
 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 1

OperaƟng�CondiƟons
• 3.0V to 3.6V: -40°C to +85°C, DC to 200 MHz
• 3.0V to 3.6V: -40°C to +125°C, DC to 200 MHz
• 3.0V to 3.6V: -40°C to +150°C, DC to 200 MHz

High-Performance�dsPIC33A�DSP/CISC�CPU
• 32-bit Comprehensive Instruction Set for Optimized Speed and Program Code Size:

– 16-bit dsPIC33 core compatible
– Non-paged linear Data/Flash 24-bit addressing space
– 16-bit/32-bit instructions for optimized code size and performance

• 32-bit Wide Data Paths
• Single and Double Precision Floating-Point Unit (FPU) Coprocessor
• 2 Kbyte Instruction Cache
• Sixteen 32-bit Working Registers
• Dual 72-bit Accumulators Supporting 32-bit and 16-bit Fixed-Point DSP Operations
• Eight Level Deep Working Register Contexts
• Eight Level Deep Accumulator Register Contexts
• Eight Level Deep Floating Point Register Contexts

Memory�Features
• Up to 128 Kbytes of Program Flash Memory:

– 10,000 erase/write cycle endurance
– 20 years minimum data retention
– Self-programmable under software control
– Programmable code protection
– Flash Error Correcting Code (ECC)
– Programmable OTP regions
– Entire Flash OTP by ICSP™ write inhibit
– 64 x128-bit OTP area

• Up to 16 Kbytes of RAM Memory:
– 6-channel hardware Direct Memory Access (DMA) module
– RAM Error Correcting Code (ECC)
– RAM Memory Built-In Self-Test (MBIST)

�High-Performance�dsPIC33A�Core�with�FloaƟng-Point
Unit,�High-Speed�ADCs�and�High-ResoluƟon�PWM
�dsPIC33AK128MC106�Family

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 2

Controller�Features
• High-Current Sink/Source Capable I/Os
• Programmable Weak Pull-Up and Pull-Down Resistors
• Programmable Open-Drain Outputs
• Edge or Level Change Notification Interrupt on I/O pins
• Peripheral Pin Select (PPS) Remappable Pins to Reduce Board Layout Complexity
• Multiple Interrupt Vectors with Individual Programmable Priority
• Five External Interrupt Pins
• Selectable Oscillator Options Including:

– 8 MHz, 1% at 0ºC-85ºC Internal Fast RC (FRC) oscillator
– 8 MHz, 2% Internal Backup Fast RC (BFRC) oscillator with 32 kHz divided output
– High-speed crystal resonator oscillator or external clock

• Two 1.6 GHz PLLs for Peripheral which can be clocked from the FRC or a Crystal Oscillator
• Reference Clock Output (REFO)
• Low-Power Modes (Sleep and Idle)
• Power-On Reset and Brown-Out Reset

High-Speed�PWM
• Four PWM Generators (Four Pairs, Eight Outputs)
• Up to 2.5 ns PWM Resolution
• Dead Time for Rising and Falling Edges
• Dead-Time Compensation Supports Lower Speed Operation
• PWM Support for:

– BLDC, PMSM, ACIM, SRM and Stepper Motors

• Fault and Current Limit Inputs
• Flexible Trigger Configuration for ADC Triggering

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 3

Two�High-Speed�Analog-to-Digital�Converters
• 12-bit Resolution
• Up to 40 Msps Conversion Rate
• Up to 22 Analog Input Pins
• 20 Settings Channels. Each Channel:

– Supports Discrete Configuration
– Can be assigned to any analog input (I/O pin or internal signal)
– Can be set to a different sampling time
– Can be configured as single-ended or differential
– Conversion result can be formatted as unsigned or signed
– Conversion result can be left-aligned (fraction format)
– Has a separate 32-bit conversion result register

• Supports Four Sampling modes:
– Oversampling of multiple samples
– Integration of multiple samples
– Window (multiple samples accumulated when the gate signal is active)
– Single Conversion
– All channels have a digital comparator to detect when the conversion result is less than, greater than, in

bounds or out of bounds for the configurable thresholds
– Three channels support second result accumulator to implement second order filters

• Band Gap Reference and Temperature Sensor Diode Inputs

Other�Analog�Features
• Three 5 nS Analog Comparators with 12-bit Pulse Density Modulation DACs:

– Input multiplexing
– Slope compensation
– One DAC output buffer

• Three Rail-to-Rail 100 MHz Operational Amplifiers with:
– 100 V/µS slew rate
– 1 mV offset (typical)
– User calibration of input offset voltage

• Four 10 µA Constant Sources + Four Programmable Sources

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 4

Peripheral�Features
• Three 4-Wire SPI Modules:

– 4-byte FIFO
– Variable data width
– I2S mode

• Two I2C modules:
– Independent Host and Client Logic
– Supports 100 kHz, 400 kHz and 1 MHz Bus Specifications
– 7-bit and 10-bit Device Addresses
– Supports IPMI Standard, SMBus and PMBus

• Three Protocol UARTs with 8-Character RX/TX FIFOs and Automated Handling Support for:
– LIN 2.2
– Digital Multiplex 512 (DMX)
– Smart Card (ISO 7816)
– IrDA®

• Two Single-Edge Nibble Transmission (SENT) Modules
• One Dedicated 32-bit Timer/Counter
• Four Single Output Capture/Compare/PWM/Timer (SCCP) Modules:

– Flexible configuration as PWM, input capture, output compare or timers
– Two 16-bit timers or one 32-bit timer in each module
– Single PWM output pin

• One Quadrature Encoder Interface (QEI):
– Four inputs: Phase A, Phase B, Home, Index

• Four Configurable Logic Cells (CLC) with Internal Connections to Select Peripherals and PPS
• Bidirectional Serial Synchronous (BiSS) Encoder Interface with up to Four Client Encoders Support
• Peripheral Trigger Generator (PTG):

– 10 input trigger sources from other peripheral modules
– 5 output triggers to other peripheral modules
– 4 individual interrupt request signals
– CPU independent state machine-based instruction sequencer

Security�Module
• Secure Boot
• Secure Debug
• Immutable Root of Trust (IRT)
• Code Protect
• ICSP Program/Erase Disable (Entire Flash OTP by ICSP Write Inhibit)
• Firmware IP Protection
• Flash Write Protection

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 5

Safety�Features
• Windowed Watchdog Timer (WDT)
• Deadman Timer (DMT)
• Four I/O Integrity Monitors (IOIM)
• Fail-Safe Clock Monitor (FSCM) with Automatic Switchover to Backup Clock Source with:

– Programmable over-frequency/under-frequency thresholds
• Flash Error Correcting Code (NVM ECC)
• RAM Error Correcting Code (RAM ECC)
• RAM Memory Built-In Self-Test (MBIST)
• 32-bit Cyclic Redundancy Check (CRC) Module
• Entire Flash OTP by ICSP™ Write Inhibit
• Capless Internal Voltage Regulator
• Virtual PPS Pins for Redundancy and Monitoring
• Temperature Sensor Diode

FuncƟonal�Safety
Functional Safety Readiness – ISO 26262/IEC 61508/IEC 60730

To learn about the Functional Safety Readiness of this device family and various Functional Safety standards an
application can target using this device family, visit www.microchip.com/dsPIC33-Functional-Safety

QualiĮcaƟon
AEC-Q100 REV H:
• Grade 1: -40°C to +125°C
• Grade 0: -40°C to +150°C Planned

Programming�and�Debug�Interfaces

• Three Programming and Debugging Interfaces:
– Two-wire ICSP™ interface with non-intrusive access and real-time data exchange with application

• Five Program Addresses and Five Full-Featured Breakpoints
• IEEE Standard 1149.2 Compatible (JTAG) Boundary Scan

Targeted�ApplicaƟons
• Power Factor Correction (PFC):

– Interleaved PFC
– Critical Conduction PFC
– Bridgeless PFC

• DC/DC Converters:
– Buck, Boost, Forward, Flyback, Push-Pull
– Half/Full-Bridge
– Phase-Shift Full-Bridge

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 6

– Resonant Converters
• DC/AC:

– Half/Full-Bridge Inverter
– Resonant Inverter

• Motor Control:
– BLDC
– PMSM
– SR
– ACIM

• Advanced Sensor Interfacing
• High-Performance Embedded Control
• Safety-Critical Designs
• Digital Lighting

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 7

dsPIC33AK128MC106�Product�Family
The dsPIC33A family names, pin counts, memory sizes and peripheral availability of each device are listed in
Table 1, and their pinout diagrams are included as well.

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 8

Ta
bl
e�
1.
�d
sP
IC
33

AK
12

8M
C1

06
�F
am

ily

ds
PI

C3
3A

K3
2M

C1
02

28
32

8
19

/1
9

4*
2

11
1

3
1

4
4

3
2

1
2

3
3

2
1

6
SS

O
P/

VQ
FN

ds
PI

C3
3A

K3
2M

C1
03

36
32

8
27

/2
7

4*
2

15
1

3
1

4
4

3
2

1
3

3
3

2
1

6
VQ

FN

ds
PI

C3
3A

K3
2M

C1
05

48
32

8
35

/3
5

4*
2

18
1

3
1

4
4

3
2

1
3

3
3

2
1

6
VQ

FN
/T

Q
FP

ds
PI

C3
3A

K3
2M

C1
06

64
32

8
49

/4
9

4*
2

22
1

3
1

4
4

3
2

1
3

3
3

2
1

6
VQ

FN
/T

Q
FP

ds
PI

C3
3A

K6
4M

C1
02

28
64

16
19

/1
9

4*
2

11
1

3
1

4
4

3
2

1
2

3
3

2
1

6
SS

O
P/

VQ
FN

ds
PI

C3
3A

K6
4M

C1
03

36
64

16
27

/2
7

4*
2

15
1

3
1

4
4

3
2

1
3

3
3

2
1

6
VQ

FN

ds
PI

C3
3A

K6
4M

C1
05

48
64

16
35

/3
5

4*
2

18
1

3
1

4
4

3
2

1
3

3
3

2
1

6
VQ

FN
/T

Q
FP

ds
PI

C3
3A

K6
4M

C1
06

64
64

16
49

/4
9

4*
2

22
1

3
1

4
4

3
2

1
3

3
3

2
1

6
VQ

FN
/T

Q
FP

ds
PI

C3
3A

K1
28

M
C1

02
28

12
8

16
19

/1
9

4*
2

11
1

3
1

4
4

3
2

1
2

3
3

2
1

6
SS

O
P/

VQ
FN

ds
PI

C3
3A

K1
28

M
C1

03
36

12
8

16
27

/2
7

4*
2

15
1

3
1

4
4

3
2

1
3

3
3

2
1

6
VQ

FN

ds
PI

C3
3A

K1
28

M
C1

05
48

12
8

16
35

/3
5

4*
2

18
1

3
1

4
4

3
2

1
3

3
3

2
1

6
VQ

FN
/T

Q
FP

ds
PI

C3
3A

K1
28

M
C1

06
64

12
8

16
49

/4
9

4*
2

22
1

3
1

4
4

3
2

1
3

3
3

2
1

6
VQ

FN
/T

Q
FP

N
ot

e:
 

ro
tat

eth
is

pa
ge

90

1.
SC

CP
 c

an
 b

e
co
nfi

gu
re
d

as
 a

 P
W

M
 w

ith
 o

ne
 o

ut
pu

t,
in

pu
t c

ap
tu

re
, o

ut
pu

t c
om

pa
re

, 2
 x

 1
6-

bi
t t

im
er

s
or

 1
 x

 3
2-

bi
t t

im
er

.

