postive

ciel2 | [|7oPMETAL w |Bottom Cover Postive

Lox J[comeel | ot

6. Set Gerber import options, or use default from imported Gerber/Drill files:
Layers | Gerber Dril Options |Layout Options |
Units
[¥]Lise ootions from Gerber Dril file [¥] Use units as spedfied in file (indh)
Made Overide file units as specified below
@ Absolute @) mil
Refative inch
um
mm
Zero sUDression -
(@) Leading Number Format
Iradnr:g Integer Digits: ;-‘_ ‘__;
None Eractional Digits: |4 v
Loc) [Cconeet][00y |

7. Set layout resolution options at "Layout Options" tab for importing arcs and linear
layout object items:

337

Genesys - Users Guide

Layers | Garbes|Dril Ophions | Lavout Options

arc Resolution (45° max): | 15 (deg) |»

Layout Reschdion: | 0.1 . (mm) |

ox J[conel] [_teo]

8. Push OK button for importing, or Cancel to cancel the operation.
Load Pull Data Import

M-File Import
Imported M-Files are placed in an equation block on the workspace tree.

1. Browse to the M-file of interest
2. Click OK

Directory of M-Files Import

All of the M-Files located in a selected directory are imported and placed in an equation
blocks on the workspace tree.

1. Browse to the M-file directory of interest
2. Click OK

S-Parameter Files Import

When S-Parameters are imported a dataset is create and placed in the workspace tree.
This dataset is saved and loaded with the workspace and will be cached in memory to
increase the simulation speed. The dataset can be deleted from the workspace. Memory
cache will be used until there is a need to re-read the dataset from the workspace tree or
if the dataset is not found the original file will be re-imported and cached once again.

S-Parameter can be imported in one of several ways detailed below:

Importing from a library

Open up the Parts Selector (Ctrl_Shift_A) or click the part selector button ()
Change the Current Library to the S-Parameter library of interest

. Click the library part of interest (the mouse cursor will change to a + sign)

Place the part in the schematic by clicking the schematic

DwNBR

338

Genesys - Users Guide

© NOTE: On first use of the selected library it will be unzipped and the S-Parameter file associated
with the part will be imported into the workspace tree

Or

Importing from the Main Menu

1. Select File, Import, then S-Data File from the main Genesys menu
2. Browse to the S-Parameter file
Or

Importing from a Part

1. Place a S-Parameter part in the schematic (1-port (part), 2-port (part), n-port
(part)). This can be done from the Linear Toolbar or the Part Selector

2. Double click the part to bring up the part properties

3. Click the Browse button to browse to the S-Parameter file

Manually Imported S-Parameters

Manually imported S-Parameters don't use a filename name. The data must exist on the
workspace tree. If the dataset is deleted then there is insufficient information to correctly
build the model. The model has no need of the filename and simply needs to know the
name of the dataset.

1. Place a dataset part in the schematic (NPOD (part)). This can be done from the
Linear Toolbar or the Part Selector

Double click the part to bring up the part properties

Set the dataset name to the name of the imported S-Parameters

Add an analysis and point it to the desired schematic

Run the analysis

uAWN

Reference

NPOD

SPICE File Import

One of the easiest ways to get nonlinear device models into Genesys is to import them
from a manufacturer supplied SPICE file. SPICE files have the following advantages over
other methods of using nonlinear device data:

e They are often supplied by manufacturers.

o Entering device data manually is tedious and error-prone.

o SPICE files often contain very complete macro-model device characterizations.
e They are in plain text format and can be corrected in any text editor.

To import a SPICE file:

1. Click File on the Genesys menu and select SPICE File from the Import menu.
Select the SPICE file and click Open.

2. The models are imported into your workspace, but if you also want to add them to a
design library, check Automatically import these models into library and select a
library from the drop-down list.

3. If you want to store the original SPICE code with the models (recommended), check

Embed the original spice file into a notes section.
339

http://edocs.soco.agilent.com/display/source/RF+S+Parameter+File
http://edocs.soco.agilent.com/display/source/RF+S+Parameter+File

Genesys - Users Guide

4. Some devices, such as transistors, normally have their nodes reversed in the SPICE
file. Genesys does not have enough information to know what device is described by
any particular SPICE subcircuit, so you have to tell it whether the first two nodes of
any model with 3 to 5 total nodes should be reversed. Netlist options for devices
with 3 to 5 nodes allow you to set node reversal for the whole file or receive a
separate prompt for each device found.

5. Click OK.

Notes:

1. The import operation may take up to several minutes, depending on the number of
models in your SPICE file. A whole library of models can reside in one file.

2. Genesys will not allow two models with the same name in one workspace. If a name
conflict happens, you can either replace the existing model, or rename the new
model in the SPICE file and try importing it again.

3. For a model with more than 5 nodes Genesyss will issue a warning (an integrated
circuit can have a humber of transposed nodes).

4. You can edit the design's netlist in Genesys (after the model is imported) to fix the
issues beyond the node 1 & 2 reversal.

5. Occasionally SPICE files have errors in them, mostly simple typos. Those need to be
corrected in a text editor prior to importing the file.

Once imported, the model can be used just like any design created in Genesys.

Quite often SPICE models are organized into a hierarchy, in which case you need to have
all of the model's dependents available in order to use the model. Sometimes dependents
will be in a different SPICE file which you will need to import into the same workspace or
design library.

SPICE File Compatibility

SPICE file import in Genesys is mainly based on the PSpice Version 10.0 specification.
Where possible, Genesys has also been made compatible with other SPICE flavors. The
following devices are recognized:

C - Ideal Capacitor

D - Nonlinear Diode

E - Voltage-Controlled Voltage Source

F - Current-Controlled Current Source

G - Voltage-Controlled Voltage Source

H - Current-Controlled Current Source

I - Independent Current Source

J - Nonlinear JFET

K - Mutual Inductance (coupling of two inductors only)
L - Ideal Inductor

M - Nonlinear MOSFET

Q - Nonlinear BJT

R - Ideal Resistor

T - Ideal Transmission Line

V - Independent Voltage Source

X - Subcircuit

Z - Nonlinear MESFET (model types NMF and PMF)

The intent of the SPICE file import facility in Genesys is to capture parameters of real
manufacturer parts rather than to represent more abstract models, and thus only SPICE

340

Genesys - Users Guide
commands directly related to concrete device modeling are supported: .SUBCKT, .ENDS,
.MODEL and .PARAM.
Expressions are supported only as far as they are compatible with the Genesys equation
parser, and .FUNC command is not supported. Also unsupported in this release are options
VALUE, TABLE, LAPLACE, FREQ and CHEBYSHEV.

Subcircuits can have parameters, but not optional nodes, and option AKO is not supported
in models.

Based on the extensive review of available SPICE files these limitations don't seem too
restrictive, however, SPICE file compatibility will be improving in future releases.

New Spice model import supports the LEVEL keyword for JFET, MOSFET and MESFET
models.

The value of the parameter LEVEL may be numerical or string. The string format is:
<Model Name>@<Full Path to model>

Use the string format to define an external link to a Genesys VerilogA model. The
parameter list may be unknown to Genesys, but for the import it is compiled from the
VerilogA file.

For example:

BSIM4_NMOS@bsim4.va

ANGELOV_NFET@c:\Program Files{product-name}\Model\VerilogA\angelov.va

D Note Spice import converts all SPICE file lines to upper case, while Genesys model hames are case
sensitive. To support the VerilogA model SPICE import, the module name in the VerilogA file must be the
upper case string, otherwise after the import is performed, the model will not be found.

The numerical values of the LEVEL parameter are defined from the tables:

Table 1: MESFET models LEVEL parameter value (TYPE = NFET, PFET)

LEVEL Model Description

0,4 MES_<TYPE> Spice MESFET

1 CURTICE2_<TYPE> |Curtice-2
(quadratic)

2 STATZ_<TYPE> Statz

3 TOM_<TYPE> TOM-1

5 TOM2_<TYPE> TOM-2

6 CURTICE3_<TYPE> |Curtice-3 (cubic)

Table 2: MOSFET models LEVEL parameter value (TYPE = NMOS, PMOS)

341

Genesys - Users Guide

LEVEL Model Description
0,1 MOS1_<TYPE> |Spice MOS1
2 MOS2_<TYPE> |Spice MOS2
3 MOS3_<TYPE> Spice MOS3
4 BSIM1_<TYPE> |Spice BSIM-1
5 BSIM2_<TYPE> Spice BSIM-2
7,8 |BSIM3_<TYPE> |Spice BSIM-3

14 BSIM4_<TYPE> |Spice BSIM-4
Table 3: JFET models LEVEL parameter value (TYPE = NJF, PJF)

LEVEL Model Description

1 JFET_<TYPE> |Spice JFET

2 JFET2_<TYPE> Spice JFET-2 (Parker-
Skellern)

XML File Import

Each Genesys object in the workspace tree has an XML format associated with it.
Workspace tree objects that have been exported to an XML format can be re-imported
into any workspace. To import an XML file:

1. Select the Import menu option from one of the given methods
2. Click XML file
3. Browse to the XML file of interest

6.x Model Library
Old Genesys S-Parameters

CITI file Import

Overview

CITIfile is a standardized data format that is used for exchanging data between different
computers and instruments. CITIfile stands for Common Instrumentation Transfer and
Interchange file format.

This standard is a group effort between instrument and computer-aided design program
designers. As much as possible, CITIfile meets current needs for data transfer, and it is
designed to be expandable so it can meet future needs.

CITIfile defines how the data inside an ASCII package is formatted. Since it is not tied to
any particular disk or transfer format, it can be used with any operating system, such as
DOS or UNIX, with any disk format, such as DOS or HFS, or with any transfer mechanism,
such as by disk, LAN, or GPIB.

By careful implementation of the standard, instruments and software packages using
CITIfile are able to load and work with data created on another instrument or computer. It
is possible, for example, for a network analyzer to directly load and display data measured
on a scalar analyzer, or for a software package running on a computer to read data
measured on the network analyzer.

Data Formats

342

Genesys - Users Guide

There are two main types of data formats: binary and ASCII. CITIfile uses the ASCII text
format. Although this format requires more space than binary format, ASCII data is a
transportable, standard type of format which is supported by all operating systems. In
addition, the ASCII format is accepted by most text editors. This allows files to be created,
examined, and edited easily, making CITIfile easier to test and debug.

File and Operating System Formats

CITIfile is a data storage convention designed to be independent of the operating system,
and therefore may be implemented by any file system. However, transfer between file
systems may sometimes be necessary. You can use any software that has the ability to
transfer ASCII files between systems to transfer CITIfile data.

The descriptions and examples shown here demonstrate how CITIfile may be used to
store and transfer both measurement information and data. The use of a single, common
format allows data to be easily moved between instruments and computers.

CITIfile Definitions

This section defines: package , header , data array , and keyword .

Package

A typical CITIfile package is divided into two parts:

e The header is made up of keywords and setup information.
o The data usually consists of one or more arrays of data.

The following example shows the basic structure of a CITIfile package:

[CITIFILE 2.01.00
Header NAME MEMORY

VAR FREQ MAG 3

| DATA 5 RI

[BEGIN
-3.54545E-2,-1.38601E-3

Data 0.23491E-3,-1.359883E-3

2.00382E-3,-1.40022E-3
ELND

When sto@in a file there may be more than one CITIfile package. With the Agilent 8510
network analyzer, for example, storing a memory all will save all eight of the memories
held in the instrument. This results in a single file that contains eight CITIfile packages .

Header

The header section contains information about the data that will follow. It may also
include information about the setup of the instrument that measured the data. The
CITIfile header shown in the first example has the minimum of information necessary; no
instrument setup information was included.

Data Array

An array is numeric data that is arranged with one data part per line. A CITIfile package
may contain more than one array of data. Arrays of data start after the BEGIN keyword,
and the END keyword follows the last data part in an array.

343

Genesys - Users Guide
A CITIfile package does not necessarily need to include data arrays. For instance, CITIfile
could be used to store the current state of an instrument. In that case the keywords VAR ,
BEGIN , and END would not be required.

When accessing arrays via the DAC (DataAccessComponent), the simulator requires array
parts to be listed completely and in order.

Example: S[1,1], S[1,2], S[2,1], S[2,2]
Keywords

Keywords are always the first word on a new line. They are always one continuous word
without embedded spaces. A listing of all the keywords used in version A.01.00 of CITIfile
is shown in CITIfile Keyword Reference.

To import CITI File in Genesys:

1. ?ﬁfn File > Import > CITI File..

Edit Miew Schematic Action Tools Window Help

el aa S e HBEAO

DEM... rl+ e

Close Workspace Chrl+alk+iC % @ Q I @ et
=

Save Chrl+3

Save as...

Save Al Workspaces Chrl+alk+5

Page Setup...

Print. .. Chel+P

Export 4
Send as Email, ..

y o GEMESYS Metlist...
1 Bipolar Amplifierwsx

 test_drill, o8
el e Load Pull Data File 3

3 PCB3_mod.wsx ¢
i M-File. ..
4 GerberDrillTest . wsx : -
: Directory of M-Files, .,
5 DrillTest . wex 3
— 1) 5-Data File...
s Amp 4 trl ik SPICE File...
4 cmmp wt SR “ML File. ..
import s
P 6,x Madel Library...
Ezxit ld Genesys 5-Data File, ..

| ::II File... .
2. Select CITI File for Import in the Open file dialog:

Genesys - Users Guide

Open P—? |I‘§|

Look ire | 123 Momenitum v (¢ 5 Bl v
= Chsubstrates
=___J |_*}pn:ui.afs
Recent] proj.cct
|'_ﬂpmi.|:ti
Desktop
My Documenits
OL
My = s :
ComputerA00L., | Fie name: proi.chi Rt |
= Files of type: [—]Camel

My Netvork

3. If the CITI file has arrays (variable, which names have indexes in square braces[]), it
opens the dialog, defining output format of the array data.

Select Yes to convert array data in arrays, or No- otherwise:
4, The imported file creates dataset with name = the file name in the Genesys
workspace tree.
We imported "proj.cti" CITI file, which created same named dataset:
File: Edit Wiew Schematic Action Tools

P | &G @ NS
e Ll R *D"Lliii Ly
IWDrkspaceTree w* I X|

M. 5 E EHr Br@

|5 Designs

-E} Schl {Schernatic)
%@ Equation (E) MKS
Mates

proj.cti @

5. If the workspace tree has dataset with name of the imported CITI file, then this
dialog is opened to rename the output dataset:

CITI file import

There is already a dataset named proj.chi in the
workspace, Please select another name:

| proj.cki | Cancel

For example, if CITI file has array data Si,j

345

file:/pages/createpage.action?spaceKey=genesys2010&title=i%2Cj&linkCreation=true&fromPageId=105972414
file:/pages/createpage.action?spaceKey=genesys2010&title=i%2Cj&linkCreation=true&fromPageId=105972414

Genesys - Users Guide

CITIFILE &A.01.01
fHomentum: B.O&.70 ¢*) 313 _day Auwg 10 zZ007
fMomentun Date and Time: Fri Apr 25 18:E5Z:EFF z0OO03

HNAME Momentum. 5P

#f mode: RBF project: proj reference: 3_50
CONSTANT NER_OF_PORTS 4

COMSTANT NOPMALIZATION 1

VAR freg MAG 4

DATA E[1,1]1 RI
DATA S[1,Z] RI
DATAE S[1,3] BRI
DATAE S[1,41 RI
DATA S[2,1]1 RI
DATA E[2,2] RI
DATA S[Z,3] RI
DATE S[Z,4] BRI
DATAE 813,11 RI
DATA S[3,2] RI
DATA S[2,3] RI
DATE S[3,4] BRI
DATAE S[4,11 RI
DATA S[4,2] RI
DATA S[4,3] RI
DATE S[4,4] RI
DATAE PORTZ[1] BI
DATA PORTZ[2] RI
DATA PORTZ[3] RI
DATA PORTZ[4] BRI

VAL _LIST_EEGIN
1000000000
1EEEEEEEET
2233333333
3000000000

VAL _LIST_END

EBEGIN
O.0g08&6k488, 0O.175104E87
0.173E8170z, 0.ZZ38053341
0.270345181, O0O.EZ25034431
0.3411376k, 0.15923239Z245
ENL

Saving its array data as Arrays will creates swept relative to independent variable
freq vector PORTZ and matrix S:

B proj.cti

Va. : () freg =1 512 513 S14 521 5
freg 1 1843 0193 0158 0.963 0.094 0153 04
PORTZ 2 1EG6Te+d 0267 0232 0918 0137 0232 02
2 3 2333e+8 0352 0279 0576 0165 0279 03
4 Ze+d 0395 0307 0 Sa4 0182 0307 03
{_- > !!l: l:
|
YVariable:5 E}

Conmplex Arrav([4,4,4] po

otherwise the array data will be saved as scalar varaiables PORTZ_i and S_i_j:

346

Genesys - Users Guide

freqg s o
1e+9 0153

1 B67e+9 0.232
2.333e+8 0.279
3e+9 0.307

“Yariable [
freqg

PORTZ_1
PORTZI_2
PORTZI_3
PORTZ_4

O

(e}
_LI_L
ha '

sy
[}

i
=

o]
—

%]
[

[oe)
L)

[o8]
=

L)
[ga)

L)
L)

L)
=

I
I_'I.
|

N
ra
|

Variable:5 1 2
Complex Array[4] F-

=
o

L o o T T T T T O I I |
L)
=

=
=

I
I
4

CITIfile Examples

The following are examples of CITIfile packages.
Display Memory File

This example shows an Agilent 8510 display memory file. The file contains no frequency
information. Some instruments do not keep frequency information for display memory
data, so this information is not included in the CITIfile package.

