

Chip Inductors for RF Applications

FASTRON wire wound chip inductors are designed particularly for RF applications that require optimal Q on high frequency circuits. Its gold flash pad metallization provides better solderability for a higher yield in your production. In addition, their encapsulation not only protects the winding but also allows surface mount assembly. It comes in compact sizes (from 0402 to 1812) available in reel packing. Inductance values between those listed in this catalog are mostly available on request. Ferrite core versions are also available for selected case sizes for applications which require higher inductances in a smaller case size.

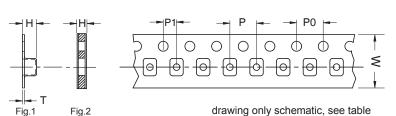
Applications

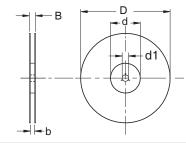
Used in LC resonant circuits such as oscillator and signal generators, IF impedance matching, circuit isolation, RF filters, PA choles etc.

Mobile Telecommunication: GSM, CDMA, TCDMA, cordless phones, 2 way radio

Automotive Subsystems: TPMS, Keyless Entry, Anti-Theft, GPS Wireless Communication: W-LAN, WIFI, WIMAX, RFID, Bluetooth

Technical Data


L – Value (rated inductance)	≥ 1 MHz measured with HP 4286A RF LCR meter at frequency f _L							
,	< 1 MHz measured with HP 4194A RF LCR meter at frequency f							
Q – Factor (min)	≥ 1 MHz measured with HP 4287A RF LCR meter at frequency fo							
` '	< 1 MHz measured with HP 4194A RF LCR meter at frequency fo							
SRF (min, typ)	Measured with HP 8753ES Network Analyzer							
DCR (max)	Measured at 25°C							
Operating Temperature	For ceramic core from -40°C to +125°C							
	For ferrite core from -40°C to +85°C							
Surface Finishing	Epoxy molded flat top for perfect pick and place assembly							
Pad Metallization	Gold flash as top layer							
Wire Termination	Spot welding							
Recommended soldering method	Reflow							
Solderability	Using lead free solder (Sn 99.9) at 260°C ± 5°C for 5 ± 0.5 seconds, min 90% solder							
•	coverage of metallization							
	Standard: IEC 68-2-20 (Ta)							
Resistance to Soldering Heat	Resistant to 260°C ± 5°C for 10 ± 1 seconds							
3	Standard: IEC 68-2-20 (Tb)							
Resistance to Solvent	Resistant to Isopropyl alcohol for 5 ± 0.5 minutes at 23°C ± 5°C							
	Standard: IEC 68-2-45							
Climatic Test	Defined by the following standards							
	IEC 68-2-1 for Cold test: -55°C for 96 hours							
	IEC 68-2-2 for Dry heat test: +85°C for ferrite core and 125°C for ceramic core for 96							
	hours							
	IEC 60068-2-78 for Humidity test: 40°C at RH 95% for 4 days							
Thermal Shock Test	Temperature cycle (ceramic): -40°C to +125°C to -40°C							
	Temperature cycle (ferrite): -40°C to +85°C to -40°C							
	Max/Min temperature duration: 15 minutes							
	Temperature transition duration: 5 minutes							
	Cycles: 25							
	Standard: MIL-STD-202G							
Adhesion of Soldered Component	Components withstand a pushing force of 10N for 10 ± 1 seconds							
(Shear Test)	Standard: IEC 60068-2-21, method Ue ₃							
Mechanical Shock	Mil-Std 202 Method 213, Condition C							
	3 axis, 6 times, total 18 shocks							
	100 G, 6 ms, half-sine							
Vibration	Mil-Std 202 Method 204							
	20 mins at 5G							
	10 Hz to 2000 Hz							
	12 cycles each of 3 orientations							


Ordering Code Example: 0402AS-1N0X-YY

Case Sizes - 0402, 0603, 0805, 1008, 1206, 1210, 1812 Core Type - AS (Ceramic), F (Ferrite), AF (Ceramic & Ferrite) Tolerances - F (1%), G (2%), A (3%), J (5%), K (10%), M (20%)

Packing Code - 01, 08 (Reel)

Packing Specification

Type	D	d	d1	В	b	W	Р	P0	P1	Н	T	Fig	Type	D	d	d1	В	b	W	Р	P0	P1	Н	Т	Fig
0402	180	60	13	12.7	8.4	8	2	4	2	8.0	-	2	1206	180	60	13	12.7	8.4	8	4	4	2	2.5	0.2	1
0603	180	60	13	12.7	8.4	8	4	4	2	2.5	0.25	1	1210	180	60	13	18.7	12.4	12	8	4	2	2.5	0.4	1
0805	180	60	13	12.7	8.4	8	4	4	2	1.86	0.25	1	1812	180	60	13	18.4	15.4	12	8	4	2	4.28	0.28	1
1008	100	60	12	10.7	0 /	0	1	1	2	2.5	0.220	1													

Revision date : 11 Nov 2011