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 9

Pin�Diagrams
Figure�1.�28-Pin�SSOP

1
2
3
4
5
6
7
8
9
10
11
12
13
14

28
27
26
25
24
23
22
21
20
19
18
17
16
15

ds
PI
C
33
A
K
XX
XM

C
10
2

MCLR
VDD
VSS
RD3
RD2
RD1
RD0
RC4
RC3
RC2
VDD
VSS
RC1
RC0(2)

RA0

AVSS

DD
RA2
RA3
RA4
VSS
VDD
RB0
RB1
RB2
RB3
RB4

5V Tolerant

AV

RA1

RB1(4)

Table�2.�28-Pin�SSOP�Complete�Pin�FuncƟon�DescripƟons(1,3)

1 PGD2/AD2AN6/CMP3C/ISRC2/IBIAS2/RP1/SDA2/IOMF2/RA0 15 OSCO/CLKO/RP33/IOMF5/RC0(2)

2 PGC2/DACOUT1/AD1AN7/AD2AN3/CMP1D/CMP2D/
CMP3D/RP2/SCL2/RA1

16 OSCI/CLKI/RP34/IOMF6/RC1

3 AVSS 17 VSS

4 AVDD 18 VDD

5 OA1OUT/AD1AN0/CMP1A/RP3/RA2 19 PGC3/RP35/PWM4H/RC2
6 OA1IN-/AD1ANN1/AD2AN0/RP4/RA3 20 PGD3/RP36/PWM3H/IOMD0/RC3
7 OA1IN+/AD1AN1/CMP1B/RP5/RA4 21 RP37/PWM3L/IOMD1/RC4
8 VSS 22 RP49/PWM2H/IOMD2/RD0
9 VDD 23 TCK/RP50/PWM2L/IOMD3/RD1

10 OA2OUT/AD2AN1/CMP2A/RP17/INT0/RB0 24 TDO/RP51/PWM1H/IOMD4/RD2
11 TMS/OA2IN-/AD1AN4/AD2ANN1/RP18/RB1(4) 25 TDI/RP52/PWM1L/IOMD5/RD3
12 OA2IN+/AD2AN4/CMP2B/RP19/RB2 26 VSS
13 PGD1/AD1AN5/CMP1C/ISRC0/IBIAS0/RP20/SDA1/RB3 27 VDD
14 PGC1/AN2AN5/CMP2C/ISRC1/IBIAS1/RP21/SCL1/RB4 28 MCLR

Note: 
1. RPn represents remappable peripheral functions.

2. This pin has 8x drive strength.

3. Unless otherwise stated, pins are 4x drive strength. Refer to Electrical Specifications for current drive strength details.

4. A pull-up resistor is connected to this pin when device is erased (JTAG enabled) and during programming.

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 10

Pin�Diagrams
Figure�2.�28-Pin�VQFN

28 27 26 25 24 23 22

8 9 10 11 12 13 14

21

20

19

18

17

16

15

1

2

3

4

5

6

7

dsPIC33AKXXXMC102
M

C
LR

V D
D

V S
S

R
D

3

R
D

2

R
D

1

R
D

0

V S
S

V D
D

R
B0 R
B1

R
B2

R
B3

R
B4

RC4

RC3

RC2

VDD

VSS

RC1

RC0(2)

RA0

AVSS

AVDD

RA2

RA3

RA4

5V Tolerant

RA1

R
B1
(4
)

Table�3.�28-Pin�VQFN�Complete�Pin�FuncƟon�DescripƟons(1,3)

1 PGD2/AD2AN6/CMP3C/ISRC2/IBIAS2/RP1/SDA2/IOMF2/RA0 15 OSCO/CLKO/RP33/IOMF5/RC0(2)

2 PGC2/DACOUT1/AD1AN7/AD2AN3/CMP1D/CMP2D/
CMP3D/RP2/SCL2/RA1

16 OSCI/CLKI/RP34/IOMF6/RC1

3 AVSS 17 VSS

4 AVDD 18 VDD

5 OA1OUT/AD1AN0/CMP1A/RP3/RA2 19 PGC3/RP35/PWM4H/RC2
6 OA1IN-/AD1ANN1/AD2AN0/RP4/RA3 20 PGD3/RP36/PWM3H/IOMD0/RC3
7 OA1IN+/AD1AN1/CMP1B/RP5/RA4 21 RP37/PWM3L/IOMD1/RC4
8 VSS 22 RP49/PWM2H/IOMD2/RD0
9 VDD 23 TCK/RP50/PWM2L/IOMD3/RD1

10 OA2OUT/AD2AN1/CMP2A/RP17/INT0/RB0 24 TDO/RP51/PWM1H/IOMD4/RD2
11 TMS/OA2IN-/AD1AN4/AD2ANN1/RP18/RB1(4) 25 TDI/RP52/PWM1L/IOMD5/RD3
12 OA2IN+/AD2AN4/CMP2B/RP19/RB2 26 VSS

13 PGD1/AD1AN5/CMP1C/ISRC0/IBIAS0/RP20/SDA1/RB3 27 VDD
14 PGC1/AD2AN5/CMP2C/ISRC1/IBIAS1/RP21/SCL1/RB4 28 MCLR

Note: 
1. RPn represents remappable peripheral functions.

2. This pin has 8x drive strength.

3. Unless otherwise stated, pins are 4x drive strength. Refer to Electrical Specifications for current drive strength details.

4. A pull-up resistor is connected to this pin when device is erased (JTAG enabled) and during programming.

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 11

Pin�Diagrams
Figure�3.�36-Pin�VQFN

36 35 34 33 32 31 30 29 28

10 11 12 13 14 15 16 17 18

27

26

25

24

23

22

21

20

19

1

2

3

4

5

6

7

8

9

RC4

RC3

RC5

RC2

VDD

VSS

RC1

RC0(2)

RB7

RA0

AVSS

AVDD

RA2

RA5

RA3

RA4

RA6

M
C

LR

R
D

11

R
D

4

V D
D

V S
S

R
D

3

R
D

2

R
D

1

R
D

0

R
B5 V S

S

V D
D

R
B0

R
B1

R
B2

R
B3

R
B4

R
B6

dsP IC33AKXXXM C103

5V Tolerant

RA1

R
B1
(4
)

Table�4.�36-Pin�VQFN�Complete�Pin�FuncƟon�DescripƟons(1,3)

1 PGD2/AD2AN6/CMP3C/ISRC2/IBIAS2/RP1/SDA2/IOMF2/RA0 19 AD2ANN2/AD2AN8/RP24/IOMF0/RB7
2 PGC2/DACOUT1/AD1AN7/AD2AN3/CMP1D/CMP2D/

CMP3D/RP2/SCL2/RA1
20 OSCO/CLKO/RP33/IOMF5/RC0(2)

3 AVSS 21 OSCI/CLKI/RP34/IOMF6/RC1

4 AVDD 22 VSS

5 OA1OUT/AD1AN0/CMP1A/RP3/RA2 23 VDD

6 OA1IN-/AD1ANN1/AD2AN0/RP4/RA3 24 PGC3/RP35/PWM4H/RC2
7 OA1IN+/AD1AN1/CMP1B/RP5/RA4 25 RP38/PWM4L/RC5
8 OA3OUT/AD1AN3/CMP3A/RP6/RA5 26 PGD3/RP36/PWM3H/IOMD0/RC3
9 OA3IN-/AD1AN2/RP7/RA6 27 RP37/PWM3L/IOMD1/RC4

10 OA3IN+/AD2AN2/CMP3B/RP22/RB5 28 RP49/PWM2H/IOMD2/RD0
11 VSS 29 TCK/RP50/PWM2L/IOMD3/RD1
12 VDD 30 TDO/RP51/PWM1H/IOMD4/RD2
13 OA2OUT/AD2AN1/CMP2A/RP17/INT0/RB0 31 TDI/RP52/PWM1L/IOMD5/RD3
14 TMS/OA2IN-/AD1AN4/AD2ANN1/RP18/RB1(4) 32 VSS
15 OA2IN+/AD2AN4/CMP2B/RP19/RB2 33 VDD

16 PGD1/AD1AN5/CMP1C/ISRC0/IBIAS0/RP20/SDA1/RB3 34 RP53/PCI22/RD4
17 PGC1/AD2AN5/CMP2C/ISRC1/IBIAS1/RP21/SCL1/RB4 35 RP60/RD11
18 AD1ANN2/AD1AN8/RP23/RB6 36 MCLR

Notes: 
1. RPn represents remappable peripheral functions.

2. This pin has 8x drive strength.

3. Unless otherwise stated, pins are 4x drive strength. Refer to Electrical Specifications for current drive strength details.