Note that instrument-specific information (#NA = network analyzer information) is also
stored in this file.

CITIFILE A.01.00

#NA VERSION HP8510B.05.00
NAME MEMORY

#NA REGISTER 1

VAR FREQ MAG 5

DATA S RI

BEGIN
-1.31189E-3,-1.47980E-3
-3.67867E-3,-0.67782E-3
-3.43990E-3,0.58746E-3
-2.70664E-4,-9.76175E-4
0.65892E-4,-9.61571E-4
END

Agilent 8510 Data File

This example shows an 8510 data file, a package created from the data register of an
Agilent 8510 network analyzer. In this case, 10 points of real and imaginary data was
stored, and frequency information was recorded in a segment list table.

CITIFILE A.01.00
#NA VERSION 8510B.05.00
NAME DATA

347

Genesys - Users Guide
#NA REGISTER 1
VAR FREQ MAG 10
DATA S[1,1] RI
SEG_LIST_BEGIN
SEG 1000000000 4000000000 10
SEG_LIST_END
BEGIN
0.86303E-1,-8.98651E-1
8.97491€-1,3.06915E-1
-4.96887€-1,7.87323E-1
-5.65338E-1,-7.05291E-1
8.94287E-1,-4.25537E-1
1.77551E-1,8.96606E-1
-9.35028E-1,-1.10504E-1
3.69079E-1,-9.13787E-1
7.80120E-1,5.37841E-1
-7.78350E-1,5.72082€E-1
END

Agilent 8510 3-Term Frequency List Cal Set File

This example shows an 8510 3-term frequency list cal set file. It shows how CITIfile may
be used to store instrument setup information. In the case of an 8510 cal set, a limited
instrument state is needed to return the instrument to the same state that it was in when
the calibration was done.

Three arrays of error correction data are defined by using three DATA statements. Some
instruments require these arrays be in the proper order, from £[1] to E[3] . In general,

CITIfile implementations should strive to handle data arrays that are arranged in any
order.

CITIFILE A.01.00

#NA VERSION 8510B.05.00
NAME CAL_SET

#NA REGISTER 1

VAR FREQ MAG 4

DATA E[1] RI

DATA E[2] RI

DATA E[3] RI

#NA SWEEP_TIME 9.999987E-2
#NA POWER1 1.0E1

#NA POWER2 1.0E1

#NA PARAMS 2

#NA CAL_TYPE 3

#NA POWER_SLOPE 0.0EQ

#NA SLOPE_MODE 0

#NA TRIM_SWEEP 0

#NA SWEEP_ MODE 4

#NA LOWPASS FLAG -1

#NA FREQ_INFO 1

#NA SPAN 1000000000 3000000000 4
#NA DUPLICATES 0

#NA ARB_SEG 1000000000 1000000000 1
#NA ARB_SEG 2000000000 3000000000 3
VAR_LIST BEGIN

1000000000

2000000000

2500000000

3000000000

VAR_LIST_END

BEGIN
1.12134E-3,1.73103E-3
4.23145E-3,-5.36775E-3

Genesys - Users Guide
-0.56815E-3,5.32650E-3
-1.85942E-3,-4.07981E-3
END
BEGIN
2.03895E-2,-0.82674E-2
-4.21371E-2,-0.24871E-2
0.21038E-2,-3.06778E-2
1.20315E-2,5.99861E-2
END
BEGIN
4.45404E-1,4.31518E-1
8.34777E-1,-1.33056E-1
-7.09137€-1,5.58410E-1
4.84252E-1,-8.07098E-1
END

When an instrument's frequency list mode is used, as it was in this example, a list of
frequencies is stored in the file after the VAR _LIST BEGIN statement. The unsorted
frequency list segments used by this instrument to create the VvAR_LIST BEGIN data are
defined in the #NA ARB_SEG statements.

2-Port S-Parameter Data File

This example shows how a CITIfile can store 2-port S-parameter data. The independent
variable name FREQ has two values located in the VAR_LIST_BEGIN section. The four
DATA name definitions indicate there are four data arrays in the CITIfile package located
in the BEGIN...END sections. The data must be in the correct order to ensure values are
assigned to the intended ports. The order in this example results in data assigned to the
ports as shown in the table that follows:

CITIFILE A.01.00
NAME BAF1

VAR FREQ MAG 2

DATA S[1,1] MAGANGLE
DATA S[1,2] MAGANGLE
DATA S[2,1] MAGANGLE
DATA S[2,2] MAGANGLE
VAR_LIST BEGIN

1E9

2E9

VAR_LIST END

BEGIN

0.1, 2

0.2, 3

END

BEGIN

0.3, 4

0.4, 5

END

BEGIN

0.5, 6

0.6, 7

END

BEGIN

0.7, 8

0.8, 9

END

349

Genesys - Users Guide
DATA FREQ = 1E9 [FREQ = 2E9

s[1,1] |s[0.1,2] s[0.2,3]
s[1,2] s[0.3,4] s[0.4,5]
s[2,1]s[0.5,6] s[0.6,7]
s[2,2]s[0.7,8] s[0.8,9]

CITIfile Keyword Reference
The following table lists keywords, definitions, and examples.

h7. CITIfile Keywords and Definitions

350

Keyword
CITIFILE

NAME

VAR

CONSTANT

SEG_LIST_BEGIN

SEG_LIST_END
VAR_LIST BEGIN

VAR_LIST END
DATA

Genesys - Users Guide
Example and Explanation

Example: CITIFILE A.01.00
Identifies the file as a CITIfile and indicates the revision level of the file. The CITIFILE

keyword and revision code must precede any other keywords.

The CITIFILE keyword at the beginning of the package assures the device reading the file
that the data that follows is in the CITIfile format.The revision number allows for future
extensions of the CITIfile standard.

The revision code shown here following the CITIFILE keyword indicates that the machine
writing this file is using the A.01.00 version of CITIfile as defined here. Any future extensions
of CITIfile will increment the revision code.

Example: NAME CAL_SET

Sets the current CITIfile package name. The package name should be a single word with no
embedded spaces. Some standard package names:

RAW_DATA : Uncorrected data.

DATA: Data that has been error corrected. When only a single data array exists, it should be
named DATA .

CAL_SET: Coefficients used for error correction.

CAL_KIT: Description of the standards used.

DELAY_TABLE: Delay coefficients for calibration.

Example: VAR FREQ MAG 201
Defines the name of the independent variable (FREQ); the format of values in a
VAR_LIST _BEGIN table (MAG) if used; and the number of data points (201).

Example: CONSTANT name value
Lets you record values that do not change when the independent variable changes.

Example: #NA POWER1 1.0E1

Lets you define variables specific to a particular type of device. The pound sign (#) tells the
device reading the file that the following variable is for a particular device.

The device identifier shown here (NA) indicates that the information is for a network
analyzer. This convention lets you define new devices without fear of conflict with keywords
for previously defined devices. The device identifier can be any number of characters.
Indicates that a list of segments for the independent variable follows.

Segment Format: segment type start stop number of points

The current implementation supports only a signal segment. If you use more than one
segment, use the VAR_LIST_BEGIN construct. CITIfile revision A.01.00 supports only the SeG

(linear segment) segment type.
Sets the end of a list of independent variable segments.

Indicates that a list of the values for the independent variable (declared in the vAR
statement) follows. Only the MAG format is supported in revision A.01.00.

Sets the end of a list of values for the independent variable.

Example: DATA S[1,1] RI

Defines the name of an array of data that will be read later in the current CITIfile package ,
and the format that the data will be in. Multiple arrays of data are supported by using
standard array indexing as shown above. CITIfile revision A.01.00 supports only the RI (real

and imaginary) format, and a maximum of two array indexes.
Commonly used array names include:

S - S parameter

E - Error Term

Voltage - Voltage

VOLTAGE_RATIO - a ratio of two voltages (A/R)

CITIfile Guidelines

The following general guidelines aid in making CITIfiles universally transportable:

Line Length.

The length of a line within a CITIfile package should not exceed 80

characters. This allows instruments which may have limited RAM to define a reasonable
input buffer length.

351

Genesys - Users Guide

Keywords. Keywords are always at the beginning of a new line. The end of a line is as
defined by the file system or transfer mechanism being used.

Unrecognized Keywords. When reading a CITIfile, unrecognized keywords should be
ignored. There are two reasons for this:

« Ignoring unknown keywords allows new keywords to be added, without affecting an
older program or instrument that might not use the new keywords. The older
instrument or program can still use the rest of the data in the CITIfile as it did
before. Ignoring unknown keywords allows "backwards compatibility” to be
maintained.

» Keywords intended for other instruments or devices can be added to the same file
without affecting the reading of the data.

Adding New Devices. Individual users are allowed to create their own device keywords
through the # (user-defined device) mechanism. (Refer to the table immediately above
for more information.) Individual users should not add keywords to CITIfiles without using
the # notation, as this could make their files incompatible with current or future CITIfile
implementations.

File Names. Some instruments or programs identify a particular type of file by characters
that are added before or after the file name. Creating a file with a particular prefix or
ending is not a problem. However in general an instrument or program should not require
any such characters when reading a file. This allows any file, no matter what the filename,
to be read into the instrument or computer. Requiring special filename prefixes and
endings makes the exchange of data between different instruments and computers much
more difficult.

A CITIfile package is as described in the main CITIfile documentation: the CITIFILE
keyword, followed by a header section, usually followed by one or more arrays of data.

D Note
There are some specific problems with the current version in reading and/or writing this data format. On
the Agilent EEsof web site, refer to the Release Notes in Product Documentation, and to Technical Support
for more information and workarounds (http://www.agilent.com/find/eesof).

Generic MDIF Format

The generic MDIF provides a generalized MDIF format for unifying the various specific
MDIF formats, and overcoming some limitations of other formats. The generic format
enables diverse applications to use a common data I/O interface, so long as the intent is
to access/save multidimensional (multiple independent vs dependent variables) data.

The general format is as follows:

VAR varilName(varlType) = varl
ValueVAR var2Name(var2Type) = var2Value

VAR varNName(varNType) = varNValue

BEGIN blockName

S bVariName(bVariType) bVar2Name(bVar2Type)
bVarLName(bVarLType) ...

o° oo

o

bVarQName(bVarQType) ... bVarPName(bVarPType)
352

http://www.agilent.com/find/eesof
http://www.agilent.com/find/eesof

Genesys - Users Guide
bVarilValue bVar2vValue ...

bVarLValue ..

bVarQvalue ... bVarPValue
bVariValue bVar2value ...
bVarLValue ..

bVarQvValue ... bVarPValue
END

where var*Type can be the token:

O orint
1 or real
2 or string

Type bVar*Type can be one of the above as well as:

3 or complex

4 or boolean

5 or binary

6 or octal

7 or hexadecimal
8 or bytel6

The variable names above constitute a name-space uniquely identified by the string
blockName which is either:

e alphanumeric: all bvVar*Name block variables are dependent, except bVarlName,
which is usually the most rapidly changing (innermost) independent variable.
or

e DSCR(blockName): all bvar*Name block variables are dependent, and there is an
indexing implicit independent variable.

Guidelines

e A string type variable's value must be surrounded by "".

o If there are multiple blocks, the outermost independent variables (e.g., VAR
variName(variType) = varl) apply only to the block immediately following the
variable definitions, and not to any other blocks.

o The block data (bVar*Value) lines must follow the pattern (order, number of values
per line, and number of lines) of the format (%) lines. If the number of values in any
data line does not match the number of dependent variables specified in the
corresponding format (%) line, incorrect results will occur. A variable's value cannot
be split across lines. Although there is no line length limit specified, MDIF file readers
may choose to truncate at some finite length. This may result in a file read error, or,
if the file was carefully crafted, truncated names and/or string-type values.

e Scale factors, which can be applied only to real numbers, may be case-insensitive
suffixes as follows:

f = 1e-15, p = 1le-12, n = 1e-9, u = 1le-6, mil = 2.54e-5, m = 1le-3,

k=1e3,g=1e9,t = 1lel2
353

Genesys - Users Guide

E.g.: 15mA = 15e-3, 30KHz = 30e3
There should be no space between the humber and the suffix, and extra characters
are ignored. Unrecognized suffixes result in 1.0. The above is not totally consistent
with the rest of ADS.

« The format of complex data is real/imag, with a column for real and a column for
imaginary.

« Multidimensional data is organized by outer to inner independent variables. VAR
statements go from outermost to innermost.

« Vary innermost independent variables first, proceeding toward outermost variables
changing last.

« Independent variables should change monotonically.

Example

! Example 1

REM This has 3 indepVars: vi1, v2, v3(innermost) and

REM 4 depVars: dvi(integer), dv2(real), dv3(string) and
REM dv4(hexadecimal), but is read in as a string.

REM The outermost indepVars: v1, v2 apply only to the block
REM immediately following them, and not to any other block.
! There are 2 data nodes

VAR v1(0) =1

VAR v2(1) = 2.2

BEGIN blk1l

S v3(1) dvi(1l) dv2(1) dv3(2) dv4(hexadecimal)

7.7 8 9.9999 "line 1" Oxabc

8.8 9 1.11 "line 2 " 0x123

END

VAR v1(0) = 2
VAR v2(1) = 3.2
BEGIN blk1l

% v3(1) dvi(1l) dv2(1) dv3(2) dvé(hexadecimal)
8.7 9uF 10.9999mA "line 1" Oxff
9.8 10ufF 11.11mA "line 2 " Oxdef

END
!

! Example 2

! Created Tue Mar 9 13:39:19 1999

! Data Acquired Tue Mar 9 13:38:34 1999

BEGIN NDATA noise

% freg(real) Sopt(complex) NFmin(real) Rn(real) PortZ[1](real)

1e+09 0.098481 0.017365 1 5 50
2e+09 0.18794 0.068404 2 10 50
3e+09 0.25981 0.15 3 15 50
4e+09 0.30642 0.25712 4 20 50
5e+09 0.32139 0.38302 5 25 50
6e+09 0.3 0.51962 6 30 50
Te+09 0.23941 0.65778 7 35 50
8e+09 0.13892 0.78785 8 40 50
9.543e+09 -0.014122 0.911 9.5445 46.166 50

END

354

Genesys - Users Guide
X-parameter GMDIF Format

This section describes:

o Choosing an X-parameter file for use with an X-Parameter part
« An overview of the X-parameter file
« Examples of various details in X-parameter files

Overview

These files contain X-parameter data for nonlinear n-port devices, or subcircuits. They are
ASCII files in GMDIF format. They use extension: .xnp.

The X-parameter files completely comply by Generic MDIF Format. The specific block and
variable names used in the X-parameter GMDIF files are described in this section.

This section describes Version 2.0 X-parameter GMDIF files.

An X-parameter GMDIF file can be used with an X-Parameter part to model the behavior
of a nonlinear device or subcircuit using X-parameters. The file contains the X-parameters,
the part is placed within the schematic.

Linking an X-parameters GMDIF File to an X-parameters Part
To link a file to the part:

1. Add X-parameters part to your schematic. It can be found in the RF Design library.
2. Set up the X-parameters parameters. For instructions on how to set the parameters,
click Model Help in the part's dialog box.

Comments

GMDIF files support comments in two ways:

e by using "!" or
e by using "REM" statement.

The "I" can be used in the beginning of a line, or at the end of the line where as, "REM"
can be used only in the beginning of a line.

Version 2.0 X-parameter GMDIF files contain a pre-defined comment section at the
beginning of the files, which provides useful information about the range of operating
conditions covered by the data as shown in the example below:

Example

! Created Fri Jul 10 15:29:17 2009

! Version = 2.0

! HB_MaxOrder = 9

! XParamMaxOrder = 3

! NumExtractedPorts = 3

! fund_1=[1e+09->1.4e+09] NumP ts=5

! VDC_3=[10->11] NumP ts=2

! ZM_2 1=50 NumP ts=1

! zpP_2_1=0 NumP ts=1

! AN_1 1=[3.16228e-03(-20.000000dBm)->70.7107e-03(6.989700dBm)] NumP ts=36

The version of the file is stated just for convenience. The statement determining the
version is elsewhere. The comment "HB_MaxOrder = 9" tells you that the Harmonic

355

Genesys - Users Guide
Balance with MaxOrder=9 was used by X-Parameter Generator. The comment
"XParamMaxOrder = 3" tells you that the X-parameter data in this file contains mixing
indices up to the 3rd order.
The comment "NumExtractedPorts = 3" indicates the total number of ports used for X-
parameter generation. In case of non-consecutive port numbering this value may be
smaller than the highest port humber.
The lower part of this comment section indicates various independent variables together
with the covered sweeps for each of them. See X-parameter Independent Variables
(users) for explanation of the variable names.

X-parameter GMDIF File Blocks

Version 2.0 of X-parameter GMDIF files contains three types of blocks:

e XParamAttributes
o XParamPortData
« XParamData

The first two blocks appear only once in the file. The third block appears as many times as
the number of distinct different sweep points present in the data for all but the innermost
independent variable. The following sections provide details for these blocks.

XParamAttributes Block

The XParamAttributes block provides the vehicle for the official statements of (1) the
file version, (2) the number of ports, and (3) the number of fundamental frequencies
(tones).

Example

BEGIN XParamAttributes

o)

$ Index(int) Version(real) NumPorts(int) NumFundFregs(int)
0 2.0 3 1
END

The sole purpose of the Index column is compliance with the Generic MDIF format.
The NumPorts entry indicates the highest port index in the data.

XParamPortData Block

The XParamPortData block provides reference impedances for the incident and reflected
waves at each port covered by the data. The reference impedances can be complex and
the power definition of the waves is used, as follows:

1tz y V2,

YT o> P D7 N
J8Re(Z,) SRe(Z,)
In the above equations, Vp and Ip represent amplitude phasors.

Example

BEGIN XParamPortData

% PortNumber (int) RefZ0(complex) PortName(string)
1 50 0 "Input"
2 50 0 "Output"

356

Genesys - Users Guide
3 50 0 "vDC"
END

The XParamPortData block also includes the port names. This information is particularly
useful in proper hookup of the X-parameters part in cases where more than two ports
are present and a mixture of port types is used.

XParamData Block

The XParamData block provides the actual X-parameters. This block may appear many
times in the file, each containing X-parameters at one sweep point (of all but the
innermost independent variable) at a time.

Each XParamData block is preceded by m-1 VAR statements for m-1 independent
variables, where m is the total humber of independent variables. These VAR statements
provide the types and the values of the independent variables. These values apply to the
XParamData block immediately following the VAR statements, and only to that block.

Example

VAR fund_1(real) = 1e+09
VAR VDC_3(real) = 10

VAR ZM 2 1(real) 50

VAR ZP_2 1(real) 0

BEGIN XParamData

% AN_1_1(real) FI_3(real) FB_1_1(complex)

END

The last, mth, independent variable is the innermost variable and is placed as the first
variable inside the block. In the above example that variable is "AN_1_1".

The naming convention for the independent variables in X-parameter files is described in
X-parameter Independent Variables (users).

All the dependent variables (the X-parameters) are provided inside the block. Following
the mth independent variable, the names and the types of the dependent variables are
specified in the header lines (lines starting with a "%" character). The header lines are
specified once per block at the beginning of the block. They are then followed by as many
data groups as the number of sweep points of the innermost independent variable. Each
group consists of data values formatted into lines exactly in the same way as the block
header lines with each entry representing a value of the correspondingly placed variable in
the header lines. Complex data is specified in the rectangular format (real, imaginary) by
two numbers.

Example

VAR fund_1(real) = 1e+09
VAR VDC_3(real) = 10

VAR ZM_2 1(real) 50

VAR ZP_2 1(real) 0

BEGIN XParambData

% AN_1_1(real) FI_3(real) FB_2_1(complex) S_1_2 2 2(complex)

0.0657 -0.32 0.113 1.01 0.222 -0.0031
0.0667 -0.33 0.111 1.02 0.222 -0.0034
0.0677 -0.34 0.110 1.05 0.222 -0.0039
END

In the above example the complex number (0.111 + j1.02) is the value of the dependent
357

file:/pages/createpage.action?spaceKey=genesys2010&title=RF+X-parameters+Part&linkCreation=true&fromPageId=105972414
file:/pages/createpage.action?spaceKey=genesys2010&title=RF+X-parameters+Part&linkCreation=true&fromPageId=105972414

Genesys - Users Guide
variable FB_2_1 at the multidimensional point established by all the values of the
independent variables, including the value of 0.0667 of AN_1_1.
The naming convention for the dependent variables in X-parameter files is described in X-
parameter Dependent Variables (users).

X-parameter Variables

Notation

All independent and dependent variables are defined with respect to port and harmonic (or
mixing) indices. For each variable these indices, separated by the underscore character "”,
form a string appending the reserved name of the variable. Negative indices, if allowed,
are represented by a string in which the "m" character is used in place of the minus ("-")
sign, with no space between the sign and the number. For example "_m2" represents the
index "-2". For clarity of presentation the following table shows the notation used in
indexing the X-parameters.

k [fundamental frequency index; 1 in the case of single tone X-parameters;all consecutive humbers must be
present

p \port index - a positive integer; may not be consecutive
pIn - denotes the "input" port index
pOut - denotes the "output" port index

n lharmonic index; positive integer
nIn - denotes the harmonic on the "input" port
nOut - denotes the harmonic on the "output" port
in case of multi-tone X-parameters there is a mixing index that is concatenated from harmonic indices
w.r.t. to subsequent fundamentals, for example "_1_m2_2" in the three-tone case refers to the mixing
product f1-2f2+2f3 - the index w.r.t. the first fundamental is expected to be non-negative and all-zero
entries are not allowed.

Independent Variables

The following table lists all the supported independent variables in Version 2.0 X-
parameter files. In general, all X-parameters are functions of some or all of these
independent variables. Their dependence is tabulated in the X-parameter files for all
sweep points of the independent variable values.

All independent variables are real humbers.

358

Genesys - Users Guide

fund_k |kth fundamental frequency; assumed non-commensurate if more than one is present; fund_1 is
required

VDC_p |DC voltage applied to port p; not required; mutually exclusive with IDC_p at the same port p

IDC _p |DC current applied to port p; not required; mutually exclusive with VDC_p at the same port p

AN_p_n magnitude of a large-signal incident wave applied to port p at harmonic n; only one per each
fundamental is both allowed and required; phase of this incident wave is not tabulated in the X-
parameter files as this incident wave serves as a Reference Signal (Refer to ADS document for
detailed description); power definition of incident waves is used

AM_p_n magnitude of any other than Reference Signal large-signal incident wave applied to port p at
harmonic n; required only if AP_p_n is used at the same port p and harmonic n; power definition of
incident waves is used

AP_p_n |phase in degrees of any other than Reference Signal large-signal incident wave applied to port p at
harmonic n; required only if AM_p_n is used at the same port p and harmonic n

GM_p_n magnitude of the reflection coefficient of the load at port p and harmonic n; required only if GP_p_n
is used at the same port p and harmonic n; power definition of the reflection coefficient and the
reference impedance specified for port p are used; mutually exclusive with other formats of
specifying load at the same port p and harmonic n

GP_p_n phase in degrees of the reflection coefficient of the load at port p and harmonic n; required only if
GM_p_n is used at the same port p and harmonic n; mutually exclusive with other formats of
specifying load at the same port p and harmonic n

GX_p_n |alternative to GM_p_n and GP_p_n; real and imaginary parts of the reflection coefficient; mutually
GY_p_n |exclusive with other formats of specifying load at the same port p and harmonic n

ZM_p_n alternative to GM_p_n and GP_p_n; magnitude and phase of the load impedance; mutually exclusive
ZP_p_n |with other formats of specifying load at the same port p and harmonic n

ZX_p_n |alternative to GM_p_n and GP_p_n; real and imaginary parts of the load impedance; mutually

ZY _p_n |exclusive with other formats of specifying load at the same port p and harmonic n

Dependent Variables

The following table provides the notation for the dependent variables (X-parameters) used
in Version 2.0 X-parameter files. The X-parameters can be either real or complex
numbers. In the latter case the rectangular format (real and imaginary parts) is used. It is
not essential for any specific dependent variable to be present in an X-parameter file. In
general, the default value is zero for any absent parameter that could otherwise be
included in the file (some parameters are mutually exclusive with some other
parameters).

359

http://edocs.soco.agilent.com/display/ads2009U1/X-Parameter+Generator+Parameters#X-ParameterGeneratorParameters-refsig
http://edocs.soco.agilent.com/display/ads2009U1/X-Parameter+Generator+Parameters#X-ParameterGeneratorParameters-refsig

FB_pOut_nOut

FI_pOut

FV_pOut

S_pOut_nOut_pIn_nIn

T_pOut_nOut_pIn_nIn

XY_pOut_pIn_nIn

Yre_pOut_pIn_nin
Yim_pOut_pIn_nIn

XZ_pOut_pIn_nIn

Zre_pOut_pIn_nIn
Zim_pOut_pIn_nIn

Restrictions

complex

real
real

complex

complex

complex

real
real

complex

real
real

Genesys - Users Guide

B-type X-parameter - measured reflected wave at output port pOut and
harmonic nOut as the response to all large-signal excitations (i.e., under the
large-signal operating conditions); power definition of the reflected waves is
used

I-type X-parameter - DC current measured at output port pOut under the
large-signal operating conditions

V-type X-parameter - DC voltage measured at output port pOut under the
large-signal operating conditions

S-type X-parameter providing the small-signal added-contribution to the
reflected wave at output port pOut and harmonic nOut due to a small-signal
incident wave at input port pIn and harmonic nIn measured under the large-
signal operating conditions; power definition of the incident and reflected
waves is used

T-type X-parameter providing the small-signal added-contribution to the
reflected wave at output port pOut and harmonic nOut due to a phase-
reversed small-signal incident wave at input port pIn and harmonic nIn
measured under the large-signal operating conditions; power definition of
the incident and reflected waves is used

Y-type X-parameter providing the small-signal contribution to the DC current
at output port pOut due to a small-signal incident wave at input port pIn and
harmonic nIn measured under the large-signal operating conditions; power
definition of the incident waves is used; the real-valued contribution to the
DC current is the real part of complex product of this X-parameter and the
corresponding incident wave

alternative to XY_p_n, obsolete in Version 2.0 X-parameter files; two real
numbers: the real part and negative of the imaginary part are provided
instead of one complex number, as XY = Yre - j*Yim

Z-type X-parameter providing the small-signal contribution to the DC voltage
at output port pOut due to a small-signal incident wave at input port pIn and
harmonic nIn measured under the large-signal operating conditions; power
definition of the incident waves is used; the real-valued contribution to the
DC voltage is the real part of complex product of this X-parameter and the
corresponding incident wave

alternative to XZ_p_n, obsolete in Version 2.0 X-parameter files; two real
numbers: the real part and negative of the imaginary part are provided
instead of one complex number, as XZ = Zre - j*Zim

If the independent variable VDC_pOut is specified for the port pOut then neither the V-
type (FV_pOut) nor the Z-type (XZ_pOut_pIn_nIn, Zre_pOut_pIn nIn, Zim_pOut_pIn_nIn
) X-parameters can be specified for the port pOut.

Similarly, if the independent variable IDC_pOut is specified for the port pOut then neither
the I-type (FI_pOut) nor the Y-type (XY_pOut_pIn _nIn, Yre_pOut_pIn_nlIn,
Yim_pOut_pIn_nIn) X-parameters can be specified for the port pOut.

Exporting Files Using Genesys

Genesys can export the following file types:

o ASCII Drill List

o Export Schematics to ADS
« Bill of Materials
e Bitmap (Active Window)
e Bitmap (Entire Screen)

« DXF/DWG File
« GDSII File

e Gerber File

+ HPGL File

360

Genesys - Users Guide
IFF Schematic File
Part Placement List
S-Parameters
SPICE File
Touchstone File
XML File

Export a file

e To export a file please follow the following steps detailed below:
o Select the object in the Workspace Tree to be exported.
o Click File on the Genesys menu and select a file type from the Export menu.
o Follow the instructions in the windows that appear.
Or
o Right click on the object in the Workspace Tree to be exported.
o Select the Export menu.

o Follow the instructions in the windows that appear.
\Workspace Tree * 0 X

Ny B B By
@Blank

[zl Designs
{:} Designi (Schematic)
M Designl Analysis [Od Data

e

Rename...
Delete, ..
Properties. .,

Expart...

ASCII Drill List Export
Schematics to ADS Export
Bill of Materials Export

Bitmap (Active Window) Export
A bitmap of the active window can be exported. To export the active window:
1. Open the window and make sure it is the active window

2. Select the File > Export > Bitmap (Active Window) menu
3. When prompted specify the directory and filename

Bitmap (Entire Screen) Export
A bitmap of the entire screen can be exported. To export the entire screen:

1. Select the File > Export > Bitmap (Entire Screen) menu
2. When prompted specify the directory and filename

DXF/DWG File Export

The Export DXF/DWG Options dialog box enables you to set file format, Autocad version,
path geometry, and hole format.

361

Genesys - Users Guide

e To export AutoCAD DXF/DWG files:
o In the layout window containing your design, choose File > Export > DXF

File...
EE edr view Lsyout Action Toos Window Help
e CerHN H|@Eﬂ @l
Jpen... Crl O
Jose Warkspace CerbAlk+C A . . "? = =
Save ks Schi
Save As...
Save All Workspaoes Tr A+ 5

Page Satup...

Prirk.... CrrP
Expeort: (3 ASCI Cwill List...
ITmport ¥ Export Schematics to A0S, .
Send a5 Emall. .. Bil of Materials
. ; Biemap (Active Window) Ak+FB
é E 2” " ?’_UJ'M“ Bitmap (Entire Screan) AR+FT
% (; -J. pv =.+J oSl ...
5 sze :‘; e ::'k 5 orbex (¥
10U TIECE. WS
HPGL File,..
6 Bipolar Amplfier.ss:
7 Foke i I
HO¥ I POLE. e Part Placement List

8 Extrapolation Testing(1).ws
R aullaipics S-Parameters, ..

Exit

2ML File...

o It opens Export DXF Options dialog. Select exported layers in the Layers tab
(default - all layers are selected)

—

Layvers | LF Options | Layout Options

Layer Hame Export
TOP SILK [#]
TOP METAL
BOT METAL
FO [#]
1A _TOP METAL BOT_COVER

ok J[concal | [_teb |

o Select exporting DXF Options: output File Format DXF(Text) or DWG(Binary),
AutoCAD version, format of Holes, and format pf Paths.

362

Genesys - Users Guide

Export DXF Options le
Layers DXF Opbons | | avout Cplinns
Fia Formak
(%) DF (Text) Autocad Yersion:
Autocad 2004 b
Cows W
Aubocad 2007
Hole Farmat Paths
(&) Holes 25 cutlines
[#] Paths as polygons
("I Holes &5 polygons
o3 Ceancdl]| 2o

o At the Layout Options tab define exporting Layout objects (components, EM-
ports, drill holes). To convert all layout objects to resolved polygons (excepting
layers with text), set checkbox Convert all hapes into resolved polygons.

i3

Export DXF Options
| Layers || DXF Options | Layout Options |

[#] Expart components
[¥]Export ports

[#] Export drill holes

[[]convert &l shapes into resloved polygors

Cox J[cnm]

o Close the dialog by OK button opens Export DXF (or Export DWG) file opening
dialog. Enter full path to output file manually, or using Browse button. Select
box View File after export to view output file after export.