4. A pull-up resistor is connected to this pin when device is erased (JTAG enabled) and during programming.

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 12

Pin�Diagrams
Figure�4.�48-Pin�VQFN,�TQFP

48 47 46 45 44 43 42 41 40 39 38 37

13 14 15 16 17 18 19 20 21 22 23 24

1
2
3
4
5
6
7
8
9
10
11
12

36
35
34
33
32
31
30
29
28
27
26
25

VDD

VSS
RC4
RC3
RC5
RC2
VDD

VSS
RC1
RC0(2)

RC7
RC6

RA0
RA7

RA8
RA9

SS

AVDD
RA2
RA3
RA4

RA6

M
C

LR
R

D4
V D

D
V S

S

R
D8

R
D7

R
D6

R
D5

R
D3

R
D2

R
D1

R
D0

R
B5 V S

S
V D

D
RB

0
R

B1
R

B2 V S
S

V D
D

R
B3

R
B4

R
B6

R
B7

dsPIC33AKXXXMC105

5V Tolerant

AV

RA1

RA5

R
B1

(4
)

Table�5.�48-Pin�VQFN,�TQFP�Complete�Pin�FuncƟon�DescripƟons(1,3)

1 PGD2/AD2AN6/CMP3C/ISRC2/IBIAS2/RP1/SDA2/IOMF2/RA0 25 RP39/RC6
2 AD1AN6/RP8/IOMF1/RA7 26 RP40/RC7
3 PGC2/DACOUT1/AD1AN7/AD2AN3/CMP1D/CMP2D/

CMP3D/RP2/SCL2/RA1
27 OSCO/CLKO/RP33/IOMF5/RC0(2)

4 AD2AN9/ISRC3/IBIAS3/RP9/RA8 28 OSCI/CLKI/RP34/IOMF6/RC1
5 AD1ANN3/AD1AN9/RP10/RA9 29 VSS
6 AVSS 30 VDD

7 AVDD 31 PGC3/RP35/PWM4H/RC2
8 OA1OUT/AD1AN0/CMP1A/RP3/RA2 32 RP38/PWM4L/RC5
9 OA1IN-/AD1ANN1/AD2AN0/RP4/RA3 33 PGD3/RP36/PWM3H/IOMD0/RC3

10 OA1IN+/AD1AN1/CMP1B/RP5/RA4 34 RP37/PWM3L/IOMD1/RC4
11 OA3OUT/AD1AN3/CMP3A/RP6/RA5 35 VSS

12 OA3IN-/AD1AN2/RP7/RA6 36 VDD
13 OA3IN+/AD2AN2/CMP3B/RP22/RB5 37 RP49/PWM2H/IOMD2/RD0
14 VSS 38 TCK/RP50/PWM2L/IOMD3/RD1
15 VDD 39 TDO/RP51/PWM1H/IOMD4/RD2
16 OA2OUT/AD2AN1/CMP2A/RP17/INT0/RB0 40 TDI/RP52/PWM1L/IOMD5/RD3
17 TMS/OA2IN-/AD1AN4/AD2ANN1/RP18/RB1(4) 41 RP54/ASCL1/RD5
18 OA2IN+/AD2AN4/CMP2B/RP19/RB2 42 RP55/ASDA1/RD6
19 VSS 43 RP56/ASCL2/IOMD7/IOMF4/RD7
20 VDD 44 RP57/ASDA2/IOMD6/IOMF3/RD8

21 PGD1/AN1P5/CMP1C/ISRC0/IBIAS0/RP20/SDA1/RB3 45 VSS
22 PGC1/AD2AN5/CMP2C/ISRC1/IBIAS1/RP21/SCL1/RB4 46 VDD
23 AD1ANN2/AD1AN8/RP23/RB6 47 RP53/PCI22/RD4
24 AD2ANN2/AD2AN8/RP24/IOMF0/RB7 48 MCLR

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 13

Note: 
1. RPn represents remappable peripheral functions.

2. This pin has 8x drive strength.

3. Unless otherwise stated, pins are 4x drive strength. Refer to Electrical Specifications for current drive strength details.

4. A pull-up resistor is connected to this pin when device is erased (JTAG enabled) and during programming.

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 14

Pin�Diagrams
Figure�5.�64-Pin�VQFN,�TQFP

Table�6.�64-Pin�VQFN,�TQFP�Complete�Pin�FuncƟon�DescripƟons(1,3)

1 PGD2/AD2AN6/CMP3C/ISRC2/IBIAS2/RP1/SDA2/IOMF2/RA0 33 RP41/IOMD11/IOMF11/PCI20/RC8(2)

2 AD1AN6/RP8/IOMF1/RA7 34 RP42/IOMD10/SDO2/IOMF10/PCI19/RC9(2)

3 PGC2/DACOUT1/AD1AN7/AD2AN3/CMP1D/CMP2D/
CMP3D/RP2/SCL2/RA1

35 RP39/RC6

4 VSS 36 RP40/RC7
5 VDD 37 OSCO/CLKO/RP33/IOMF5/RC0(2)

6 AD1AN10/RP12/RA11 38 OSCI/CLKI/RP34/IOMF6/RC1
7 AD2AN9/ISRC3/IBIAS3/RP9/RA8 39 VSS
8 AD1ANN3/AD1AN9/RP10/RA9 40 VDD

9 AD2ANN3/AD2AN7/RP11/RA10 41 PGC3/RP35/PWM4H/RC2
10 AVSS 42 RP38/PWM4L/RC5
11 AVDD 43 PGD3/RP36/PWM3H/IOMD0/RC3
12 OA1OUT/AD1AN0/CMP1A/RP3/RA2 44 RP37/PWM3L/IOMD1/RC4
13 OA1IN-/AD1ANN1/AD2AN0/RP4/RA3 45 RP43/IOMD9/IOMF9/RC10
14 OA1IN+/AD1AN1/CMP1B/RP5/RA4 46 RP44/IOMD8/IOMF8/RC11
15 OA3OUT/AD1AN3/CMP3A/RP6/RA5 47 VSS
16 OA3IN-/AD1AN2/RP7/RA6 48 VDD
17 OA3IN+/AD2AN2/CMP3B/RP22/RB5 49 RP58/IOMF7/RD9
18 VSS 50 RP59/RD10
19 VDD 51 RP49/PWM2H/IOMD2/RD0
20 OA2OUT/AD2AN1/CMP2A/RP17/INT0/RB0 52 TCK/RP50/PWM2L/IOMD3/RD1

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 15

21 TMS/OA2IN-/AD1AN4/AD2ANN1/RP18/RB1(4) 53 TDO/RP51/PWM1H/IOMD4/RD2
22 OA2IN+/AD2AN4/CMP2B/RP19/RB2 54 TDI/RP52/PWM1L/IOMD5/RD3
23 AD1AN11/RP25/RB8 55 RP54/ASCL1/RD5
24 AD2AN10/RP26/RB9 56 RP55/ASDA1/RD6
25 VSS 57 RP56/ASCL2/IOMD7/IOMF4/RD7

26 VDD 58 RP57/ASDA2/IOMD6/IOMF3/RD8

27 PGD1/AD1AN5/CMP1C/ISRC0/IBIAS0/RP20/SDA1/RB3 59 VSS

28 PGC1/AD2AN5/CMP2C/ISRC1/IBIAS1/RP21/SCL1/RB4 60 VDD

29 AD1ANN2/AD1AN8/RP23/RB6 61 RP53/PCI22/RD4
30 AD2ANN2/AD2AN8/RP24/IOMF0/RB7 62 RP60/RD11
31 RP27/SCK2/RB10(2) 63 RP61/PCI21/RD12
32 RP28/SDI2/RB11 64 MCLR

Note: 
1. RPn represents remappable peripheral functions.

2. This pin has 8x drive strength.

3. Unless otherwise stated, pins are 4x drive strength. Refer to Electrical Specifications for current drive strength details.

4. A pull-up resistor is connected to this pin when device is erased (JTAG enabled) and during programming.

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 16

Pinout�I/O�DescripƟons
Table�7.�Pinout�I/O�DescripƟons

(1)

AN1P0 - AN1P11
AN1N1 - AN1N3
AN2P0 - AN2P10
AN2N1 - AN2N3

I
I
I
I

Analog
Analog
Analog
Analog

No
No
No
No

ADC1 positive input channels
ADC1 negative input channels
ADC2 positive input channels
ADC2 negative input channels

ADTRG31 I ST Yes ADC Trigger Input 31

CLKI

CLKO

I

O

ST/CMOS

—

No

No

External Clock (EC) source input. Always
associated with OSCI pin
function.
Oscillator crystal output. Connects to crystal or
resonator in Crystal Oscillator mode. Optionally
functions as CLKO in RC and EC modes. Always
associated with OSCO pin function.

OSCI

OSCO

I

I/O

ST/CMOS

—

No

No

Oscillator crystal input. ST buffer when configured
in RC mode; CMOS otherwise.
Oscillator crystal output. Connects to crystal or
resonator in Crystal Oscillator mode. Optionally
functions as CLKO in RC and EC modes.

REFCLKI I ST Yes Reference clock input

REFCLKO O — Yes Reference clock output

INT0
INT1
INT2
INT3
INT4

I
I
I
I
I

ST
ST
ST
ST
ST

No
Yes
Yes
Yes
Yes

External Interrupt 0
External Interrupt 1
External Interrupt 2
External Interrupt 3
External Interrupt 4

IOCA[4:0]
IOCB[15:0]
IOCC[15:0]
IOCD[15:0]
IOCE[15:0]
IOCF[15:0]

I
I
I
I
I
I

ST
ST
ST
ST
ST
ST

No
No
No
No
No
No

Interrupt-on-Change input for PORTA
Interrupt-on-Change input for PORTB
Interrupt-on-Change input for PORTC
Interrupt-on-Change input for PORTD
Interrupt-on-Change input for PORTE
Interrupt-on-Change input for PORTF

IOMD[n:0]
IOMF[n:0]

O
I

ST
ST

Yes
Yes

I/O Monitor Reference
I/O Monitor Feedback

QEIA1
QEIB1
QEINDX1
QEIHOM1
QEICMP

I
I
I
I
O

ST
ST
ST
ST
—

Yes
Yes
Yes
Yes
Yes

QEI Input A1
QEI Input B1
QEI Index 1 input
QEI Home 1 input
QEI comparator output

RA0-RA4 I/O ST No PORTA is a bidirectional I/O port
Legend: CMOS = CMOS compatible input or output; TTL = TTL input buffer; Analog = Analog input; P = Power; ST = Schmitt Trigger input
with CMOS levels; O = Output; I = Input;
PPS = Peripheral Pin Select
Notes: 
1. Not all pins are available in all package variants. See the Pin Diagrams section for pin availability.