363

Genesys - Users Guide

Export DXF [X
Select
! File
Folder
File:
| C: fusers|Tests/Eecadfza,dxf | [Browse. ..]
Yiew File after export

| ok || cencel || tHep | [options |

o Push OK button. After export it opens Preproduction editor, displaying results of
the export:

364

Genesys - Users Guide

& Pre-production Editor

File Edit ‘Yiew ‘Window Help
g X0 Bo0 $ARRY

[Select All][Deselect all]

on | Mum Marme | Caolor
o _wmro_ |

1 sotmemaL [

2 torvemal i

3 TORSIK

4 wia_tor. [

£ I

Lawver Table | UndojRedo Stack |
Skatus & x
Loaded C: fusersTests/Eecad/Za. dxf
Load Time: 0,157 secs

0 items -99, 208342 674.621347 mil
Genesys Error/Messages window displays results of the export:
Type Error Location

1 |Warning Layer 1:"TOP SILK" haz been exported to not resolved |Intial (Design)
: ; Shiowy
palygons, hecauze it has text objects.

2 Layout from design "Intial’ has successfully exparted |Intial (Design)
: ; Showy
to DxF-library:

GDSII File Export

Gerber File Export
HPGL File Export

IFF Schematic File Export

Export any schematic created in Genesys to another program using Interchange File
Format (IFF). This lets you use your schematic in programs other than Genesys, such as

ADS.
365

Genesys - Users Guide

Exporting IFF Files That are ADS Compatible

Only schematics are supported for export to IFF files.

) Note: Schematics that you manually create should import into ADS. If you have any compatibility issues,
please contact Agilent directly.

To export a schematic to an IFF file:

1. Open a schematic.

2. Click File on the Genesys menu and select*IFF Schematic File* from the Export
menu.

3. Save the file in .iff format.

4. Now open the IFF file in ADS.

Translating Direct Parts to IFF

When a part in Genesys is the same as a part in ADS, Genesys uses that ADS part. Parts
are considered the same if:

e The part symbols are exactly the same size.

« The parameters are compatible. The parameter names do not have to match exactly,
but the parameters from Genesys must be convertible with a simple mapping table or
formulas.

For example, a resistor maps to IFF because the standard resistor size is one inch and the
parameter R (resistance) has a standard meaning.

Translating Custom Parts to IFF

If a part does not directly translate to IFF, Genesys creates a custom part and symbol in
ADS. This creates an additional network in ADS, and possibly a netlist file, to support the
new part. These custom networks use a standard naming convention so that your ADS
designs are easily shared and edited.

Translating DisCos to IFF

While DisCos are not directly supported in ADS, Genesys recreates these parts with the
additional terminals necessary for ADS compatibility. All DisCos work in ADS without
manual modifications.

Exporting Other Items to IFF

In addition to a schematic, other items are automatically exported to IFF files. These
include:

¢ All equations
e Substrates used by the schematic
e Linear simulations

Using Custom Mapping Files for IFF Export

Genesys IFF file export is controlled by a sophisticated internal mapping file. You can
create a user mapping file if you want to customize the IFF export. For more information

366

Genesys - Users Guide
on this mapping file and customization services, please contact Agilent or your local
distributor.

Part Placement List Export

S-Parameters Export
Noise parameters are not exported with the S-Parameters.
S-Parameters can be exported in one of two ways.

Exporting from the Workspace Tree

1. Right click the linear analysis dataset in the workspace tree and select Export from
the menu

2. Set the name and directory of the S-Parameter file (*.snp)
Or

Exporting from the Dataset Window

1. Open the linear analysis dataset (it must be the active window)
2. Select File, Export, and then S-Parameters from the Genesys menu
3. Set the name and directory of the S-Parameter file (*.snp)

SPICE File Export

SPICE files are exported from a schematic. This is because many SPICE device models are
significantly different from linear simulator models. Terminations are often handled
differently in SPICE and linear simulators. In Genesys, oscillators are analyzed open loop
while the loop is closed for SPICE analysis. These differences are resolved in the
schematic.

Translating Parts to SPICE

There are three categories of part translation to SPICE:

¢ Direct
e Compound
« Incompatible

For translations of specific parts, see the Part Catalog (part).

Direct - Direct parts are translated on a one-to-one basis. Examples include capacitors,
inductors, resistors, signal ground (DC voltage source), and electrical transmission lines.

Compound - Compound parts are translated as SPICE subcircuits. They include mutual
inductors , op-amps , VCC , and Crystal. This provides comparable simulations in Genesys
and SPICE. For example, an Genesys VCC is modeled by two resistors and a voltage
controlled current source. To use just the SPICE VCC device without the resistors, you can
override the default translation by double-clicking the VCC device to open the properties
window. Select G from the SPICE Device list and click OK to save the changes.

Please note the following:

e The SPICE opamp E model (Genesys translates OPA as an E model) is ideal in that
367

file:/pages/createpage.action?spaceKey=genesys2010&title=Two+Mutually+Coupled+Inductors&linkCreation=true&fromPageId=105972413
file:/pages/createpage.action?spaceKey=genesys2010&title=Two+Mutually+Coupled+Inductors&linkCreation=true&fromPageId=105972413
file:/pages/createpage.action?spaceKey=genesys2010&title=Two+Mutually+Coupled+Inductors&linkCreation=true&fromPageId=105972413
file:/pages/createpage.action?spaceKey=genesys2010&title=Operational+Amplifier&linkCreation=true&fromPageId=105972413
file:/pages/createpage.action?spaceKey=genesys2010&title=Operational+Amplifier&linkCreation=true&fromPageId=105972413
file:/pages/createpage.action?spaceKey=genesys2010&title=Voltage+Controlled+Current+Source&linkCreation=true&fromPageId=105972413
file:/pages/createpage.action?spaceKey=genesys2010&title=Voltage+Controlled+Current+Source&linkCreation=true&fromPageId=105972413

Genesys - Users Guide

the unity crossover frequency is infinite. You can substitute a SPICE library model or
subcircuit for the opamp. Most opamp manufacturers have SPICE models for their
products.

 The Genesys TRF device (ideal transformer) is not supported in SPICE. You should
specify mutually coupled inductors (MUI). You need to specify appropriate winding
inductance and coupling.

o The Genesys FET and BIP devices do not include any biasing information and,
therefore, are not translated. You can specify how to translate these parts by defining
the translation device in the properties window.

Incompatible - Incompatible parts are those parts that have no simple SPICE equivalent,
including physical models, S-parameter or Y-parameter devices, and internal transistor
models (FET and BIP). Incompatible parts are identified in the translated SPICE file with
an exclamation point (!) at the front of the part line. You can assign a SPICE model
(.MODEL) or subcircuit to that part in the properties window.

You must also place a SPICE model definition (.MODEL block) in the exported SPICE file.
This is done either through SPICE command text or manually after exporting. If the SPICE
simulator supports libraries (both PSPICE and IsSPICE support libraries), the library
reference is included in SPICE command text entries.

Touchstone File Export

Touchstone circuit files are similar to Genseys netlists and are generally a one-to-one
translation.

XML file Export

Each Genesys object in the workspace tree has an XML format associated with it.
Workspace tree objects that can be exported to an XML format. To export an XML file:

1. Click the object in the workspace tree to be exported
2. Select the Export menu option from one of the given methods
3. Specify the name of the directory and filename of the exported object

Layout Designs

There are several tools available to you to help with the export/conversion of Layout
Designs.

AutoCAD DXF/DWG Translator

The DXF/DWG translator enables you to convert Genesys designs into AutoCAD's
DXF/DWG file format, as well as convert DXF/DWG files into Genesys designs. DXF is a
very simple file format that can be read by most CAD programs that support DXF. The
DXF/DWG translator is bidirectional and provides support for hierarchical and all layer
separation.

DWG is a binary format, therefore the files take less time to load and save. Genesys
supports importing and exporting to/from AutoCAD. AutoCAD versions 12 to 2007 are
supported for import. AutoCad versions 2000, 2004 and 2007 are supported for export.
Carefully consider how you want to use DXF/DWG output - including layer numbering, use
of holes, and polygon shapes - before beginning your layout Layout. Setting up the proper
layout rules in Genesys can save a lot of time in generating acceptable DXF/DWG output.
For specific considerations or limitations, consult your AutoCAD documentation.

368

Genesys - Users Guide

|'ﬂ Note: Password protected DWG files are not supported. |

Genesys includes an editor that can display the DXF/DWG Layout. Using the editor, you
can compare the DXF/DWG files to the original Genesys layout Layout to verify that the

Layout was exported correctly. Similarly, DXF/DWG files can be previewed prior to import
into Genesys:

« to edit a large Layout down to a smaller Layout prior to importing it into Genesys.
This edited Layout can be saved and then imported in Genesys.

» or after import, to verify that the DXF/DWG Layout data and the Gensys-imported
Layout appear similar.

For details, see Using the Pre-Production Editor.

Export Layout Options

We can show up Layout options settings, defining exporting Layout objects (components,
EM-ports, drill holes).

1. Converting to resolved polygons (Export ports = Yes):

2. All layout objects are converted to polygons, which are resolved to polygon unions for
all layers, not having text objects.

3. Exporting without converting to "resolved polygons" (Export ports = Yes):
All layout objects are mapped to output "as is", without converting to polygons.

369

Genesys - Users Guide

4, Converting to resolved polygons (Exports ports = No):
All layout objects are converted to polygons, which are resolved to polygon unions for
all layers, not having text objects. No EM ports are exported.

Options

370

Genesys - Users Guide
File format

DXF (Text) |Select this option to export the Genesys Layout to DXF format as an ASCII text file. This selection
is the default setting.

DWG Select this option to export your Genesys Layout to a binary DWG file format. Exporting to DWG
file format is faster than the DXF (Text) format. Also file size of the DWG file will be smaller as
compared to corresponding DXF (Text) file.

Autocad Use this drop-down list to select the AutoCad version. Genesys layout can be exported in three
version AutoCad versions: 2000, 2004, and 2007.

Paths as Select Paths As Polygons to export the Layout paths or traces as polygons. Paths or traces have

polygons |mitered or curved corners that need to be preserved in the translation. The Genesys layout has
paths with endpoint types other than flush that need to be preserved in the program database.
This option is selected as the default.

Hole The Hole format section enables you to define how the translator deals with holes in a Layout.
format

Holes as Select Holes As polygons to convert holes into polygons. One polygon will be created for each
polygons |hole in the same layer.

© Note
Some systems may not be able to tolerate complex polygons with cutlines. For these systems, select
Holes as polygons. This option is deselected as the default.

Holes as Select Holes as cutlines to convert holes into cutlines. This option is selected as the
cutlines default.

Gerber Translator
The Gerber Artwork Translator can translate artwork directly from circuit layouts created

with Genesys Layout editor into Gerber format. It exports Genesys layouts into ASCII files
that control Gerber photoplotting equipment.

Genesys includes an editor that can display the Gerber/Drill design. Using the editor, you
can compare the Gerber/Drill files to the original Genesys layout design to verify that the
design was exported correctly.

For details, see Using the Pre-Production Editor.

Gerber Command Format

The Gerber format is a humerical control language developed to generate photo artwork.
The output of this translator is an ASCII file that contains the following Gerber commands:

GO01 = linear interpolation
G54 = aperture select
D01 = shutter open

D02 = shutter close
D03 = flash

M02 = end of program
X and Y = coordinates
* = end of block

Coordinates are absolute, with implied decimal point and optional leading zero
suppression. However, the literal string values may be modified in the message file. For
example, GO1 may be changed to AB. A sample listing of the Gerber file commands, with
interpretation to the right, might look like this:

371

Genesys - Users Guide

G54D16* <— select aperture 16 (20 mil cirecle trace)
GOLESOY85D02 <— move the zhutter to 90, 85

Y185D0OL* <— open the shutter and draw to 90, 185

X190* <— while shutter remains open, draw to 150,185
Y85~ <— draw teo 190,85

XO0* <— draw to 90, 85

G54D45* <— select aperture 45 (60 mil cirele flash)
X140¥1L35002* <— ¢lose shutter and move to 140, 135

DO3* <— flasch expose

X0YODOZ*M0Z* <— return to the origin and stop

This example would produce the following figure.

20 mil

The output file (Gerber command file) is the Gerber Drawing File (.gbr).

Exporting Gerber Files

Genesys Gerber export tool can generate Gerber files in RS274X and MDA format for
raster photo plotters.

The Gerber export tool creates one output file for each different layer used in the layout
design. For example, if the design contains two layers, TOP METAL and TOP SILK, two
Gerber files will be generated:

e TOP_METAL.gbr
e TOP_SILK.gbr

All exported viaholes with identical metal layers are exported in 2 files: Gerber layer .gbr,
and drill file .drl. For example, if the design has viaholes between TOP METAL layer and
BOTTOM COVER, and between TOP COVER and TOP METAL layer, export of the viaholes
creates 4 files:

o TOP_METAL_BOT_COVER.gbr
e TOP_METAL_BOT_COVER.drl
o TOP_COVER_TOP_METAL.gbr
 TOP_COVER_TOP_METAL.drl

To export Gerber files:

1. In the layout window containing your design, choose File > Export > Gerber File...
372

Genesys - Users Guide

- Edit Wiew Layout Adton Took window Help

Mew Ch+h EBHA |
Open... Cti+0 ey T
Close Workspace Chrl+-ak+C A O® ’5? = =
Eave Ctrl+s _
Save bs...
Save M Workspaces Chrl+ak+5
Page Setup...
Print. .. Chri+P
ASCIDrill Lisk, ..
Irnpiort b Export Schematics bo ADS. ..
Send as Email.. Eill of Maberials

; Bitmap {Active Window) Rlt+FE
1 T Amp ve bri{ 1) s EBitmap (Entre Sorean) Alb4F7
2 T Amp w brlwess DHF File

3

3 CIThimport wsx COSIIFile...

4 Cap_Level_4.wsx
5 Molse Figure Chesck.wsx G‘LFic..

& Bipolar Amplifier wsx

7 Hole i pour wisx

Part Plac I Lisk
& Extrapolabion Testing(1).wsx % e

S-Paramebers. ..

Esit

2. The Export dialog box appears. Select export layers, and their polarity (default is
Eositive)

nort GAR Ootians: —m]
Layers | Garber Options | Drill Layauk Options
Layer Hame Expory Polarity

TOP SLK [w] |Postive

TOP METAL |Pastive

BT METAL M Pozitive

_INFO__ |Postive

Wia,_TOP METAL_BOT COVER [#] [Postive

o) o)

3. Set Gerber export options at the tab "Gerber Options" that apply.
For available options, see Gerber File Options.

373

http://edocs.soco.agilent.com/download/attachments/105972416/GBRexport1.jpg

Genesys - Users Guide

''''''' . X

| Layers Gerber Options | orill Layout Options |
File: Farmat Hale Format Mumber Format
Hales as cutlines
() R5274% ® Integer Digits: |2 w
() Holes as polygons
MDA Fractional Digits: |4 w
Cukput uniks LErD SUpression
(%) Leading
(®inch
o (2 Trailing Export: polylines
mm
O Mone

[] Generate Single File:

[QK][Cancel l

4. Drill file export is accomplished simultaneously as part of the Gerber export. The
procedure for generating the drill file is similar to generating the Gerber file.To create
Gerber drill file, select exporting drill layers. You may edit actual drill tool diameter
for each drill hole.

Note. All drill holes from the same the viahole layer are selected together.

Drill files are configured from the Drill tab in the Export Gerber Options dialog.Select

the check box to designate the layer for which you want to generate the drill file.

When a layer is selected, all the tools on that layer are automatically selected. By

default, no drill file will be generated during Gerber export.

The drill file options Number format, Output unit, and Zero suppression are same as

options set for Gerber export in Options tab of Export Gerber Options dialog.

However, note that the zero suppression in Drill is actually a zero inclusion.

Tool Dia. (Diameter) is an editable field. By default the Tool Diameter value equals
the Drawing Diameter value.