2. These pins are remappable as well as dedicated.

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 17

(1)

RB0-RB15 I/O ST No PORTB is a bidirectional I/O port

RC0-RC15 I/O ST No PORTC is a bidirectional I/O port

RD0-RD15 I/O ST No PORTD is a bidirectional I/O port

RE0-RE15 I/O ST No PORTE is a bidirectional I/O port

RF0-RF15 I/O ST No PORTF is a bidirectional I/O port

T1CK I ST Yes Timer1 external clock input

U1CTS
U1RTS
U1RX
U1TX
U1DSR
U1DTR

I
O
I
O
I
O

ST
—
ST
—
ST
—

Yes
Yes
Yes
Yes
Yes
Yes

UART1 Clear-to-Send
UART1 Request-to-Send
UART1 receive
UART1 transmit
UART1 Data-Set-Ready
UART1 Data-Terminal-Ready

U2CTS
U2RTS
U2RX
U2TX
U2DSR
U2DTR

I
O
I
O
I
O

ST
—
ST
—
ST
—

Yes
Yes
Yes
Yes
Yes
Yes

UART2 Clear-to-Send
UART2 Request-to-Send
UART2 receive
UART2 transmit
UART2 Data-Set-Ready
UART2 Data-Terminal-Ready

U3CTS
U3RTS
U3RX
U3TX
U3DSR
U3DTR

I
O
I
O
I
O

ST
—
ST
—
ST
—

Yes
Yes
Yes
Yes
Yes
Yes

UART3 Clear-to-Send
UART3 Request-to-Send
UART3 receive
UART3 transmit
UART3 Data-Set-Ready
UART3 Data-Terminal-Ready

SENT1
SENT2
SENT1OUT
SENT2OUT

I
I
O
O

ST
ST
—
—

Yes
Yes
Yes
Yes

SENT1 input
SENT2 input
SENT1 output
SENT2 output

PTGTRG24
PTGTRG25

O
O

—
—

Yes
Yes

PTG Trigger Output 24
PTG Trigger Output 25

TCKI1-TCKI9
ICM1-ICM9
OCFA-OCFD
OCM1-OCM9

I
I
I
O

ST
ST
ST
—

Yes
Yes
Yes
Yes

SCCP Timer Inputs 1 through 9
SCCP Capture Inputs 1 through 9
SCCP Fault Inputs A through D
SCCP Compare Outputs 1 through 9

SCK1
SDI1
SDO1
SS1

I/O
I
O

I/O

ST
ST
—
ST

Yes
Yes
Yes
Yes

Synchronous serial clock I/O for SPI1
SPI1 data in
SPI1 data out
SPI1 Client synchronization or frame pulse I/O

Legend: CMOS = CMOS compatible input or output; TTL = TTL input buffer; Analog = Analog input; P = Power; ST = Schmitt Trigger input
with CMOS levels; O = Output; I = Input;
PPS = Peripheral Pin Select
Notes: 
1. Not all pins are available in all package variants. See the Pin Diagrams section for pin availability.

2. These pins are remappable as well as dedicated.

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 18

(1)

SCK2
SDI2
SDO2
SS2

I/O
I
O

I/O

ST
ST
—
ST

Yes
Yes
Yes
Yes

Synchronous serial clock I/O for SPI2
SPI2 data in
SPI2 data out
SPI2 Client synchronization or frame pulse I/O

SCK3
SDI3
SDO3
SS3

I/O
I
O

I/O

ST
ST
—
ST

Yes
Yes
Yes
Yes

Synchronous serial clock I/O for SPI3
SPI3 data in
SPI3 data out
SPI3 Client synchronization or frame pulse I/O

SCL1
SDA1
ASCL1
ASDA1

I/O
I/O
I/O
I/O

ST
ST
ST
ST

No
No
No
No

Synchronous serial clock I/O for I2C1
Synchronous serial data I/O for I2C1
Alternate synchronous serial clock I/O for I2C1
Alternate synchronous serial data I/O for I2C1

SCL2
SDA2
ASCL2
ASDA2

I/O
I/O
I/O
I/O

ST
ST
ST
ST

No
No
No
No

Synchronous serial clock I/O for I2C2
Synchronous serial data I/O for I2C2
Alternate synchronous serial clock I/O for I2C2
Alternate synchronous serial data I/O for I2C2

BISS1SL
BISS1GS

I
I

ST
ST

Yes
Yes

BiSS1 Return Input
BiSS1 Get Sense

BISS1MO
BISS1MA

O
O

ST
ST

Yes
Yes

BiSS1 Output
BiSS1 Clock

TMS
TCK
TDI
TDO

I
I
I
O

ST
ST
ST
—

No
No
No
No

JTAG Test mode select pin
JTAG test clock input pin
JTAG test data input pin
JTAG test data output pin

PCI8-PCI18
PCI19-PCI22
PWMEA-PWMEF
PWM1L-PWM4L(2)

PWM1H-PWM4H(2)

I
I
O
O
O

ST
ST
—
—
—

Yes
No
Yes
Yes
Yes

PWM Inputs 8 through 18
PWM Inputs 19 through 22
PWM Event Outputs A through F
PWM Low Outputs 1 through 4
PWM High Outputs 1 through 4

CLCINA-CLCIND
CLC1OUT-CLC8OUT

I
O

ST
—

Yes
Yes

CLC Inputs A through D
CLC Outputs 1 through 8

CMP1
CMP1A-CMP3A
CMP1B-CMP3B
CMP1C-CMP3C
CMP1D-CMP3D

O
I
I
I
I

—
Analog
Analog
Analog
Analog

Yes
No

No

No

No

Comparator 1 output
Comparator Channels 1A through 3A inputs
Comparator Channels 1B through 3B inputs
Comparator Channels 1C through 3C inputs
Comparator Channels 1D through 3D inputs

DACOUT1 O — No DAC1 output voltage

Legend: CMOS = CMOS compatible input or output; TTL = TTL input buffer; Analog = Analog input; P = Power; ST = Schmitt Trigger input
with CMOS levels; O = Output; I = Input;
PPS = Peripheral Pin Select
Notes: 
1. Not all pins are available in all package variants. See the Pin Diagrams section for pin availability.

2. These pins are remappable as well as dedicated.

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 19

(1)

IBIAS3, IBIAS2, IBIAS1,
IBIAS0/ISRC3, ISRC2,
ISRC1, ISRC0

O Analog No Constant-Current Outputs 0 through 3

OA1IN+
OA1IN-
OA1OUT
OA2IN+
OA2IN-
OA2OUT
OA3IN+
OA3IN-
OA3OUT

I
I
O
I
I
O
I
I
O

—
—
—
—
—
—
—
—
—

No
No
No
No
No
No
No
No
No

Op Amp 1+ input
Op Amp 1- input
Op Amp 1 output
Op Amp 2+ input
Op Amp 2- input
Op Amp 2 output
Op Amp 3+ input
Op Amp 3- input
Op Amp 3 output

PGD1

PGC1

PGD2

PGC2

PGD3

PGC3

I/O

I

I/O

I

I/O

I

ST

ST

ST

ST

ST

ST

No

No

No

No

No

No

Data I/O pin for Programming/ Debugging
Communication Channel 1
Clock input pin for Programming/ Debugging
Communication Channel 1
Data I/O pin for Programming/ Debugging
Communication Channel 2
Clock input pin for Programming/ Debugging
Communication Channel 2
Data I/O pin for Programming/ Debugging
Communication Channel 3
Clock input pin for Programming/ Debugging
Communication
Channel 3

MCLR I/P ST No Master Clear (Reset) input. This pin is an active-
low Reset to the device.

AVDD P P No Positive supply for analog modules. This pin must
be connected at all times.

AVSS P P No Ground reference for analog modules. This pin
must be connected at all times.

VDD P — No Positive supply for peripheral logic and I/O pins

VSS P — No Ground reference for logic and I/O pins
Legend: CMOS = CMOS compatible input or output; TTL = TTL input buffer; Analog = Analog input; P = Power; ST = Schmitt Trigger input
with CMOS levels; O = Output; I = Input;
PPS = Peripheral Pin Select
Notes: 
1. Not all pins are available in all package variants. See the Pin Diagrams section for pin availability.

2. These pins are remappable as well as dedicated.

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 20

To�Our�Valued�Customers
It is our intention to provide our valued customers with the best documentation possible to ensure successful
use of your Microchip products. To this end, we will continue to improve our publications to better suit your
needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing
Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

www.microchip.com/

You can determine the version of a data sheet by examining its literature number found on the bottom outside
corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is
version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended
workarounds, may exist for current devices. As device/documentation issues become known to us, we will
publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it
applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip’s Worldwide Website; www.microchip.com/
• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature
number) you are using.

Customer Notification System

Register on our website at www.microchip.com/ to receive the most current information on all of our products.

Terminology�Cross�Reference
Table 8 provides updated terminology for deprecated naming conventions. Register and bit names remain
unchanged, however, descriptions and usage guidance may have been updated.

Table�8.�Terminology�Cross�References

CPU Master Initiator

DMA Master Initiator

I2C Master Host

Slave Client

SPI Master Host

Slave Client

UART, LIN Mode Master Commander

Slave Responder

PWM Master Host

Slave Client

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 21

Table�of�Contents
dsPIC33AK128MC106 Product Family.. 7

Pin Diagrams... 9

Pinout I/O Descriptions..16

Terminology Cross Reference... 20

1. Device Overview.. 27

2. Guidelines for Getting Started with Digital Signal Controllers...28

2.1. Basic Connection Requirements..28
2.2. Decoupling Capacitors.. 28
2.3. Master Clear (MCLR) Pin..29
2.4. ICSP Pins..30
2.5. External Oscillator Pins... 30
2.6. External Oscillator Layout Guidance... 30
2.7. Oscillator Value Conditions on Device Start-up... 31
2.8. Unused I/Os..31
2.9. Bulk Capacitors.. 31

3. CPU..32

3.1. Architectural Overview..32
3.2. CPU Register Descriptions.. 34
3.3. CPU Operation... 56
3.4. Prefetch Buffer Unit (PBU).. 82
3.5. Performance Monitor Unit (PMU)..93
3.6. Floating-Point Unit (FPU) Coprocessor..103

4. Memory Organization...160

4.1. Device-Specific Information..160
4.2. Architectural Overview..163
4.3. Register Summary... 166
4.4. BMX Operation...181

5. Data Memory...186

5.1. Device-Specific Information..186
5.2. Architectural Overview..186
5.3. Register Summary... 188
5.4. Operation..208

6. Flash Program Memory..215

6.1. Device-Specific Information..215
6.2. Register Summary... 217
6.3. Operation..245
6.4. Application Example..250

7. Configuration Bits... 251

7.1. Configuration Register Summary.. 253

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 22

7.2. Device Calibration and Identification.. 270

8. Security Module.. 273

8.1. Architectural Overview..273
8.2. Security Module Register Summary.. 276
8.3. Flash Memory Map..287
8.4. Device Locking..290
8.5. Flash Protection Regions.. 294
8.6. Peripheral Access Controller (PAC)..296

9. Resets... 304

9.1. Architectural Overview..304
9.2. Register Summary... 305
9.3. Operation..307
9.4. Application Examples.. 309
9.5. Effects of Reset...310