Layers | Gerher Options | Dril | Layout Optiores
Drill dia. Towol dia.
Layer Hame Export {mim) {mmj Tool count

WA TOP COVER BOT_COVER [+ 0.2006 02 1168
E 0254 0.25 926
| 0.2997 03 5286
] 0.4826 05 207
[1 1 263
=l 3 3 3

[ok || canes | Hep |

5. The exporting layout objects and output objects format may be specified at the
"Layout options" tab. It may include component footprints, EM-ports, and drill holes.
All Genesys layout objects may be converted to "resolved" polygons by selecting
"Convert all shapes into resolved polygons". In this mode you may specify layout
geometry resolution parameters for arcs and linear layout object items.

374

Genesys - Users Guide
Export GBR Options =

| Layers || Gerber Options | Drill | Layout Options |

[#] Expart components

[¥]Export ports

[convert 3 shapes into reshoved polygors

T

6. Click OK to save your settings or Cancel to retain the default settings.
It closes "Export GBR Options" dialog and opens "Export GBR" dialog, setting output
Gerber file(s) location.

= et

Browse For Folder

Select the root Folder For the gerber files:

e ~
7
s
!]ﬂg
10
=1
=N L
91
& I 100
() board

| £

Folder: 1
|

As a default all output Gerber files will be exported in a single folder - one file per
layer(.gbr) and per drill layer(.drl).
If it's exported to a single file - all Layout layers and drill holes will be saved in one
output Gerber file.

7. Click OK to export the Genesys layout design to a Gerber file, or click Options to
update export options.
A Status window appears detailing the export information.

375

Genesys - Users Guide
Errors -

T | Errar | L sseabiom | |
1 Iyt Fraion Linrid) TRoeh ciegn "Tauion 1™ s SUcCbasnady @pcetiod 1o GER-Eary Duesigrd [DHesigr)
' | Folder- :fusersTeats EncadlExamples ierher

Files:_INFO__ ghbr, W1a_TOF_CONVER_BOT_COWER Ol

Ws_TOP_CONVER_BOT_COVER gh,

Shore)

8. If checkbox "View File after Export" is set, after the export it opens "Preproduction

editor": _
= - [ofx |
=3-1- B a0 +EERY

Layer Talis . ﬂl* [ﬂ HEIJ"

Gerber File Options

File format

e Select RS274X for an enhanced version of Gerber RS274D format that supports
embedded apertures and G36/G37 polygons.

e Select MDA if your photoplot shop uses a FIRE 9000 plotter. It embeds apertures
and supports POEX/POIN polygons for fill on the fly.

Hole format

In Genesys, when a hole is created in a geometrical figure (like polygon), a cutline is
introduced. This is a false edge connecting the outer boundary of the polygon with the
inner boundary. This polygon is actually a single re-entrant polygon. When you select
Holes as cutlines this re-entrant polygon is translated to Gerber as-is. The default is
Holes as cutlines.

Holes as Cutlines

Select Holes as polygons or Preserve holes to remove the false edge from the
polygon.

Holes as polygons

376

Genesys - Users Guide

When Holes as polygons is selected, holes are exported as filled parts. Therefore the
polygon will appear to have no holes.

Preserve holes

When Preserve holes is selected, the resultant polygon in Gerber contains a dark area
and empty area. This option is not available for exporting Gerber files in RS274X format.

Unit

Available units are inch or mm. Inch is the default.

Number format

The number of integers placed before and after the decimal point. If chosen incorrectly,
Gerber data resolution can be poor. The default is 2.4. If the unit is set to mm then you
can set the number format to 3.3.

A warning message is displayed in the Status window to notify the user that to preserve
the precision in the Gerber data, number format has to be selected carefully. If the Gerber
data is not generated correctly for the selected number format then a suitable error
message is displayed in the Status window.

Zero suppression

Available settings are Leading and None. Select Leading (the default) to remove all
leading zeros in the coordinate data, making the Gerber file smaller.

Line width for polylines

Polylines in Genesys have zero width, but you can use this option to provide a width to be
used for drawing this polyline in the Gerber file.

If the polylines and arcs (both zero width entities) are not required to be exported, then
set the width to zero.

Generate single file

377

Genesys - Users Guide
When this check box is selected, a single file is generated for all the selected layers in the
Layer tab. Specify the file name with extension .gbr. This file will be created in the
destination directory selected in the Export dialog box.

Gerber Layer Options

All the layers used in the design are displayed in a table in the Layers tab of the Export
Gerber Options dialog. By default, all the layers will be displayed with positive polarity and
all layers will be exported. You can avoid exporting a specific layer by de-selecting the
check box in the Export column for that layer.

Limitations and Considerations

« No intermediate mask file is generated.

« The new Gerber export tool is targeted for the raster photoplotters to generate
RS274X and MDA file format.

« No aperture filling is supported for polygons.

« No separate aperture file is required for RS274X and MDA files.

e You must set the appropriate number format in the Export Gerber Options dialog so
that the precision in Gerber data is more than the precision in layout design.

e The Gerber translator can generate a single Gerber file for all layers. However, the
Gerber Viewer cannot process a Gerber file in which multiple layers are defined in a
single file.

It imports only the first layer defined in the file.

o Exporting MDA files using "Generate single file" option will export all the figures in
the same layer. It is advisable not to use "Generate single file" option for MDA
format.

« If a layer does not have any via (circles) then it will not be displayed in the Drill table
and no drill file will be generated for that layer.

e One drill file will be generated for each layer.

« Drill files will be created in the Destination directory selected in the Export dialog.

« Drill file name is the same as layer nhame with extension .drl. For example, drill file
for the layer cond will be cond.drl.

o If Tool Diameter is set to 0.0, the Tool Diameter will be equal to the Drawing
Diameter in the output drill file.

Using the Pre-Production Editor

Genesys includes an editor that can display DXF/DWG and Gerber/Drill designs. Using the
editor, you can compare the DXF/DWG and Gerber/Drill files to the original Genesys layout
design to verify that the design was exported correctly. Similarly, DXF/DWG and
Gerber/Drill files can be previewed prior to import into Genesys:

« to edit a large design down to a smaller design prior to importing it into Genesys.
This edited design can be saved and then imported in Genesys.

« or after import, to verify that the DXF/DWG and Gerber/Drill design data and the
Genesys-imported design appear similar.

378

Genesys - Users Guide
Layer Table Status Window Mouse Coordinates Units

Ly Tanle Tradaftada W act %

EL i LR
% s i <203 b el b s Lewntad Vel e aaides [l besmp_beest_coll_rals_refd
Loawd Trme: L 242 5oy

L s £ : fuser ;2 908 el projocts fooead it msk oodiles fd gk inc oniity Aof

L Tirw: 012 govs

0 Eeren WPl FILITHIE wn

File Menu

The File menu contains common Open, Save, Save As, and Close functions and lists the
four most recent files viewed in the editor.

O Note
When files are saved as Gerber/Drill files using the Pre-Production editor, the layer name is used as the
file name.

Edit Menu

The Edit menu contains common and specialized editing commands.

379

Genesys - Users Guide

Enable Enables editing commands to be performed on the current design. De-select this item to view the

Editing design in read-only mode. In this mode, editing commands are unavailable.

Undo Undoes the last editing command. A stack of edit commands is created enabling you to choose
Undo repeatedly to return to an earlier state of your design. A stack is maintained for each
window, thus the Undo command works independently from window to window.

Redo Returns the file to the pre-undo state.

Cut Enables you to delete one or more items from one window, and paste in another window.

Copy Enables you to copy items in a given design window and then paste those items within the same
design window or another design window.

Paste Enables you to paste items that you previously cut or copied. You are prompted to enter the X and
Y coordinates of the position where you want to paste the copied items. Select Apply to paste or
Cancel to dismiss pasting.

Delete To delete selected items, click the Delete button on the toolbar, or press the Delete key on the
keyboard, or choose Delete from the Edit menu. Deleted items can be restored using the Undo
command.

Select All |Enables you to select all figure(s).

Deselect |Deselects all the selected figure.

All

Modify This choice lets you modify the following items:

e Select figures and click Union to perform union of the figures.
e Select figures and click Intersection to perform union of the figures.
e Select figures and click Union Minus Intersection to perform union of the figures
e Select Crop to crop an area from a figure(s).
e Select Chop to chop an area from a figure.
© Note

Union, Intersection, Union Minus Intersection, Crop, and Chop do not work for open ended figures with
zero width (for example arc and polylines).

View Menu

The view menu contains commands that allow you to alter the view of the current design.

View All
The Zoom

Your design is scaled and repositioned to fit within the viewing area.
The Zoom commands enable you to enlarge or shrink the area being viewed. You can zoom in

Commands and zoom out using mouse wheel. The enlarged or condensed figure is moved towards the

Measure

center of the window.

e Zoom To Area > click a point and then with the mouse button pressed move the mouse
to the bottom right of the area and release the mouse button to define a new view.

e Zoom to Point to zoom in on a specified point in the window. Click to specify a point and
the current view is magnified by a factor of two, moving the point you specify to the
center of the window.

e Zoom In By 2 to zoom in by a factor of 2.

e Zoom Out By 2 to zoom out by a factor of 2.

Bbechse ¥

Deka X,

ancje

Cumative Distance

[cewr [coxa |[e |

The Measure dialog allows you to measure lengths.

380

Genesys - Users Guide
Absolute X, Y displays the absolute coordinates of the point of mouse click.
Delta X, Y gives the relative X and Y coordinates from previous mouse click.
Angle gives the angle with respect to a line horizontal to the X axis.
Cumulative distance gives the total length from starting point to current point.
Click Clear to reset the values for Absolute X,Y, Delta X, Y, Angle and Cumulative
distance.
e Click Cancel to dismiss the measure dialog box.

Undo/Redo |[Ifilyi e he e %]

Stack <empky =
Delete

Paste
uk

| o —

Shows last performed actions. You have an option to undo or redo the last operations

performed.
Layer Table ayer Table X
[Select Al l [Deselect Al l
on | Mum Mame | Color
: default .
kexk .
packa... .
The layer Table displays the layer information. It enables you to switch on/off layers from
display. It also enables you to view layer number, layer name and layer color. Click Select All
to view all the layers and Deselect All to switch off all the layers. All the layers are displayed
by default.
Status The status window displays messages about the status of the current design, as well as warning

and error messages.
Window Menu

This menu contains the following common Window commands:

Close to close the active window.

Close All to close all open designs.

Tile to arrange all child windows in a tile pattern.

Cascade to arrange all the child windows in a cascade pattern.

Arrange Icons to arrange all iconified windows at the bottom of the
workspace.

Next to navigate to next open window.

Previous to navigate to previous open window.

Viewing Files in the Pre-Production Editor During Export

To view a DXF/DWG or Gerber/Drill file during export from Genesys:

381

Genesys - Users Guide

1. Select DXF/DWG or Gerber/Drill from File type drop-down list in Export dialog.

2. Select the View file after export checkbox and click OK.
This will display the exported DXF/DWG or Gerber/Drill file. A status window shows if
the export is complete or failed and the design is displayed in the Pre-Production
Editor.

Viewing Files in the Pre-Production Editor During Import

To view a DXF/DWG or Gerber/Drill file during import to Genesys:

1. Select DXF/DWG or Gerber/Drill from File type drop-down list in Import dialog.
2. Click Preview to view the file in the Pre-Production Editor.

Editing Files in the Pre-Production Editor

Using the Pre-Production Editor you can cut, copy, paste and modify designs. From the
Modify menu, you can perform editing functions like union, intersection, union minus
intersection, crop, and chop.

To edit using the Pre-Production Editor:

1. Open a design in the Pre-Production Editor as described above.
2. Click Edit > Edit Enable.
e To cut a figure, select the figure and then click Edit > Cut.
e To copy a figure, select the figure and then click Edit > Copy.
3. To crop or chop a figure:
o Select the figure.
Selected Object ——

B v v nep

| w Enable Edting B +Banh

e O i
Cogy ireC

Deslebe (e}
Select Al Cirled
Deedect A1

1 -

o Tabils Urnde Mewhy Tk ok,

e Click Crop or Chop.
e Mark the area to crop/chop using mouse.

382

Genesys - Users Guide

Area Selected To Crop i

« Release the mouse to crop/chop the selected area.

Cropped Area i

4. Click Delete to delete selected item.
5. Click Undo to revoke last Edit command.

Using Files From Earlier Genesys Versions

Genesys lets you load files created using all versions of Genesys prior to the current
version. Once you save the files using the current version of Genesys, the files will not
load in versions prior to GENESYS2005 (forward compatibility, and not backward
compatibility).

GENESYS2005 and beyond are backward compatible as long as you disable Compact Data
Format (Tools / Options).

383

Genesys - Users Guide

Old Support:

Genesys imports files created using SUPERSTAR version 4 or later and any version of
Genesys. You cannot import the following features from versions of SUPERSTAR created
prior to version 4:

Post Processing - Genesys now has better post processing capability that is not
compatible with the old technique. For information on the new post processing
procedures, see the Simulation manual and the Using Equations chapter of the User's
Guide . Also, see the Genesys example file Model Extract.wsx.
3D Graphs - Parameter sweeps are now different, so you must recreate 3D graphs
after importing them.
EMPOWER Simulation Data - EMPOWER calculated data is now stored inside the
workspace file, instead of separate files. You must recalculate the data after
importing. Also, you might want to set up any decomposition examples again,
because Genesys version 7 and later provides better ways to set up these files. For
more information, see the EMPOWER manual.
Multiple Impedances - Files with multiple WINDOW blocks reusing the same
network to simulate different terminations use only the first set of terminations.
Impedances are now stored in the ports and are tunable. If you still need multiple
impedances:

1. Load your schematic.

2. Create other schematics using NET blocks so your schematic can use the

terminations you want.

Microstrip Radial Stubs (MRS) (part) - There is a new radial stub model with only
one port that was introduced in Genesys version 7. Replace any radial stubs with a
microstrip tee and the new stub. For more information, see the part Catalog .

Using the ADS Link

Genesys provides a link to Advanced Design System (ADS). You can export schematics
from Genesys directly to an open ADS session by selecting File > Export > Export
Schematics to ADS. Genesys displays a dialog box showing all instances of ADS with open

projects.
ADS Export Options El
Designs]
Export ko ADS Project: |[sSE=Te taEl o] gl e STy
Design | Export | Status
Filter1 _Schematic Id Mot modified in ADS since last export (OK to re-export)
Filter1 _Schematic_TestBench I~ Mot modified in ADS since last export (OK to re-export)
Schi r Design with same name exists in ADS, but it's not from GENESY'S.

¥ Export Selected Test Benches For Linear Analyses [2 Checkal] [3 Uncheck Al]

[The ADS design will be overwritten if this design is exparted.)

oK | Cancel | | Help |

You first select the instance that you want (if there is more than one running), then you
select which design/s to export to ADS. When you click OK, the selected schematics are

384

Genesys - Users Guide
transferred to ADS. See ADS RF Architect and Synthesis documentation (in the

Transfer/IO section of the ADS documentation) for more information on using the link in
ADS.

The link transfers schematics only from Genesys to ADS. It does not transfer schematics
from ADS to Genesys. Only schematics and linear simulations will be transferred. Layouts,
plots and datasets are not transferred. Not all schematics will transfer exactly, see ADS
documentation for substrate/model mapping information.

Installation Requirements

« An installed version of Genesys 2006.10 or newer
« An installed Windows version of ADS 2006A or newer

Licensing

« If Genesys was purchased as an ADS add-on, choose ADS style licensing in Genesys.
e On multi-CPU systems which use network licenses, it is important to always:

1. Stop the ADS simulator before launching Genesys.

2. Exit Genesys before starting a simulation in ADS.

Accessing ADS Documentation

Documentation is available on the web at:
http://edocs.soco.agilent.com/display/doc/Home ,
or can be accessed by clicking a help button in ADS.

385

http://edocs.soco.agilent.com/display/doc/Home
http://edocs.soco.agilent.com/display/doc/Home

Genesys - Users Guide

Layouts

Layout creates a board description for sending to a board plotter or for simulating the EM
effects using EMPOWER simulation. You can export the layout for milling or etching in
standard industry formats such as GERBER, DXF, and GDSII. You can also create a layout
from scratch.