10. Interrupt Controller.. 312

10.1. Device-Specific Information..312
10.2. Architectural Overview..317
10.3. Interrupt Vector Table...318
10.4. Register Summary... 321
10.5. Operation..460
10.6. Interrupt Control and Status Registers... 461
10.7. Priority...462
10.8. Interrupt Sequence..463
10.9. Non-Maskable Traps... 465
10.10. Interrupt Operations..467

11. I/O Ports with Edge Detect...471

11.1. Device-Specific Information..471
11.2. Architectural Overview..478
11.3. Register Summary... 482
11.4. Operation..543
11.5. Applications.. 553
11.6. Interrupts..554
11.7. Operation in Power-Saving Modes..554
11.8. Effects of Various Resets...555

12. Oscillator and Clocking Module...556

12.1. Device-Specific Information..556
12.2. Architectural Overview..557
12.3. Register Summary... 560
12.4. Operation..604

13. Direct Memory Access (DMA) Controller..629

13.1. Device-Specific Information..629
13.2. Architectural Overview..631
13.3. DMA Register Summary..633
13.4. Operation..655

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 23

13.5. Application Examples.. 677
13.6. DMA Interrupts.. 679
13.7. Operation During Sleep and Idle Modes.. 682

14. PWM..683

14.1. Device-Specific Information..683
14.2. Architectural Overview..685
14.3. Register Summary... 689
14.4. Operation..751
14.5. Application Examples.. 799
14.6. Interrupts..817
14.7. Operation in Power-Saving Modes..818

15. High-Speed, 12-Bit Low Latency ADC... 819

15.1. Device-Specific Information..819
15.2. Architectural Overview..823
15.3. Register Summary... 825
15.4. ADC Operation... 864
15.5. Application Examples.. 872
15.6. Effects of Reset...879

16. High-Speed Analog Comparator with Slope Compensation DAC... 880

16.1. Device-Specific Information..880
16.2. Architectural Overview..882
16.3. DAC Register Summary...884
16.4. Operation..894
16.5. Application Examples.. 900

17. Quadrature Encoder Interface (QEI)... 906

17.1. Device-Specific Information..906
17.2. Architectural Overview..906
17.3. QEI Register Summary.. 910
17.4. Operation..928
17.5. Application Example..936
17.6. Interrupts..937
17.7. QEI Operation in Power-Saving Modes...937

18. Universal Asynchronous Receiver Transmitter (UART).. 938

18.1. Device-Specific Information..938
18.2. Architectural Overview..939
18.3. UART Register Summary...941
18.4. Operation..962
18.5. Application Examples.. 990
18.6. Interrupts..992
18.7. Power-Saving Modes...993

19. Serial Peripheral Interface (SPI)...994

19.1. Device-Specific Information..994
19.2. Architectural Overview..994
19.3. Register Summary... 1000

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 24

19.4. Operation... 1014
19.5. Interrupts..1048
19.6. Operation in Power-Saving and Debug Modes..1049

20. Inter-Integrated Circuit (I2C).. 1051

20.1. Device-Specific Information... 1051
20.2. Architectural Overview..1051
20.3. I2C System Overview...1054
20.4. Register Summary... 1056
20.5. Operation... 1085
20.6. Application Examples..1133
20.7. Interrupts..1142
20.8. Operation in Power-Saving Modes..1144

21. Single-Edge Nibble Transmission (SENT)... 1145

21.1. Device-Specific Information... 1145
21.2. Architectural Overview..1145
21.3. Register Summary... 1148
21.4. Operation... 1156
21.5. Application Examples..1167
21.6. Interrupts..1170
21.7. Operation in Power-Saving Modes..1170
21.8. Effects of a Reset... 1170

22. Bidirectional Serial Synchronous (BiSS) Module... 1171

22.1. Device-Specific Information... 1171
22.2. Architectural Overview..1171
22.3. Register Summary... 1178
22.4. Operations..1202
22.5. Application Examples..1210
22.6. Interrupts..1214
22.7. Power Saving Modes... 1214
22.8. Terminology... 1215

23. Timer1.. 1216

23.1. Device-Specific Information... 1216
23.2. Architectural Overview..1216
23.3. Register Summary... 1218
23.4. Operation... 1222
23.5. Interrupts..1232
23.6. Operation in Power-Saving Modes..1233
23.7. Effects of Various Resets.. 1233

24. Single-Output Capture/Compare/PWM/Timer Modules (SCCP)... 1235

24.1. Device-Specific Information... 1235
24.2. Architectural Overview..1235
24.3. Register Summary... 1238
24.4. Operation... 1254
24.5. Operation During Sleep and Idle Modes.. 1291
24.6. Effects of a Reset... 1292

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 25

25. Configurable Logic Cell (CLC)...1293

25.1. Device-Specific Information... 1293
25.2. Architecture..1294
25.3. CLC Control Registers..1298
25.4. Operation... 1305
25.5. CLC Application Example.. 1309
25.6. CLC Interrupts.. 1310
25.7. Operation in Power-Saving Modes..1311

26. Peripheral Trigger Generator (PTG)..1312

26.1. Device-Specific Information... 1312
26.2. Architectural Overview..1313
26.3. PTG Register Summary... 1321
26.4. Operation... 1336
26.5. Application Examples..1349
26.6. Interrupts..1360
26.7. Power-Saving Modes...1360

27. 32-Bit Programmable Cyclic Redundancy Check (CRC) Generator... 1362

27.1. Architectural Overview..1362
27.2. Register Summary... 1364
27.3. CRC Operation... 1369
27.4. Application Examples..1376
27.5. CRC Operation in Power Saving Modes..1380

28. Current Bias Generator (CBG)... 1381

28.1. Device-Specific Information... 1381
28.2. Architectural Overview..1381
28.3. Current Bias Generator Control Register... 1383
28.4. Operation... 1384
28.5. Application Examples..1386
28.6. Interrupts..1388
28.7. Operating in Power-Saving Modes..1388
28.8. Effects of a Reset... 1388

29. Operational Amplifier...1389

29.1. Device-Specific Information... 1389
29.2. Architectural Overview..1389
29.3. Op Amp Register Summary..1390
29.4. Operations..1394
29.5. Op Amp Application Examples...1396

30. Watchdog Timer (WDT).. 1397

30.1. Device-Specific Information... 1397
30.2. Architectural Overview..1397
30.3. Register Summary... 1399
30.4. Watchdog Timer Operation..1401
30.5. Watchdog Timer Reset..1404
30.6. Operation of Watchdog Timer in Sleep/Idle Modes..1404
30.7. WDT Generic Trap... 1405

�dsPIC33AK128MC106�Family

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 26

30.8. WDT Sample Configuration.. 1405

31. Deadman Timer (DMT)... 1408

31.1. Architectural Overview..1408
31.2. Deadman Timer Register Summary..1410
31.3. DMT Operation.. 1419

32. Power-Saving Modes.. 1423

32.1. Architectural Overview..1423
32.2. Power-Saving Control Register Summary...1424
32.3. Power-Saving Operations... 1433

33. JTAG Interface..1438

34. In-Circuit Debugger...1439

35. Instruction Set Summary... 1440

36. Development Support.. 1451

37. Electrical Characteristics.. 1452

37.1. DC Characteristics... 1452
37.2. AC Characteristics and Timing Parameters.. 1463

38. Packaging Information... 1489

38.1. Package Marking Information..1489
38.2. Package Details.. 1491

39. Revision History...1512

Microchip Information... 1518

The Microchip Website...1518
Product Change Notification Service.. 1518
Customer Support.. 1518
Product Identification System... 1519
Microchip Devices Code Protection Feature... 1520
Legal Notice... 1520
Trademarks..1520
Quality Management System.. 1521
Worldwide Sales and Service...1522

�dsPIC33AK128MC106�Family
Device�Overview

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 27

1.� Device�Overview
This document contains device-specific information for the dsPIC33AK128MC106 Digital Signal
Controller (DSC) family of devices.

The dsPIC33AK128MC106 devices support a high-performance architecture with the Digital
Signal Processor (DSP) and a Single and Double Precision Floating Point Unit (FPU). The
dsPIC33AK128MC106 family of devices operate with an internal core supplied with a 1.1V using
a low-voltage regulator.

Figure 1-1 shows a general block diagram of the core and peripheral modules of the
dsPIC33AK128MC106 family.

Figure�1-1.�dsPIC33AK128MC106�Family�Block�Diagram

CPU
Instruction

Bus

Pre-fetch
Branch Unit

ECC

CPU
X Data

Bus

ECC

RAM Panels

Flash Wrapper

X RAM

ECC

RAM Panels

Y RAM

CPU
Y Data

Bus

DMA
Data
Bus

ICD
Data
Bus

Bus Splitter

CPU

128

Fast Peripheral Bus (1:1)

Std. Peripheral Bus (1:2)
Slow Peripheral Bus (1:4)

32

Flash Panels

Bus Fabric (BMX)

Slow Peripheral Bus (1:4)

PWRSIB

VREG2 + 3

VREG1

BG SUPR

MBIST

CHIP TAP

ALT TAP

USER MBIST

JTAG SIB

DFX TAP

INT

DMA

PWM

UART1-3

SPI1-3

I2C-2

SENT1-2

SCCP1-4

DAC/CMP1-3

CLK Cfg

PTG

WDT

RAMBIST

BISS

TMR1

ICD

PPS

GPIO Cfg

PWR

CLC1-4

ECC

CFG Data NVM

CFG Intg

CFG Test

QEI

DMT

CPU

32

Row
Program

DBUGRAM
Data
Bus

GPIO Data

CRC

SEC

BMX

PBU

ADC

FPU

Slow Peripheral Bus (1:4)

JTAG SIB

CHIP TAP

MBIST

ALT TAP

DFX TAP

USER MBIST

Notes: 
1. Not all I/O pins or features are implemented on all device pinout configurations. See Pinout I/O

Descriptions for specific implementations by pin count.
2. Some peripheral I/Os are only accessible through Peripheral Pin Select (PPS).

�dsPIC33AK128MC106�Family
Guidelines�for�Geƫng�Started�with�Digital�Signal�Controllers

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 28

2.� Guidelines�for�Geƫng�Started�with�Digital�Signal�Controllers
2.1� Basic�ConnecƟon�Requirements

Getting started with the dsPIC33AK128MC106 family devices requires attention to a minimal set of
device pin connections before proceeding with development. The following pins must always be
connected:

• All VDD and VSS power supply pins must be properly biased with required voltages (see
37. Electrical Characteristics)

• All AVDD and AVSS analog supply pins must be properly biased regardless of which analog
modules or components of the dsPIC33A device are used (see 37. Electrical Characteristics)

• MCLR pin is connected with VDD and VSS based on circuit or application needs
• PGCx/PGDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see

2.4. ICSP Pins)
• OSCI and OSCO pins when an external oscillator source is used (see 2.5. External Oscillator Pins)

2.2� Decoupling�Capacitors
The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and
AVSS, is required.