Contents

e Creating Layouts (users)

Changing Layout Properties (users)
Manipulating Layouts (users)

Changing an Association Table (users)

Adding Text and Changing Fonts (users)
Reviewing Nodes and Rubber Band Lines (users)
Using Layers (users)

Adding Footprints to Layouts (users)

Using the Footprint Editor (users)

Using Pads in Layouts (users)

Adding Polygons, Pours, and Ground Planes (users)
Importing and Exporting Layout Files (users)

e Using Gerber Files (users)

Creating Layouts

A layout is the physical arrangement of parts on a circuit board. It creates a board
description that you can send to a circuit board manufacturer or use to simulate
electromagnetic effects through MomentumGXF. You can export a layout for milling or
etching in standard industry formats such as Gerber, DXF, and GDSII. You can create a
layout based on a schematic, from scratch, or from artwork imported from a file.

You can create a layout from scratch or based on a schematic.
> Layout! FBX
.3

4 ¥

Parilist - Layout

To create a design with a layout:

1. Click the New Item button () on the Workspace Tree toolbar and select Add
Layout from the Designs menu.
2. Define the layout properties and click OK.

386

Genesys - Users Guide
3. Use the layout toolbar to add metal to the layout.
4, To add parts to a layout, place them in the associated schematic.

To create a design with a layout based on a schematic:

1. Create a design with a schematic.

2. Use the Part Selector to add parts to your schematic.

3. Right-click the Schematic tab and select Add Layout.

4, Select a component and click the Change Footprint button (H) on the Layout
toolbar to change the footprint used for specific components. For example, change
the footprint used by a specific capacitor to a larger or smaller footprint.

5. Move and rotate footprints to the positions you want.

6. Place lines and arcs as required to connect footprints and resolve the rubber band

lines.

7. Place any other required objects, such as text, connectors, non-schematic footprints,
and ground planes.

8. Send the finished layout to a printer, plotter, or file.We can add a layout to our
current design..

.w.
© FE1MHZ
. PAC=30dBmM
PH=0deg
PORT=1 | |
> ANAA—— >
N 1 Port_2
R=5010F £=1000pF IO=3002
»
>
ﬂ Parilist |_ Schematic |

The layout is automatically generated and added to the design.

< >

PartList | [Z-Schematic fw Layout | 5| Netes

© Note: As you edit the schematic or partlist and add or delete parts these changes are reflected in the
layout.

387

Genesys - Users Guide

P

are using the correct design(s).

Note: Layouts can be associated with more than one design. Check the layout properties and ensure you

Advanced technique - multiple windows Select Window / New Window from the
menu, then resize and rescale (hint: use Ctrl+Home to maximize the parts) the

schematic to get this..

* Designl

£
[kd] PartList | [7-Schemstc o Layout l

W5l
F=1WHz
PAC=-30 dBim
PH=0 deg
. N\
)""_W\/ ? || £y 4
R © Pon 2
TO=5010)

FR=E00 =1500 pF

54 Partlsl [Schematic I P Lot I =] hotes]

P

reduce processing overhead).

Note: Some edits made in one window will be reflected in the other window only when it is clicked (to

Changing Layout Properties

Changing Layout General Properties

Use the Layout Properties General page to change the general properties of a layout.

To change the general properties of a layout:

o Click Layout on the Genesys menu and select Layout Properties.

o Click the General tab.
o Make the changes you want.
o Click OK.

388

Genesys - Users Guide

LiYOUT Properties X
Gawnal | Associshons | Laver | Forks
R Lo Sengs (Uses UNITS 85 o=t i box o it
| nesign J ris: |l - End Spadng; | 0.5 [Flshas G Do
WPk Desin |) o
| bieck: Dirarsion [FlShaw EW o=
EMPOWIER. Gii:
Line width: |1 | SFrvws EMPOWER. Grid
B ik e | 10 i |2 Cels)
pad sy |1
Bz Hejght ;| 50 [RBTl Celis)
Dol Bhamatar: | 15 B
Crigini 0
Wikt Dircasing) Sk i
il L Shaey Homenbom Mash
E TIM-Plage Parks {urd Esch
Port Sige: | 20
[t o | B
AaHn g a0y
X ; | & Bemoem
r5ckd {Speque) Default Laryes
(2 YRy more Top Layer: | [ToF METAL -
Otialow Bottom Larver: | Bctrom cover %
[camd] [Che

Designs to Include - This grid shows all available designs to place on the layout. If
a box is checked, the layout will contain footprints and rubber band lines
corresponding to the parts in that design. These footprints and rubber-bands will
automatically update as needed.
Drawing Style - This is the fill mode for all metal filled objects (lines, rectangles,
polygons, etc).

o Solid Drawing Mode - Classic opaque fill.

o "X-Ray" Drawing Mode - Semi-Transparent fill that allows users to see

overlapping layers.

o Hollow Drawing Mode - Emphasizes edges, with a faint interior fill.
Units - The available units for dimensioning objects on the layout. If you enter a
number for a custom unit, simply use a constant multiplier for converting the unit to
millimeters. Some common numbers are:

mm 1
mils .0254
meters 1000
inches |25.4

Object Dimensions - Default sizes for most commonly used objects. These numbers
define the default dimensions line and pad widths, and the drill diameter for viaholes.
Box Settings - Determines how the page is displayed on the layout screen. You can
use the page as a board edge indicator, for use in placing the footprints. This box
also corresponds to the EMPOWER box. The following options are available:

o Widths - The available widths for lines and arcs. The widths shown here are
available in the Line Width combo box on the main LAYOUT screen.

o Remove - Removes the selected width from the Widths box (see above).

o Add New - Adds a new width to the available list in the Widths box (see above).

o Grid Spacing - The on-screen vertical and horizontal grid spacing, using the
selected units. Parts are placed on this grid by default, so this number
determines the resolution for part placements.

o Grid Spacing X, Grid Spacing Y - These control the cell size for the EMPOWER
run as well as the grid snap feature in LAYOUT. When using the EMPOWER Grid
Style, there will be LAYOUT snap points between each grid line which allow lines
to be centered between two grid points if necessary. They are often referred to
as dx and dy and should be small with respect to a wavelength at the maximum
frequency to be analyzed, preferably less than I/20 and always less than 1/10.
These parameters correspond directly to the DELTA statement in the TPL file.

o Show EMPOWER Grid - Turning on this check box forces LAYOUT to display
the rectangular EMPOWER grid. It also allows different grid spacings in the X

389

o

o

Genesys - Users Guide
and Y dimensions. It is strongly recommended to turn this check box on
whenever you are creating a layout for EMPOWER.

Box Width (X,Y) - The desired width and height of both the page and the
surrounding EM analysis box, using the units selected in the Units box.

Origin - The origin for mouse cursor measurements. The on-screen coordinates
display information relative to this origin. The absolute origin is at the lower left
of the page. To specify a new origin, enter coordinates relative to the absolute
origin, using the selected units. For example, if your page is 100 x 200 mils and
you want the origin at the upper left, you would enter 0, 100.

Show Box (Check box) - Shows or hides the page boundary.

Show Grid Dots (Check box) - Shows or hides the part placement grid.

« Drawing Options - The following options are available:

o

o

o

Port Size - The size (using the current units) for drawing ports.

Rotation Snap Angle - The incremental angle (in degrees) used for rotating
objects. This can be any number, but should be positive and < 360.

Multi Place Parts (Check box) - Turns on or off multiple placement. In the
main LAYOUT window, you click an object button (such as the Line button), to
place an object on the layout. Normally, the object button must be selected
every time the object is to be placed. The Multi Place Parts option allows you to
place as many parts as you like by selecting the object button only once. Press
Escape when done placing parts.

Default Viahole Layers - The Start Layer and End Layer combo boxes control
the default layers for the viaholes. These layers can be overridden individually
for each viahole if necessary. Currently, viaholes in EMPOWER can only go from
the metal layer through one substrate layer to either the top or bottom cover.

Changing Layout Layer Properties

Use the Layout Properties Layer page to make changes to any of the layers in a layout.
To change the general layer properties of a layout:

WN -

Click Layout on the Genesysmenu and select Layout Properties.

Click the General Layer tab.
Use the Show Columns check-boxes at the top to control which cells are displayed
in the information grid.

Make the changes you want.
Click OK.
Gararal | Aswxcistions | Laswr | Fonts
Frowe o [vmtal [SETS T [l garard [l Laser gunbar ard Colar
=hara A1 Flen 7| EMETaER | Harsartun Forsnt.n got-Typa: [=mimp -
3 come Ly e S e e g e

il
Thicknsas

=00

Hhe Eeight B

IT=IE

o Sarfacn e Correrd Thick Mistel Besend
m Vg Fils Bunction [(Rowl | TFone

(K]

i Lot Fris LageeFies
]

Sups ba Layer Fibs. ..

|

« Name - The name assigned to each layer. This name is used throughout the program
to identify the layer. Although you can type anything for the layer name, you should

390

Genesys - Users Guide
limit the length to about 12 characters, since combo boxes within the program are
not wide enough to display lengthy names.
- Layer number
Color - Shows the selected color for each layer. Click the button for any layer to
select another color.
Layer Type - Identifies the layer type. Available options are:
o None - This layer is considered blank (it is not used).
o Metal - All conductive traces and pads go on a metal layer.
o Substrate - Separates metal layers, and is used to indicate board dimensions.
Any cuts or holes in the board (screw holes, etc.) go on a substrate layer.
o Silk - Silk screen is used for labeling on the final board. It is often white or
yellow for easy identification.
o Mask (Solder Mask) - This is a negative layer - objects on this layer indicate an
absence of solder mask. This layer is automatically generated from pads and
viaholes.

© Note: Momentum will project mask layer objects onto the closest metal layer (as
copper).

o Assembly - Indicates exact positions for component placement. It is used as a
diagram for placing components at the production stage, and does not actually
get used during board creation.

o Paste - Indicates where solder paste should be placed.

Hide - When selected, the corresponding layer is not shown in the layout.

On Bottom (Mirrored) - When selected, the corresponding layer is mirrored (shown
reversed) in the layout. This is useful for bottom layers, which would be reversed
when viewing the top layer.

Plot - Selects whether to plot the corresponding layer, when generating output
(printing, exporting as Gerber, etc.)

Etch Factor - Adds an etch factor to the corresponding layer, using the Layout units
(mils, etc.) selected on the General tab.

Use - Check this box to include the corresponding layer in the EM simulations
(Momentum and/or Empower); uncheck it to omit the layer from EM simulations.
Momentum-only Parameters:

o Use Layer Mesh Density - When checked, Momentum will override its default
layer mesh density with the per-layer value specified in the next column on the
right.

o Mesh Density - The mesh density, specified as an integer number of cells /
wavelength; the default is 30.

o Use Layer TL Mesh - When checked, Momentum will override its default layer
transmission line mesh setting with the per-layer value specified in the next
column.

o TL Mesh - Transmission Line Mesh - An integer number of cells / width. 0 is
automatic.

o Edge Mesh - When checked, Momentum will override its default edge mesh
width setting with the per-layer value specified in the next column.

o Edge Mesh Width - The width of the edge mesh, using the Layout units (mils,
etc.) selected on the General tab.

o Via Model

« Default - Use the via setting specified in the Momentum GX analysis.

« Lumped - simulate the via using lumped parts.

= 1D, 2D, 3D - Use 1 (wire), 2 (planar - no horizontal currents), or 3-
dimentional (spacial - includes horizontal currents) simulation for the via.

o Strip Model - not available when the layer is a "physical slot"

= Default - Use the strip model setting specified in the Momentum GX
analysis.
« 2D, 3D - Use 2 or 3-dimensional simulation.
391

o

Genesys - Users Guide
Precedence - metal layer precedence for Momentum mesher (from 0 to 9,
default = 0).

« Type - Other entries in this table are different for each type of layer. To find help on
each column, see the section below for the type of layer: Top/Bottom Cover, Air
Above/Below, Metal, or Substrate layers.

« Top Cover & Bottom Cover - Describes the top and bottom covers (ground planes)
of the circuit. Types include:

o

o

Lossless: The cover is ideal metal.

Physical: The cover is lossy. These losses are described by Rho (resistivity
relative to copper). Momentum assumes a cover thickness of 0, while Empower
uses the Thickness and Surface Roughness parameters as well.

Electrical: The cover is lossy and is described by an impedance or file. See the
description below under metal for more information.

Open: In Momentum, no cover will be simulated, also "Open" is not supported
in box simulation mode. In Empower (which always uses a box), the design is
simulated as if the box walls and uppermost substrate/air layer extend up or
down forever (an infinite tube). In earlier versions of Genesys, this option was
known as "Semi-Infinite Waveguide".

Magnetic Wall: The cover is an ideal magnetic wall. This setting is only used in
advanced Empower (no Momentum) applications.

Substrates: Choosing a substrate causes the cover to get the rho, thickness,
and roughness parameters from that substrate definition. We recommend using
this setting whenever possible so that parameters do not need to be duplicated
between substrates and layouts. Momentum ignores Thickness and Surface
Roughness. For cover it always uses 0 thickness.

« Air Above & Air Below - The presence of air at the top of the box (as in microstrip)
or the bottom of the box (as in suspended microstrip) is so common that special
entries have been provided for these cases. Checking the box to turn these layers on
is the equivalent of adding a substrate layer with Er=1, Ur=1, and Height (in units
specified in the Dimensions tab) as specified. For "Open" cover the Height of the
cover air is ignored, when the other Air dielectric parameters (Er, Ur, Tand) define
the free space dielectric parameters.

!y |Caution: When setting up a new circuit, be sure to check the height of the air above, as it is often
the only parameter on this tab which must be changed, and is therefore easily forgotten.

« Metal Layers - Metal layers are used for metal and other conductive material such
as resistive film. The following types are available:

o

o

o

Lossless: The layer is ideal metal.

Physical: The layer is lossy. These losses are described by Rho (resistivity
relative to copper), Thickness, and Surface Roughness.

Electrical: The layer is lossy and is described by an impedance or file. This type
is commonly used for resistive films and superconductors. If the entry in this
box is a number, it specifies the impedance of the material in ohms per square.
If the entry in this box is a filename, it specifies the name of a one-port data file
which contains impedance data versus frequency. This data file will be
interpolated/extrapolated as necessary. See the Device Data section for a
description of one-port data files.

Substrates: Choosing a substrate causes the layer to get the rho, thickness,
and roughness parameters from that substrate definition. We recommend using
this setting whenever possible so that parameters do not need to be duplicated
between substrates and layouts.

!y |Caution: Unless thick metal is selected, thickness is only used for calculation of losses. It is
not otherwise used, and all strips are calculated as if they are infinitely thin.

Metal layers have additional settings available:

392

Genesys - Users Guide

Metal Thickness - Thickness of the metal layer on a substrate.

Rho - "Resistivity (relative to copper) is usually 1.0.

Current Direction - Specifies which direction the current flows in this layer. The
default is along X and Y. "X Only" and "Y Only" can be used to save times on long
stretches of uniform lines. "Z Up", "Z Down", "XYZ Up", and "XYZ Down" allow the
creation of thick metal going up/down to the next level or cover.

Thick Metal - Checking this box instructs the EM analysis to model the metal
including thickness. Empower does this by putting two metal layers close together,
duplicating the traces on each, and connecting them with z-directed currents. If thick
metal is used, then Current Direction is ignored.

Part Z-Ports - Specifies the default direction for automatically created part ports,
either to the level above or to the level below. Generally, you should choose the
electrically shortest path for this direction.

Physical Slot - Slot Type - In Momentum, if the Momentum Slot-Type combo-box
is set to "Slot", check this box to swap the metal and non-metal areas of the metal
layer. (In Strip mode, this setting is ignored). In Empower, check this box to
simulate the non-lossless-metal areas (as opposed to the metal areas). Use this for
ground-planes and other layers which are primarily metal. Do not use this for lossy
layers. See your Empower manual for details.

Rough - Check this box to specify metal roughness in Empower. (This field is ignored
by Momentum.)

Substrate Layers - These layers are used for substrate and other continuous
materials such as absorbers inside the top cover. An unlimited nhumber of
substrate/media layers can be used. The following types are available:

o Physical w/Tand: The layer is lossy. The layer is described by Height (in units
specified in the Dimensions tab), Er (relative dielectric constant), Ur (relative
permittivity constant, normally 1), and Tand (Loss Tangent).

o Physical w/Sigma: The layer is lossy. The layer is described by Height (in
units specified in the Dimensions tab), Er (relative dielectric constant), Ur
(relative permittivity constant, normally 1), and Sigma (Bulk Conductivity).

o Substrates: Choosing a predefined Substrate causes the cover to get the
height, Er, Ur, and Tand parameters from that substrate definition. We
recommend using this setting whenever possible so that parameters do not
need to be duplicated between schematics and layouts.