Consider the following criteria when using decoupling capacitors:

• Value and type of capacitor: Recommendation of 0.1 µF (100 nF), in parallel with a 1000 pF (1
nF), 10-20V. These capacitors should be low-ESR and have a resonance frequency in the range of
20 MHz and higher. Ceramic capacitors are recommended.

• Placement on the Printed Circuit Board: The decoupling capacitors should be placed as close
to the pins as possible. It is recommended to place the capacitors on the same side of the
board as the device. If space is constricted, the capacitor can be placed on another layer on the
PCB using a via; however, ensure that the trace length from the pin to the capacitor is within
one-quarter inch (6 mm) in length.

• Handling high-frequency noise: If the board is experiencing high-frequency noise above tens of
MHz, add an additional ceramic-type capacitor in parallel to the decoupling capacitors. The value
can be in the range of 0.01 µF to 0.001 µF. Place this capacitor next to the primary decoupling
capacitors. In high-speed circuit designs, consider implementing a decade set of capacitances as
close to the power and ground pins as possible. For example, 0.1 µF in parallel with 0.01 µF and
0.001 µF.

• Maximizing performance: On the board layout from the power supply circuit, run the power
and return traces to the decoupling capacitors first and then to the device pins. This ensures
that the decoupling capacitors are first in the power chain. Equally important is to keep the trace
length between the capacitor and the power pins to a minimum, thereby reducing PCB track
inductance.

�dsPIC33AK128MC106�Family
Guidelines�for�Geƫng�Started�with�Digital�Signal�Controllers

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 29

Figure�2-1.�Recommended�Minimum�ConnecƟon

0.001 0.1

0.001

0.001

0.1

0.001

2.3� Master�Clear�(MCLR)�Pin
The MCLR pin provides two specific device functions:

• Device Reset
• Device Programming and Debugging

During device programming and debugging, the resistance and capacitance that can be added to
the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently,
specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Ensure
that the MCLR pin VIH and VIL voltage specifications are met.

For example, Figure 2-2 shows the MCLR pin connections with general circuit components used,
such as resistor R, series resistor R1 and capacitor C, and their placement. It is recommended to
place these passive components with one-quarter inch (6mm) from the MCLR pin.

Figure�2-2.�Example�of�MCLR�Pin�ConnecƟons

�dsPIC33AK128MC106�Family
Guidelines�for�Geƫng�Started�with�Digital�Signal�Controllers

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 30

Notes: 
1. R ≤ 10 kΩ is recommended. A suggested starting value is 10 kΩ. Ensure that the MCLR pin VIH

and VIL specifications are met.
2. R1 ≤ 470Ω will limit any current flowing into MCLR from the external capacitor, C, in the event of

MCLR pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure
that the MCLR pin VIH and VIL specifications are met.

3. C ≤ 1 µF may be recommended. However, values of C should be based on reset timings
required for any application. Make sure to isolate C from the MCLR pin during programming
and debugging operations.

2.4� ICSP�Pins
The PGCx and PGDx pins are used for programming and debugging purposes. It is recommended
to keep the trace length between the ICSP connector and the ICSP pins on the device as short
as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is
recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGCx and PGDx pins are not recommended
as they will interfere with the programmer/debugger communications to the device. If such
discrete components are an application requirement, they should be removed from the circuit
during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing
requirements information in the respective device Flash programming specification for information
on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL)
requirements.

2.5� External�Oscillator�Pins
When the Primary Oscillator (POSC) circuit is used to connect a crystal oscillator, special care and
consideration is needed to ensure proper operation. The POSC circuit should be tested across the
environmental conditions in which the end product is intended to be used. The load capacitors
specified in the crystal oscillator data sheet can be used as a starting point, however, the parasitic
capacitance from the PCB traces can affect the circuit, and the values may need to be altered
to ensure proper start-up and operation. Excessive trace length and other physical interaction
can lead to poor signal quality. Poorly tuned oscillator circuits can have reduced amplitude,
incorrect frequency (runt pulses), distorted waveforms and long start-up times that may result
in unpredictable application behavior, such as instruction misexecution, illegal opcode fetch, etc.
Ensure that the crystal oscillator circuit is at full amplitude and the correct frequency before the
system begins to execute code. In planning the application’s routing and I/O assignments, ensure
that adjacent port pins, and other signals in close proximity to the oscillator, do not have high
frequencies, short rise and fall times, and other similar noise. For further information on the
Primary Oscillator, see 12.4.3. Primary Oscillator (POSC).

2.6� External�Oscillator�Layout�Guidance
Use best practices during PCB layout to ensure robust start-up and operation. The oscillator circuit
should be placed on the same side of the board as the device. Also, place the oscillator circuit close
to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The
load capacitors should be placed next to the oscillator itself, on the same side of the board. Use
a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits.
The grounded copper pour should be routed directly to the MCU ground. Do not run any signal
traces or power traces inside the ground pour. If using a two-sided board, avoid any traces on the
other side of the board where the crystal is placed. Suggested layouts are shown in Figure 2-3. With
fine-pitch packages, it is not always possible to completely surround the pins and components. A
suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the
guard trace(s) must be returned to ground.

For additional information and design guidance on oscillator circuits, please refer to these Microchip
Application Notes, available at the Microchip website (www.microchip.com):

�dsPIC33AK128MC106�Family
Guidelines�for�Geƫng�Started�with�Digital�Signal�Controllers

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 31

• AN943, “Practical PICmicro® Oscillator Analysis and Design”
• AN949, “Making Your Oscillator Work”
• AN1798, “Crystal Selection for Low-Power Secondary Oscillator”

Figure�2-3.�Suggested�Placement�of�the�Oscillator�Circuit

GND

`

`

OSCI

OSCO

Copper Pour Primary Oscillator
Crystal

DEVICE PINS

Primary
Oscillator

C1

C2

(tied to ground)

GND

OSCO

OSCI

Bottom Layer
Copper Pour

Oscillator
Crystal

Top Layer Copper Pour

C2

C1

DEVICE PINS

(tied to ground)

(tied to ground)

Single-Sided and In-Line Layouts: Fine-Pitch (Dual-Sided) Layouts:

2.7� Oscillator�Value�CondiƟons�on�Device�Start-up
If the PLL of the target device is enabled and configured for the device start-up oscillator, the
maximum oscillator source frequency must be limited to a certain frequency (see 12.4.2. Phase-
Locked Loop (PLL)) to comply with device PLL Start-up conditions. This means that if the external
oscillator frequency is outside this range, the application must start up in the FRC mode first. The
default PLL settings after a POR with an oscillator frequency outside this range will violate the device
operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD,
to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that
clock switching must be enabled in the device Configuration Word.

2.8� Unused�I/Os
Unused I/O pins should be configured as outputs and driven to a Logic Low state. Alternatively,
connect a resistor (1k-10k ohm) between VSS and unused pins, and drive the output to a logic low.

2.9� Bulk�Capacitors
On boards with power traces running longer than six inches in length, it is suggested to use a bulk
capacitor for integrated circuits, including DSCs, to supply a local power source. The value of the
bulk capacitor should be determined based on the trace resistance that connects the power supply
source to the device and the maximum current drawn by the device in the application. In other
words, select the bulk capacitor so that it meets the acceptable voltage sag at the device. Typical
values range from 4.7 µF to 47 µF.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 32

3.� CPU
The dsPIC33AK128MC106 family has a Fixed-Point fractional DSP engine supporting the Central
Processing Unit (CPU). The CPU processes instructions out of program memory and utilizes
system RAM to perform tasks and calculations. The CPU is interfaced to memory and peripherals
through the bus matrix. The CPU supports coprocessors, including the Floating Point Unit (FPU) for
mathematical computation.

CPU key features:

• 32-bit working registers
• Unified memory map
• 5-stage instruction pipeline
• Conditional branching with speculative execution
• Instruction pre-fetch cache
• Mathematical support
• Low overhead loop support

3.1� Architectural�Overview
The dsPIC33A CPU has 32-bit (data) modified, Harvard architecture with a 5-stage instruction
pipeline, single phase clock design, with 32-bit instructions.

The CPU has a 32-bit instruction word with a variable length opcode field. The CPU also supports
some instructions that are only available in 16-bit format. The Program Counter (PC) is 24 bits wide
to access a 16MB (24-bit address) unified linear address map.

The CPU supports up to eight addressing modes. A 5-stage fully interlocked instruction pipeline with
reduced branch latency and hardware mitigated pipeline hazard stalls helps maintain throughput
and provides predictable execution. Most instructions execute in a single-cycle effective execution
rate, with the exception of instructions that change the program flow. A hardware program loop
construct is supported by the overhead free REPEAT instruction, which is interruptible at any point.
For loops greater than one instruction, the DBT (Decrement Test and Branch) instruction may be
used to reduce loop overhead.

The CPU supports High Performance Math Support with a tightly coupled 16/32-bit Integer and a
Fixed-Point fractional DSP engine with a 72-bit shifter, saturation and rounding support. There is an
optional common issue Single and Double Precision Floating Point Unit (FPU) coprocessor with an
independent load-store execution pipeline.