!y |Caution: For true stripline (triplate), be sure to check the Use 1/2 Height check box if you
are using a Substrate. This forces Empower to use 1/2 of the Substrate height for each
substrate (above and below) so that the total height for both media layers is correct.

Substrate layers have additional settings available:

1/2 Height - If the layout is a stripline circuit and is using a named substrate,
checking this box forces Empower to use 1/2 of the Substrate height for each
substrate (above and below) so that the total height for both media layers is correct.
Height - Height (thickness) of the substrate.

Er - The "relative dielectric constant quantifies a material's ability to store charge
when used as a capacitor dielectric, which affects the properties of transmission lines.
The higher the constant the higher the energy stored within the capacitor. Eris
defined as the ratio of a material's capacitance to the capacitance of air. (Air = 1.0)
Tand / Sigma - Tand and Sigma share the same column, since the parameters are
mutually exclusive. Tand - the "dielectric loss tangent - is defined as the real part of
relative permittivity / the Imaginary part of the relative permittivity. Sigma is the
dielectric "Bulk Conductivity" value.

Ur - The Relative Permeability of the substrate is also know as the magnetic constant
is usually 1.0.

393

Genesys - Users Guide
Surface Impedance Value or File - The impedance of the surface of the substrate
OR the name of a file Empower (only) to use instead. This field is only available for
metal and covers, when Type is set to Electrical.
Momentum Slot-Type - This setting affects any layer with a check mark in the
Physical Slot column. The combo-box has two choices, which indicate how
Momentum should analyze the layout.

o Strip - Momentum will interpret metal layers with "Physical slot" checked just
like Empower, i.e. without swapping the layer's metal and non-metal areas. This
allows for the creation of layouts which are compatible with both Empower and
Momentum: Empower never swaps metal with non-metal areas in the "physical
slot" metal layers - it simulates "Slot" layers internally.

o Slot - Each layer's "Physical slot" check box indicates that Momentum should
swap its metal and non-metal areas. (Momentum changes the slot layer
topology of the layout).

Insert Layer - Inserts a new layer at the current cursor position.

Delete Layer - Deletes the layer at the current cursor position.

Up / Down - Moves a layer up (or down) in the layer stack.

Show / Hide All - Shows or hides all the layers (by checking all the check-boxes in
the Hide column).

Use All / Use None - Checks all the "Use" column check-boxes, which indicates
which layers will be simulated by Momentum or Empower.

Load From Layer File - Loads a new layer configuration from a file.

Save To Layer File - Saves the current layer configuration to a new file. Currently,
only general and color info is retained (no Momentum, EM, or Empower layer data is
saved).

Changing Layout Associations Properties

Use the Layout Properties Associations page to determine which footprint to initially use
for each type of design part using the Association table. The Association table is generally
modified only when a new layout is created. It is automatically saved using the current
name when you close the window, or you can save the table to a new name. You can also
load a previously saved table.

© Note: You must save the .TBL file into the {product-name}\LIB subdirectory. You cannot use the
Association table if it is saved into other directories.

LAYOUT Properties 3

General | Associstions | Lsyer | Fonts
Element Type | Default Footprint | Library | | ~

1 GND GROUND, BOTTOM, 75mi SAMPLE LIB [__change

2 | IND LC3216 [1208] Chip Inductor SM7E2LIB
El RES RC3218 [1206] Chip Resistor SM7B2LIB

| CAP CC3216 [120] Chip Capacitor SMTE2LIB

5 | SGND SIGHAL, COPLAMAR, S0mi SAMPLE LIB

B | FET 50723 3-in 50T SM7E2LIB
7| BIF SOT23 3-pin SOT SM7E2LIB

B | TLE TRANSMISSION LINE, 120x25mi SAMPLE LIB
El TRF S04 wirle 4-pin SOIC SMTE2LIB

0 | XL HCE Quartz Crystal LEADED LIB
11| TWO 50723 3-in 50T SM7E2LIB

12 | CoA COAXIAL LANDING, 100x50mil SAMPLE LIB

13 | =] COAMIAL LANDING, 100xS0rmil SAMPLE LIB

4 | CPL COUPLED TRL, 120:25mil, S=15mil SAMPLE LIB

15 | GYR SO wide 4-pin SOIC SK7E2LIB

16 | [SO wide: 4-pin SOIC SM7E2LIB

17 | P&, LF347 SAMPLE LIB

13 | W SOT23 3-pin SOT SM7B2LIB

g | YWAD WAYEGUIDE to MICROSTRIP, S0mil SAMPLE LIB

20 | WL TRAMSMISSION LINE, 120x25mil SAMPLE LIB
21| P TRANSMISSION LINE, 120x25mi SAMPLE LIB 2
R e T A i e e — =

Current Table: | DEFALLT TEL [J Load Table] M Save Table s]

39

B

Genesys - Users Guide

« Part Type - The category of parts for which footprints are loaded.

o Default Footprint - The footprint which is selected for the corresponding category
(given in the Name column).

o Library - The name of the library containing the footprint for the corresponding
category (given in the Name column).

« Change Button - Allows you to select a new footprint for the corresponding category
(given in the Name column).

« Current Table - The file name of the current footprint association table.

« Save Table As Button - Saves the current table into a new file.

« Load Table Button - Loads a different footprint association table from a file.

To modify an entry in the Association table:
Click Layout on the Genesysmenu and select Layout Properties.

Click the Associations tab.
Scroll the table to find the entry you want.

WN -

Click the Change button to open the Choose Footprint Library window.
Click a footprint library in the Select Library box.

Click a footprint in the Available Footprints box.

Click OK.

DwNR

To save the Association table to a new file:

Click Layout on the Genesysmenu and select Layout Properties.
Click the Associations tab.

Click the Save Table As button.

Type a name in the File Name box.

Click Save.

mAWNE

To open a previously saved Association table:

1. Click Layout on the Genesysmenu and select Layout Properties.
2. Click the Associations tab.
3. Click the Load Table button.

© Note: If the current table is already modified, a message asks whether to save the current table.
Click Yes to continue.

1. Type a name in the File Name box.
2. Click Open.

Changing Layout Font Properties

Use the Layout Properties Fonts page to change the default font properties for a layout.
You can change only the font type and size. If you want to change the individual text in a
layout, use the Text Properties window.

To change the default font properties of a layout:

Click Layout on the Genesysmenu and select Layout Properties.
Click the Fonts tab.

Click a font in the Choose New Default Font box.

Type a font size in the Default Size box.

Click OK.

uARLWNE

395

Genesys - Users Guide

LYW T Proparties

Gevesl | Amsooishons | Lapsr | FOOLS

Thoose new defaulk Forki

Curent Font: DEFALLT.EWWT

Defodt Funt Sie=: | 70 mi

o Choose New Default Font - Lists the available fonts. The default font is
automatically selected when the dialog is opened. To choose a nhew default font,
simply select another font in this box. All text already placed on the layout will be
updated to incorporate the new font. For a description of each font, please refer to
Reviewing Layout Fonts (users).

o Old Default - The old default font. If you have not selected a new font since opening
the dialog, this font stays selected in the Choose New Font box. This font will remain
the default style if you select Cancel on the dialog, even if you have selected another.

« Default Size - This is the default size for text placed on the layout. Changing this
number will update any text already on the layout that has the Use Default Size box
checked in its properties box.

Manipulating Layouts

Objects in a layout are manipulated much like objects in any modern drafting or drawing
program. Features like selecting objects, dragging, using object handles, grouping, and
panning are included.

Changing Object Properties

Object properties windows are used to adjust any properties of an object. These window
are especially useful when you must enter exact coordinates for objects. They appear
automatically during construction of ports, text, viaholes, and pads.

To change object properties:

1. Double-click any of the following objects in a Layout window:
e ARC
Component

EM Port
Group
Line

Pad
Polygon
Port

Pour
Rectangle
Text

396

Genesys - Users Guide

» Viahole
2. Make the changes you want.
3. Click OK.

Selecting Objects

Generally, you must select objects before you can manipulate them. Objects change color
when selected.
To select an object:

1. Click the Select button (") on the Layout toolbar. This button indicates that no
object is currently being constructed.
2. Click the object you want to select.

To select multiple objects:

1. Click the Select button (*) on the Layout toolbar.
2. Drag the mouse until a box is drawn completely around the items you want selected.

) Note: The window pans automatically if you drag the mouse off the
layout.

To individually select multiple objects:

1. Click the Select button (") on the Layout toolbar.
2. Hold down the Shift key while clicking each object. Other selected objects remain
selected.

To select all objects:

1. Click Edit on the Genesys menu and select All from the Select menu. All the objects
in the layout are selected.

To select an object hidden behind other objects:

1. Click the Select button (") on the Layout toolbar.

2. Click where the object should be. If several objects overlap, continue clicking in the
same spot until the object is selected. The layout cycles through the overlapped
objects with each click. Do not click too fast (double-click) because the object's
properties window might appear.

 Note: Another method of finding hidden objects is to use the X-ray mode. This makes the parts
semi-transparent. You can find this option by using the General tab in the Layout Properties window.

Grouping and Ungrouping Objects

With the exception of port objects, you can combine objects into groups. This keeps
objects together as you move or rotate them. You can also nest groups so that one group
contains other groups. When objects are grouped, there is no change to the final output
generated by the layout.

Whenever any part of a group is selected, the entire group is selected. If you want to
ungroup parts after they are grouped, you must break apart the entire group.

To group two or more objects:

397

Genesys - Users Guide
1. Select the objects you want to group.
2. Click the Group Objects button (IEEI) on the Layout toolbar.
To ungroup previously grouped objects:

1. Select the group you want to ungroup.
2. Click the Ungroup button (=) on the Layout toolbar.

Converting a Component to a Group

When a component is placed in a layout, you can make only simple changes to it:

« Move, rotate, or move the component to a new layer.

« Change or remove text.

e Move text using object handles.

« Hide the silk screen using the Component Properties window.

If you need to make other changes to the object, use the Footprint editor. However, if the
change is unique, such as removing unused pins from an edge connector, make the
change in the Layout window by first converting the component to a group.

To convert a component to a group:

1. Click the Component Footprint button (-) on the Layout toolbar to place the
component if it is not already in the layout.
2. Select the component you want to group.

3. Click the Group Objects button () on the toolbar.

) Note: If a message appears stating you cannot change the object to a group because it has
associated schematic parts, follow the instructions in the Deleting Objects section to remove the
link.

Using Object Handles

You can modify objects in various ways using object handles. Object handles are small
squares that appear when an object is selected. You can manipulate object handles only
with a mouse.

© Note: There is a limited ability to manipulate objects if there is an associated schematic
part.

On rare occasions, you might want to manipulate object handles without snapping to the
grid, nodes, or a specific angle. Be aware that when doing so, it is easy to break electrical
connections or to rotate parts to nonstandard angles, so only do so when necessary. To
use an object handle:

1. Select the objects you want to move.
2. Drag an object handle to manipulate the object. An outline image updates as changes
are made.

 Note: The window pans automatically if you drag the mouse off the
layout.

To use an object handle without snapping to grid, nodes, or angles:

398

Genesys - Users Guide

1. Select the objects you want to move.
2. Hold down the Shift key and drag an object handle to manipulate the object. An
outline image updates as changes are made.

© Note: The window pans automatically if you drag the mouse off the
layout.

Moving Objects

Often, you must move objects to complete a layout. In addition, on rare occasions, you
might want to move objects to a point not on the grid.

!y |Caution: It is easy to break electrical connections, so please move objects to a point not on the grid only
when absolutely necessary.

To move an object:
1. Select the object you want to move.

2. Drag the mouse until the outlined image is in the location you want. Do not drag
using an object handle. The image snaps to the grid.

) Note: The window pans automatically if you drag the mouse off the
layout.

To move an object without snapping to grid or nodes:

1. Select the object you want to move.
2. Hold down the Ctrl key and drag the mouse until the outlined image is in the location
you want. Do not drag using an object handle.

Cutting, Copying, and Pasting Objects
You can cut, copy, or paste layout objects. When you cut an object, you remove it from

the layout. Copying an object leaves the object in the layout. Once cut or copied to the
buffer, you can paste duplicates of objects back to the layout.

) Note: You cannot cut objects associated with schematic parts. If a message appears stating that you
cannot cut an object because it has associated schematic parts, use copy instead.

Cutting and pasting objects allows for the easy duplication of objects. The layout
remembers the last cut or copied object until you exit Genesys. Only one cut or paste
buffer is used for both the standard Layout editor and the Footprint editor, allowing you to
cut and paste objects between them. You can paste as many duplicates as you want.
Duplicates are always pasted to the same place as the original objects. You can move
them to a different location.

! |CAUTION: The contents of the cut and paste buffer are lost when you exit Genesys.
To cut an object:

1. Select the object you want to cut.
2. Click Edit on the Genesys menu and select Cut.

To copy an object:

1. Select the object you want to copy.
399

Genesys - Users Guide
2. Click Edit on the Genesys menu and select Copy.

To paste duplicates of the last object cut or copied:

1. Click Edit on the Genesys menu and select Paste.
2. Move the object to the location you want.

) Note: Objects you paste are not associated with schematic parts even if the original objects have
associated schematic parts.

Connecting Layout Parts Automatically

A layout can automatically snap parts together. This is very useful for microstrip and
stripline circuits that have parts automatically created from a schematic (such as files
from M/FILTER). For example, in two easy steps you can turn this layout:

009 & ¢

into this layout:

IIl

To automatically connect objects:

1. Select the objects you want to connect.
2. Click Layout on the Genesys menu and select Connect Selected Parts.

Adding Lines, Rectangles, and Arcs

Lines and arcs are typically used to make electrical connections. In layouts strictly for
EMPOWER, you should turn off the round ends for these lines and arcs. For most other
purposes, you should use round ends, because they make better connections. Also, in
layouts for EMPOWER, you might find it easier to use rectangular objects for most
purposes.

Using the Layout toolbar, you can set round or square ends, width, and layer information
for lines and arcs. You can also make lines orthogonal (90 degrees) using the Layout
toolbar or the Line properties window.

To draw a straight line:

1. Click the Line button () on the Layout toolbar.

400

Genesys - Users Guide
2. Click in the layout at the starting point of the line.
3. Drag your mouse to the ending point of the line.

To draw two connected orthogonal (90 °) lines:

1. Click the Line button () on the Layout toolbar and draw a straight line.

2. Draw a second line perpendicular to the first line and connect one end of the second
line to one end of the second line (green dots).

3. Click one of the lines.

4. Press the O key to convert the line to two orthogonal segments.

5. Press the F key to flip the orthogonal direction, if necessary.

To draw a rectangle:

1. Click the Rectangle button (EI) on the Layout toolbar.
2. Click in the layout where you want the upper-left corner of the rectangle.
3. Drag the mouse to the lower-right corner of the rectangle.

To draw an arc:

1. Click the Arc button (EI) on the Layout toolbar.

2. Click in the layout at the starting point of the arc.

3. Drag your mouse to the ending point of the arc. You see a thin line between the
starting point and the mouse position as you drag the mouse.

4. Move the mouse to define the curvature of the arc.

5. Click to finish drawing the arc.

Deleting Objects

When you delete objects from a layout, the objects are not placed into a buffer the same
as when you cut or copy objects. Deleting removes objects from the program, and you
cannot paste deleted objects back into the layout.

© Note: You cannot directly delete layout objects with associated schematic parts. Instead, you must either
delete the part from the schematic, remove the schematic from the layout, or set the schematic object to
not include a layout object.

To delete layout objects:

1. Select the object you want to delete.
2. Click Edit on the Genesys menu and select Delete.

To remove a schematic from a layout:

1. Click Layout on the Genesys menu and select Layout Properties.

2. Click the General tab.

3. Click the check box for your layout in the Designs to Include box.

4. Click OK. All parts and rubber bands from the schematic are removed.

To remove a layout object with an associated schematic part:

1. Click Layout on the Genesys menu and select Layout Properties.
2. Click the Schematic tab.
3. Click the schematic part that corresponds to the layout part you want to delete.