CPU Supports closely coupled coprocessor macros with the following features:

• Decode and issue from the CPU pipeline into independent coprocessor pipeline(s)
• Pipeline hazards detected and mitigated in both the CPU and coprocessor(s)
• Dedicated data move and conditional coprocessor status branch instructions
• Coprocessor interrupt support

Figure 3-1 illustrates the dsPIC33A CPU block diagram.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 33

Figure�3-1.�dsPIC33A Core Conceptual Block Diagram with FPU Coprocessor

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 34

3.2� CPU�Register�DescripƟons

0x00 PC

31:24
23:16 PC[23:16]
15:8 PC[15:8]
7:0 PC[7:0]

0x04 SPLIM

31:24
23:16 SPLIM[23:16]
15:8 SPLIM[15:8]
7:0 SPLIM[7:0]

0x08 RCOUNT

31:24 RCOUNT[31:24]
23:16 RCOUNT[23:16]
15:8 RCOUNT[15:8]
7:0 RCOUNT[7:0]

0x0C DISIIPL

31:24
23:16
15:8
7:0 DISIIPL[2:0]

0x10 CORCON

31:24
23:16
15:8 US
7:0 SATA SATB SATDW ACCSAT RND IF

0x14 MODCON

31:24
23:16
15:8 XMODEN YMODEN
7:0 YWM[3:0] XWM[3:0]

0x18 XMODSRT

31:24
23:16 XMODSRT[23:16]
15:8 XMODSRT[15:8]
7:0 XMODSRT[7:0]

0x1C XMODEND

31:24
23:16 XMODEND[23:16]
15:8 XMODEND[15:8]
7:0 XMODEND[7:0]

0x20 YMODSRT

31:24
23:16 YMODSRT[23:16]
15:8 YMODSRT[15:8]
7:0 YMODSRT[7:0]

0x24 YMODEND

31:24
23:16 YMODEND[23:16]
15:8 YMODEND[15:8]
7:0 YMODEND[7:0]

0x28 XBREV

31:24
23:16
15:8 XBREV[14:8]
7:0 XBREV[7:0]

0x2C PCTRAP

31:24
23:16 PCTRAP[22:16]
15:8 PCTRAP[15:8]
7:0 PCTRAP[7:0]

0x30 FEX

31:24 FEX[31:24]
23:16 FEX[23:16]
15:8 FEX[15:8]
7:0 FEX[7:0]

0x34 FEX2

31:24 FEX2[31:24]
23:16 FEX2[23:16]
15:8 FEX2[15:8]
7:0 FEX2[7:0]

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 35

0x38 PCHOLD

31:24
23:16 PCHOLD[23:16]
15:8 PCHOLD[15:8]
7:0 PCHOLD[7:0]

0x3C VFA

31:24
23:16 VFA[23:16]
15:8 VFA[15:8]
7:0 VFA[7:0]

0x40
...

0x1E0F
Reserved

0x1E10 HPCCON

31:24
23:16
15:8 ON CLR
7:0

0x1E10 HPCSEL0

31:24 SELECT[3][4:0]
23:16 SELECT[2][4:0]
15:8 SELECT[1][4:0]
7:0 SELECT[0][4:0]

0x1E14 HPCSEL1

31:24 SELECT[7][4:0]
23:16 SELECT[6][4:0]
15:8 SELECT[5][4:0]
7:0 SELECT[4][4:0]

0x1E18
...

0x1E1F
Reserved

0x1E20 HPCCNTL0

31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]

0x1E24 HPCCNTH0

31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

0x1E28 HPCCNTL1

31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]

0x1E2C HPCCNTH1

31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

0x1E30 HPCCNTL2

31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]

0x1E34 HPCCNTH2

31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

0x1E38 HPCCNTL3

31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]

0x1E3C HPCCNTH3

31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 36

0x1E40 HPCCNTL4

31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]

0x1E44 HPCCNTH4

31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

0x1E48 HPCCNTL5

31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]

0x1E4C HPCCNTH5

31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

0x1E50 HPCCNTL6

31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]

0x1E54 HPCCNTH6

31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

0x1E58 HPCCNTL7

31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]

0x1E5C HPCCNTH7

31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

0x1E60 CHECON

31:24
23:16 ISBBUF
15:8 ON CHEINV CHECOH
7:0 FLTINJ

0x1E64 CHESTAT

31:24
23:16
15:8
7:0 TPE RD PAR

0x1E68 CHEFLTINJ

31:24
23:16
15:8
7:0 FLTPTR[7:0]

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 37

3.2.1� CPU�Program�Counter�Register

PC
0x000

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 PC[23:16]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 PC[15:8]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 PC[7:0]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Program Counter bits

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 38

3.2.2� Stack�Pointer�Limit�Value�Register

SPLIM
0x004

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 SPLIM[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 SPLIM[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 SPLIM[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Stack Limit Address bits

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 39

3.2.3� REPEAT�Loop�Counter�Register

RCOUNT
0x008

Bit 31 30 29 28 27 26 25 24
 RCOUNT[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 RCOUNT[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 RCOUNT[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 RCOUNT[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

 Current Loop Counter Value for REPEAT Instruction

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 40

3.2.4� DISIIPL(W)�InstrucƟon�Current�IPL�Threshold

DISIIPL
0x00C

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 DISIIPL[2:0]

Access R R R
Reset 0 0 0

DISIIPL(W) current IPL threshold value

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 41

3.2.5� Core�Mode�Control�Register(1)

CORCON
0x010

Note: 
1. The Core Control register (CORCON) has bits that control the operation of the DSP multiplier

hardware. The IPL3 bit is concatenated with the IPL[2:0] bits (SR[7:5]) to form the CPU Interrupt
Priority Level.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 US

Access R/W
Reset 0

Bit 7 6 5 4 3 2 1 0
 SATA SATB SATDW ACCSAT RND IF

Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Unsigned or Signed Multiplier Mode Select bit

1 Unsigned mode enabled for DSP ops
0 Signed mode enabled for DSP ops

AccA Saturation Enable bit

1 Accumulator A saturation enabled
0 Accumulator A saturation disabled

AccB Saturation Enable bit

1 Accumulator B saturation enabled
0 Accumulator B saturation disabled

Data Space Write from DSP Engine Saturation Enable bit

1 Data Space write saturation enabled
0 Data Space write saturation disabled

Accumulator Saturation Mode Select bit

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 42

1 9.63 saturation (super saturation)
0 1.63 saturation (normal saturation)

Rounding Mode Select bit

1 Biased (conventional) rounding enabled
0 Unbiased (convergent) rounding enabled

Integer or Fractional Multiplier Mode Select bit

1 Integer mode is enabled for DSP multiply
0 Fractional mode is enabled for DSP multiply

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 43

3.2.6� Modulo�Addressing�Control�Register(1)

MODCON
0x0014

Note: 
1. The MODCON register enables and configures Modulo Addressing (circular buffers).

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 XMODEN YMODEN

Access R/W R/W
Reset 0 0

Bit 7 6 5 4 3 2 1 0
 YWM[3:0] XWM[3:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 1 0 0 0 1

X RAGU & X WAGU Modulus Addressing Enable bit

1 X AGU Modulus Addressing enabled
0 X AGU Modulus Addressing disabled

Y AGU Modulus Addressing Enable bit

1 Y AGU Modulus Addressing enabled
0 Y AGU Modulus Addressing disabled

Y AGU W Register Select for Modulo Addressing bit

1111 Modulo Addressing disabled (W15 does not support Modulo Addressing)
1110 W14 selected for Modulo Addressing
...

0000 W0 selected for Modulo Addressing

X RAGU & X WAGU W Register Select for Modulo Addressing bit

1111 Modulo Addressing disabled (W15 does not support Modulo Addressing)
1110 W14 selected for Modulo Addressing
...

0000 W0 selected for Modulo Addressing

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 44

3.2.7� X�AGU�Modulo�Addressing�Start�Register

XMODSRT
0x0018

Note: 
1. The XMODSRT and XMODEND registers hold the start and end addresses for modulo (circular)

buffers implemented in the X data memory address space.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 XMODSRT[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 XMODSRT[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 XMODSRT[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

 X RAGU & X WAGU Modulo Addressing Start Address bits(1)

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 45

3.2.8� X�AGU�Modulo�Addressing�End�Register(1)

XMODEND
0x001C

Note: 
1. The XMODSRT and XMODEND registers hold the start and end addresses for modulo (circular)

buffers implemented in the X data memory address space.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 XMODEND[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 XMODEND[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 XMODEND[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

X RAGU & X WAGU Modulo Addressing End Address bits

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 46

3.2.9� Y�AGU�Modulo�Addressing�Start�Address�Register(1)

YMODSRT
0x0020

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 YMODSRT[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 YMODSRT[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 YMODSRT[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Y RAGU Modulo Addressing Start Address bits

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 47

3.2.10� Y�AGU�Modulo�Addressing�End�Register(1)

YMODEND
0x0024

Note: 
1. The YMODSRT and YMODEND registers hold the start and end addresses for modulo (circular)

buffers implemented in the Y data memory address space.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 YMODEND[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 YMODEND[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 YMODEND[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

 Y RAGU Modulo Addressing End Address bits

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 48

3.2.11� X�AGU�Bit�Reversal�Addressing�Control�Register(1)

XBREV
0x0028

Note: 
1. The XBREV register sets the buffer size used for Bit-Reversed Addressing.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 XBREV[14:8]

Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 XBREV[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

X AGU Bit Reversed Modifier bits

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 49

3.2.12� Captured�PC�Address�at�Time�of�Trap�Register

PCTRAP
0x002C

Notes: 
1. PCTRAP[0] always reads as 0.

2. If the current IPL is greater or equal to 8, the PC address will not be captured.
3. Hardware update is blocked after the first PCTRAP update occurs, preventing newer traps from

overwriting the source address of older ones. Update can be re-enabled by user attempting to
write 24’h000000 to PCTRAP (write will not occur, preserving PCTRAP contents).

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 PCTRAP[22:16]

Access R R R R R R R
Reset 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 PCTRAP[15:8]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 PCTRAP[7:0]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

 Captured PC Address at time of trap exception(1,2,3)

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 50

3.2.13� Force�ExecuƟon�InstrucƟon�Register�1(1)

FEX
0x0030

Bit 31 30 29 28 27 26 25 24
 FEX[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 FEX[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 FEX[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 FEX[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 1

For 2 word operations, FEX contains the first instruction to be executed using the UFEX
instruction.

FEX is only visible as a R/W register in Debug mode. In all other operating modes, it is read-only of all
0’s.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 51

3.2.14� Force�ExecuƟon�InstrucƟon�Register�2(1)

FEX2
0x0034

Bit 31 30 29 28 27 26 25 24
 FEX2[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 FEX2[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 FEX2[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 FEX2[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 1

For 2 word operations, FEX contains the second instruction to be executed using the
UFEX instruction.

FEX is only visible as a R/W register in Debug mode. In all other operating modes, it is read-only of all
0’s.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 52

3.2.15� Debug�Hold�PC�Register

PCHOLD
0x0038

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 PCHOLD[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 PCHOLD[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 PCHOLD[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 1

Debug Hold PC register bits
PCHOLD is only visible as a R/W register in Debug mode. In all other operating modes, it is read-only
of all 0’s.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 53

3.2.16� Vector�Fail�Address�Register

VFA
0x003C

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 VFA[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 VFA[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 VFA[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 1

Vector Fail Address Register bits

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 54

3.2.17� CPU�STATUS�Register(1)

SR

Note: 
1. The CPU STATUS register is not memory mapped.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 VF CTX[2:0]

Access R R R R
Reset 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 OA OB SA SB OAB SAB IPL3

Access R/W R/W R/W R/W R R/C R/C
Reset 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 IPL[2:0] RA N OV Z C

Access R/W R/W R/W R R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Vector (Fetch) Fail Status bit

1 Indicates to the Bus Error handler that the source of the bus error is a vector fetch. The vector data read will be
substituted with the contents of the Vector Fail Address (VFA) SFR.