401

Genesys - Users Guide
Double-click the part to open its properties window.
Click the Layout button.
Click either the Replace Part With Open or Replace Part With Short button.
Click OK to close the Layout Options window.
Click OK to close the properties window.

Changlng an Association Table

PN A

The Association table is used whenever a new layout is created or any time a layout is
updated with new parts in the design. It is only used once for any given part. Association
tables are used by a layout to determine which footprint to initially use for each type of
design part. You can later change this footprint from within the layout to override the
Association table.

Whenever a file containing a layout that depends on a schematic is loaded, the date of the
schematic file is checked against the date of its Association table. If the Association table
is newer than the schematic file, a message appears. This message is useful to help
ensure that outdated footprints are not accidentally used in a layout.

The following information helps clarify the use of an Association table:

« A new schematic is created containing a capacitor, C1.

« A new layout is created. In the Association table, the entry for CAP shows the library
name SM782.LIB, and the footprint shows the name CC1005 [0402] Chip Capacitor.
This footprint is automatically placed in the layout for the capacitor.

» If the Association table is later changed, it has no effect on the capacitor that was
already placed.

« If the footprint for the existing capacitor is changed (for example, to CC2012 [0805]
Chip Capacitor), it is not automatically changed back to the Association table entry.

e Even if the schematic is modified, the capacitor does not automatically move or
change back to the Association table entry.

o If the schematic part is deleted, the corresponding part in the layout is deleted.

« If the Association table contains a multi-part footprint (such as a quad op-amp
footprint), all devices in each component is used before beginning a new one. For
example, if a schematic contains seven op-amps and the OPA entry in the Association
table contains a quad op-amp footprint, two components are placed. The first
component uses all four devices, and the second component uses three of its four
devices.

Changing the Component Footprints

Once a component is automatically generated for a schematic part, you can change its
footprint. The component continues to use the new footprint even if the schematic is
modified.

To change a component's footprint:

1. Select the component you want to change.

2. Click the Change Footprint button (54) on the Layout toolbar to open the Choose
Footprint Library window.

3. Click a footprint library in the Select Library box.

4. Click a footprint in the Available Footprints box.

5. Click OK.

Adding Text and Changing Fonts

You can add text to your layout to label objects or to convey information on silk layers.
Included in Genesysis a variety of different fonts that you can use for text objects in a
layout. You can also use your own TrueType font.

402

Genesys - Users Guide

© Note: The text changes you make to a specific layout affect only the text in that layout. If you want to
change the default text font and size for all layouts, you must use the Layout Properties Font window.

Adding Text to Layouts

Once you add text to a layout, you can edit it, change the font, or change the size.
To add text to a layout:

1. Click the Text button (E') on the Layout toolbar.

2. Click in the layout where you want to place text. The Text Properties window
appears.

3. Type the text in the Text box.

4, Make any other changes you want.

5. Click OK.

To change the text in an existing text object:

1. Select the text you want to edit.

2. Click Edit on the Genesysmenu and select Parameters to open the Text Properties
window.

3. Edit the text in the Text box.

4. Click OK.

To change the font used by an existing text object:

1. Select the text whose font you want to change.

2. Click Edit on the Genesysmenu and select Parameters to open the Text Properties
window.

3. Select a font in the Font list.

4. Click OK.

To change the size of an existing text object:

1. Select the text whose size you want to change.

2. Click Edit on the Genesysmenu and select Parameters to open the Text Properties
window.

3. Clear the Use Default Size check box if it is selected.

4, Type the new text size in the Text Size box. The size is given in the units specified in
the General tab of the Layout Properties window.

5. Click OK.

Changing the Default Text

Most text placed in a layout is associated with a footprint, and you cannot control the font
and size. However, you can change the default font and size, which changes the text for
all other objects simultaneously. This process adjusts the font and size of all text objects
that are marked (in their properties windows) to use the default font or the default size.
This includes all text in footprints from libraries supplied with layouts.

To change the default font and size:

Click Layout on the Genesysmenu and select Layout Properties.
Click the Fonts tab.

Click a font in the Choose New Default font list.

Type a new size in the Default size box.

DwNBR

403

Genesys - Users Guide
5. Click OK.

Reviewing Layout Fonts

The provided fonts are all in Eagleware-Elanix font (.EWF) format, which is a proprietary
font format. They are located in the Font subdirectory of the main Eagleware-Elanix
directory (C:{product-name}\Font). If additional fonts are needed, you can copy TrueType
fonts (.TTF) into this directory, with the following constraints:

e There are many different TrueType font formats available and not all are guaranteed
to work in a layout.

« When text using a TrueType font is converted to Gerber format, each letter of the
text is converted into a filled polygon. Extremely large Gerber files result if TrueType
fonts are used extensively. TrueType fonts are best used for highlights and user
instructions, such as a company's name and logo or jumper settings. In contrast, the
size of text in a Gerber file using an .EWF font is roughly proportional to the
complexity of the .EWF font.

Layout includes the following fonts (complexity directly relates to Gerber file size):

Font Description Complexity (1-
10)

DEFAULT.EWF |A thin font. This font is appropriate for use on most boards. 4

EURO.EWF A thin font that is somewhat boxier than DEFAULT.EWF. 4

GOTH.EWF A very artistic gothic font. 10

LCOM.EWF A font resembling Times Roman. This font is especially useful for placinga |6
large company name on a layout.

LITT.EWF A very simple thin font. This is the simplest provided font.
SANS.EWF A sans serif font of medium stroke thickness.

SCRI.EWF A thin ornamented font designed to resemble handwriting.
TRIP.EWF A bold font resembling Times Roman Bold.

TSCR.EWF A bold italic font resembling Times Roman Bold Italic.

Reviewing Nodes and Rubber Band Lines

O OV Ul NN

Nodes (shown as green dots) are shown in a layout where you can make electrical
connections. Any objects placed or handles moved snap automatically to a nearby node to
ensure a true connection. These nodes allow consistent electrical connections even when
parts do not line up on a grid. (If you do not want to snap to the grid or to a node, hold
down the Shift key while moving or constructing an object.)

Rubber band lines (shown as thin white lines) are shown in a layout where you can make
electrical connections. These connections are determined from the designs. The rubber
band lines update whenever the designs change. Rubber band lines disappear
automatically as connections are made.

Rubber band lines show only one possible set of connections. For example, figure (a)
below shows three parts that can connect. The most obvious connection method is shown
in figure (b). However, you do not need to follow the rubber band lines exactly. The
connections in figure (c) also resolve the rubber bands because they electrically connect
the three nodes.

404

Genesys - Users Guide
R2 R2 R2

y) B e =

R3 R3

R3

R1
R1
R1

(@) (b) (©)

You cannot use objects other than lines, arcs, or viaholes to resolve rubber bands. For
example, if a polygon is placed between two nodes, those two nodes are not considered
connected, even if the polygon appears to connect the two nodes.

) Note: One cause of rubber band lines not disappearing is the failure to actually connect nodes together. If
rubber bands do not disappear, zoom in and examine the nodes to ensure the connections are properly
made.

The automatic resolution, or removal, of rubber band lines is intelligent. You can use any
combination of lines, arcs, and viaholes to make connections. The layout resolves the
rubber bands properly no matter how complex the interconnections.

i] Tip: A common mistake is to use a fine grid, which allows components to look connected when they
actually have a small gap between them. This problem is often hard to find in large layouts, but you can
ensure that actual connections take place by keeping the grid spacing coarse.

Reviewing Rubber Band Resolutions

You can use the Statistics window (sometimes referred to as a scorecard) to review your
progress resolving rubber bands. This window tells how many rubber bands there were
initially and how many rubber bands are successfully resolved.

To review your progress resolving rubber bands:

e Click Layout on the Genesys menu and select Statistics.
Using Layers

A layout recognizes six distinct layer types, which are considered a Layer table:

« Metal - Used for all conductive traces. Only traces on metal layers are used to
automatically resolve rubber bands.

« Silk - Used for labels on the final board. It is generally white or yellow on the
production board. Silk screen objects should not overlap with solder mask objects.

o Substrate - Used to designate cuts in the circuit board. If automatic cutting is
employed, you should use only straight or orthogonal rounded-end lines. The center
of these lines represents the saw path for cutting.

« Assembly - Used to indicate exact placement of components. This is an
intermediate layer. It is only used as an aid in the production process and is not seen
on the final board.

« Mask (Solder Mask) - Objects indicate an absence of solder mask. This is a
negative layer. It is automatically generated from pads and viaholes and generally
does not require user intervention.

« Paste (Solder Paste) - Objects indicate places to use solder paste. If a solder paste
layer is required, you must manually generate it.

|ﬂ' Note: You can enter layer information using the Layer tab of the Layout Properties window.

Reviewing the Types of Layers

405

Genesys - Users Guide
A layout can deal with almost any board configuration, from a simple one-layer board to a
complex sixteen or more layer board. Mixed media, such as combining microstrip with
stripline, are easily accommodated. There are up to 128 different layers to use, and you
can use each type as often as you want. Some possible layer setups are:
For a simple, single-layer board or prototype with a solid ground plane (no traces or
cutouts on the ground plane) (SIMPLE.LYR):

o Silk
« Metal

For a typical single-layer production board (SINGLE.LYR):

Top Assembly

Top Silk

Top Mask

Top Metal

Substrate

Bottom Metal (Mirrored)
Bottom Mask (Mirrored)
Bottom Silk (Mirrored)
Bottom Assembly (Mirrored)

For a four-layer production board (FOUR.LYR):

Top Assembly
Top Silk

Top Mask
Top Metal
Substrate 1
Metal 2
Substrate 2
Metal 3
Substrate 3
Metal 4
Substrate 4
Bottom Metal (Mirrored)

Bottom Mask (Mirrored)
o Bottom Silk (Mirrored)
e Bottom Assembly (Mirrored)

Selecting a Drawing Style

Several drawing styles are available to facilitate the construction and manipulation of
objects on various layers. The drawing styles are:

e Solid (Opaque)
o X-ray Mode
« Hollow

To select a drawing style:

1. Click Layout on the Genesys menu and select Layout Properties.
2. Click the General tab.
3. Click a button to indicate the drawing mode.

406

Genesys - Users Guide

© Note: Use the hollow or x-ray modes to make all objects visible, regardless of the
layer.

4. Click OK.

Hiding Layers

Often it is necessary to turn off the display of certain layers. For example, if an assembly
layer is not being modified, you can hide it:
To hide a layer:

Click Layout on the Genesys menu and select Layout Properties.
Click the Layer tab.

Scroll down to the layer you want.

Click the check box in the Hide column.

Click OK.

uARWNE

Mirroring Layers

Be sure to mirror layers on the back side of a board. For example, when viewing from the
top of the board, the lettering and component footprints are reversed. When a layer is
marked as mirrored, all future text and components placed on that layer are mirrored.
To mark a layer as mirrored:

Click Layout on the Genesys menu and select Layout Properties.
Click the Layer tab.

Scroll down to the layer you want.

Click the check box in the Mirror column.

Click OK.

uARWNE

Using Layer Files

You can save layer setups into files for later use in other boards. Unlike Footprint library
files, layer files (LYR) do not remain associated with a particular layout. If layer settings
are saved to an LYR file and the settings are later changed in the current layout, the LYR
file does not update automatically. If the LYR file is later changed, no layouts are changed
unless the LYR file is explicitly loaded.

To save layer settings into an LYR file:

Click Layout on the Genesys menu and select Layout Properties.
Click the Layer tab.

Click the Save to Layer File button.

Type a name in the File Name box.

Click Save.

uARLWNE

To load layer settings from an LYR file:

Click Layout on the Genesys menu and select Layout Properties.
Click the Layer tab.

Click the Load from Layer File button.

Type the name of the Layer file to load in the File Name box.

. Click Open.

Adding Footprints to Layouts

mnAWNE

A footprint is a pattern of metal, silk, and other layers that generally corresponds to a
407

Genesys - Users Guide
physical part, such as SOT23 or 0603 packages. You can create or edit footprints using
the Footprint editor and then save the footprints into a footprint library. If a footprint
library is changed, all components in all layouts using that footprint are changed. You can
associate footprints with parts using the Association table or by editing a part in the Part
Selector to add a footprint property to the part.

Creating and Saving Footprints

You can create and save footprints to use in other layouts. Store the footprints in a library
you create.
To create a new footprint:

1. Click Tools on the Genesys menu and select New Footprint from the Footprint
Editor menu.

Place objects in the Footprint editor.

Place pads wherever you want to make solder connections.

Place silk screen objects (for example, designators).

Place ports. Always place ports before saving a footprint.

Click Tools on the Genesys menu and select Save Footprint from the Footprint
Editor menu to save the footprint in a library file.

QUAWN

To save an existing footprint:

1. Click Tools on the Genesys menu and select Save Footprint from the Footprint
Editor menu.

2. Click the library that contains the old footprint in the Select Library box.

3. Click the footprint in the Available Footprints box.

4, Click OK.

' \Warning: The old footprint is lost if this method is used to save because any layouts using the old
footprint are modified. Use a new name if the old footprint is needed later.

To add a new footprint to an existing library:

1. Click Tools on the Genesys menu and select Save Footprint from the Footprint
Editor menu.

Click the library to add the footprint to in the Select Library box.

Click <New Object> in the Available Footprints box.

Click OK.

Type a new name for the footprint in the box.

Click OK.

QUAWN

To create a new library and save the current footprint into it:

(=Y

Click Tools on the Genesys menu and select Save Footprint from the Footprint
Editor menu.

Click <New File> in the Select Library box.

Ensure that <New Object> is selected in the Available Footprints box.

Click OK.

Type a name for the new library file in the File Name box, and then click Save.
Type a new name for the footprint in the box.

Click OK.

NoOUnAsWN

Creating Multi-Part Footprints

408

Genesys - Users Guide
Multi-part footprints (for example, bus resistors) are created by assigning port humbers to
different parts within the footprint. The first part (schematic part) within the footprint is
usually labeled part A. For example, the first resistor in a bus package is part A.
The first pin of part A is labeled pin 1, so the port that designates the first pin of part A is
labeled A1l on the footprint. This is shown in the Footprint Example 2 (users) section.

Using the Footprint Libraries

Four footprint libraries are included with a layout. You can use these libraries to add
footprints to your layouts. Certain footprints, such as 14-pin DIP packages, have hundreds
of possible uses. They can be a quad op-amp or a multiple transistor package. Port
assignments in these devices are sequential, such as pin 1 through 14. When you use
such a device, you must create a specific footprint with different port numbering.

You can create new footprints based on a footprint in one of these footprint libraries. Just
load an existing footprint, modify it as necessary, save it with a new name, and store it in
a new footprint library.

« SM782.L1IB - A library based on the IPC SM 782 surface mount standard
(SM782.LIB). There footprints are from the Institute for Interconnecting and
Packaging Electronic Circuits SM 782 standard, Revision A, August 1993. You can
contact IPC at 7380 N. Lincoln Ave., Lincolnwood, IL, 60646.

This standard is very specific on dimensions for the landing patterns. In general,
maximum dimensions are used in creating the library footprints.

The silk screens are generated by Agilent based on general industry convention
determined by reviewing several PWBs.

« LEADED.LIB - A leaded component library (LEADED.LIB). These are leaded part
footprints. They are generated from data provided by the following manufacturers:
Coilcraft, ITT, J.W. Millar, Kyocera AVX, Motorola, Murata, Panasonic, R-Ohm, and
Toko.

The through holes in this library are typically 20 mils larger than the lead diameter,
and the pads are 35 mils larger than the through hole diameter. In certain active
devices, such as DIP ICs and TO-92 transistors, sufficient spacing is not available and
smaller margins are used.

The silk screens are generated by Agilent based on general industry convention
determined by reviewing several PWBs.

« HPLIB.LIB - A library of sample footprints (SAMPLE.LIB). These transistor footprints
are taken from the HP Communications Components GaAs & Si Products data book.

e SAMPLE.LIB - A small library of active RF devices (HPLIB.LIB). These miscellaneous
leaded and surface mount footprints are for objects such as mounting screws,
coplanar grounds, grounds with via holes, grounds with wagon wheel pads and a
sample quad operational amplifier.

Generating Transmission Lines Automatically

In typical digitally oriented PCB layout or CAD programs, you must manually generate
transmission lines and their junctions (discontinuities). This is often tedious, time
consuming, and error prone.

In contrast, a layout automatically generates footprints for microstrip and stripline parts
entered in a schematic.