0 Indicates to the Bus Error handler that the source of the bus error is not a vector fetch.

Current (W register) Context Identifier bits

111 Context 7 is currently in use
110 Context 6 is currently in use
101 Context 5 is currently in use
100 Context 4 is currently in use
011 Context 3 is currently in use
010 Context 2 is currently in use
001 Context 1 is currently in use
000 Context 0 is currently in use

Accumulator A Fractional Overflow Status bit

1 Accumulator A fractional overflow has occurred (its contents can no longer be represented as a 1.31 fractional
value)

0 Accumulator A not overflowed

Accumulator B Fractional Overflow Status bit

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 55

1 Accumulator B fractional overflow has occurred (its contents can no longer be represented as a 1.31 fractional
value)

0 Accumulator B not overflowed

Accumulator A Saturation/Sign Overflow ‘Sticky’ Status bit

1 Accumulator A is saturated, or has been saturated at some time, or has overflowed into bit 71 (if saturation is
disabled)

0 Accumulator A is not saturated or has not overflowed into bit 71 (if saturation is disabled)

Accumulator B Saturation/Sign Overflow ‘Sticky’ Status bit

1 Accumulator B is saturated, or has been saturated at some time, or has overflowed into bit 71 (if saturation is
disabled)

0 Accumulator B is not saturated or has not overflowed into bit 71 (if saturation is disabled)

OA || OB Combined Accumulator Fractional Overflow Status bit

1 Accumulators A or B fractional overflow has occurred (one or both of their contents can no longer be
represented as a 1.31 fractional value)

0 Neither Accumulators A nor B have overflowed

SA || SB Combined Accumulator ‘Sticky’ Status bit

1 Accumulators A or B are saturated, or have been saturated at some time, or have overflowed into bit 71 (if
saturation is disabled)

0 Neither Accumulator A nor B are saturated or have overflowed into bit 71 (if saturation is disabled)

MS-bit of CPU Priority Level Nibble bit

1 CPU Priority ≥ 8 (trap exception underway)
0 CPU Priority < 8 (no trap exception underway)

CPU Interrupt Priority Level status bits
User Mode: This bit is R/C-0 (read only if Supervisor Mode supported) and will reset to 1’b0.
Supervisor Mode: This bit is R/C-0 (CPU will reset into Supervisor Mode).

111 All interrupts disabled
110 Level 7 interrupts enabled
101 Level 6 and 7 interrupts enabled
100 Level 5 through 7 interrupts enabled
011 Level 4 through 7 interrupts enabled
010 Level 3 through 7 interrupts enabled
001 Level 2 through 7 interrupts enabled
000 Level 1 through 7 interrupts enabled

REPEAT Loop Active bit

1 REPEAT loop in progress
0 REPEAT loop not in progress

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 56

ALU Negative bit

ALU Overflow bit

ALU ‘Sticky’ Zero bit

1 An operation which effects the Z bit has set it at some time in the past
0 The most recent operation which effects the Z bit has cleared it (i.e. a non-zero result)

 ALU Carry/Borrow bit
SR[31:0] is stacked during exception processing, preserving context.

3.3� CPU�OperaƟon

3.3.1� InstrucƟon�Set
The dsPIC33A instruction set has two classes of instructions: MCU instructions and DSP instructions.
These two classes are seamlessly integrated into the architecture and execute from a single
execution unit. The instruction supports integer, fixed point and floating-point math operation.

3.3.2� Data�Space�Addressing
The Data Space is split into two blocks as X and Y data memory. Each memory block has its own
independent Address Generation Unit (AGU). The MCU class of instructions operates solely through
the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP
instructions operate through the X and Y AGUs to support dual operand reads, which splits the data
address space into two parts.

In dsPIC33A devices, overhead-free circular buffers (Modulo Addressing mode) are supported in
both X and Y address spaces. The Modulo Addressing removes the software boundary checking
overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class
of instructions. The X AGU also supports the Bit-Reversed Addressing mode to greatly simplify input
or output data reordering for radix-2 FFT algorithms.

3.3.3� Addressing�Modes
The CPU supports up to eight addressing modes as shown in Table 3-1

Table�3-1.�MCU�InstrucƟon�Addressing�Mode�DeĮniƟons

EA = [Ws + Wb] EA = [Wd + Wb] Indirect with (signed) Register Offset

EA = SR EA = SR Status Register direct

EA = [Ws+=1] EA = [Wd+=1] Register indirect pre-incremented

EA = [Ws-=1] EA = [Wd-=1] Register indirect pre-decremented

EA = [Ws]+= 1 EA = [Wd]+= 1 Register indirect post-incremented

EA = [Ws]-= 1 EA = [Wd]-= 1 Register indirect post-decremented

EA = [Ws] EA = [Wd] Register indirect

EA = Ws EA = Wd Register direct

Each instruction is associated with a predefined addressing mode group, depending upon its
functional requirements. For most instructions, the dsPIC33A CPU can execute all of the following
functions in a single instruction cycle:

• Data memory read
• Working register (data) read
• Data memory write

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 57

• Program (instruction) memory read

As a result, three-operand instructions can be supported, allowing A + B = C operations to be
executed in a single cycle.

3.3.4� Programmer’s�Model
The programmer’s model for the dsPIC33A CPU is shown in Figure 3-2. All registers in the
programmer’s model are memory-mapped and can be manipulated directly by instructions. Table
3-2 provides a description of each register in the programmer’s model.

In addition to the registers contained in the programmer’s model, the dsPIC33A devices contain
control registers for Modulo Addressing, Bit-Reversed Addressing and Interrupts. These registers are
described in subsequent sections of this document.

All registers associated with the programmer’s model are shown in Figure 3-2.

Table�3-2.�Programmer's�Model�Register�DescripƟons

W0 through W15(1) Working Register Array (Default Context)

W0 through W7(1,2) Working Register Array (Alternate Context 1-7)

ACCA,ACCB(1) 72-bit DSP Accumulators (Context 0-7)

PC 24-bit Program Counter

SR(1) ALU and DSP Engine Status Register

SPLIM Stack Pointer Limit Value Register

RCOUNT 32-bit�REPEAT Loop Count Register (Context 0-7)

CORCON DSP Engine Configuration
Notes: 
1. W0 through W15, ACCx and SR are not mapped to memory.

2. W0 through W7 are part of Alternate W register sets.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 58

Figure�3-2.�dsPIC33A�CPU�Programmer’s�Model

N OV Z C

23 0

031

PROGRAM COUNTER

STATUS REGISTER (SR)

 DSP/INTEGER
OPERAND/ADDRESS

W0/WREG

W1

W2
W3

W4
W5

W6
W7

W8
W9

W10
W11

W12
W13

 FRAME POINTER / W14
STACK PTR / W151

71 063

DSP ACCUMULATORS
AccA
AccB

RAOA OB SA SB

REPEAT LOOP COUNTER (CONTEXT 0)
0

SPLIM1 STACK POINTER LIMIT

31

Note 1: W15[1:0] and SPLIM[1:0] always = 2’b00

IPL[3:0]

00

OAB SAB

00

018

PC2

8’b0

8’b0

0

Note 2: PC[0] always =1’b0

REGISTERS

CTX[2:0]

Contexts 1 - 7

(CONTEXT 0)

Contexts 1 - 7

Contexts 1 - 7

(CONTEXT 0)

31
RCOUNT

VFA

23

Note 3: CORCON register is also a part of all contexts

3

3.3.5� DSP�Engine�and�InstrucƟons
The DSP engine features:

• A high-speed, 33-bit by 33-bit multiplier
• A 72-bit ALU
• Two 72-bit saturating accumulators
• A 72-bit bidirectional barrel shifter, capable of shifting a 40-bit value up to 32 bits right, or up to

32 bits left, in a single cycle

The DSP instructions operate seamlessly with all other instructions and are designed for optimal
real-time performance. The MAC�instruction, and other associated instructions, can concurrently
fetch two data operands from memory while multiplying two W registers. This requires that the data
space be split for these instructions and linear for all others.

3.3.6� ExcepƟon�Processing
The dsPIC33A devices have a vectored exception scheme, with up to eight possible sources of
non-maskable traps and up to 246 possible interrupt sources. Each interrupt source can be assigned
to one of seven priority levels.

In addition, each of the Alternate W register contexts can be associated with its own Interrupt
Priority Level (IPL) for exception handling. See 3.3.9. Alternate Working Register Arrays for more
information.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 59

3.3.7� CPU�Register�DescripƟons

3.3.7.1� SR:�CPU�STATUS�Register
The dsPIC33A CPU has a 32-bit STATUS Register (SR). A detailed description of the CPU SR is shown
in 3.2.17. SR.

SR contains:

• All ALU Operation Status flags
• The CPU Interrupt Priority Level Status bits, IPL[3:0]
• The REPEAT Loop Active Status bit, RA (SR[4])

• The DSP Adder/Subtracter Status bits

The SR bits are readable/writable with the following exceptions:

• The RA bit (SR[4]) is read-only
• The OA, OB (SR[15:14]), OAB (SR[11]), SA, SB (SR[13:12]) and SAB (SR[10]) bits are readable and

writable; however, once set, they remain set until cleared by the user application, regardless of
the results from any subsequent DSP operations.
Note: Clearing the SAB bit also clears both the SA and SB bits. Similarly, clearing the OAB bit
also clears both the OA and OB bits. A description of the STATUS Register bits affected by each
instruction is provided in the “dsPIC33A Programmer’s Reference Manual” .

• The CTX bit (SR[18:16]) is read-only; it reflects which W register context is currently in use by the
CPU

• The VF bit (SR[23]) is read-only

3.3.7.2� CORCON:�Core�Control�Register
The Core Control register (CORCON) has bits that control the operation of the DSP multiplier.

3.3.8� Working�Register�Array
The Working (W) registers can function as data, address or address offset registers. The function of a
W register is determined by the addressing mode of the instruction that accesses it.

The dsPIC33A instruction set can be divided into two instruction types: Register instructions and File
register instructions.

3.3.8.1� Register�InstrucƟons
Register instructions can use each W register as a data value or an address offset value. Example 3-1
shows register instructions.

Example�3-1.ധRegister�InstrucƟons

MOV.w����W0,�W1��������������;�move�contents�of�W0�to�W1
MOV.w����W0,�[W1]������������;�move�W0�to�address�contained�in�W1
ADD.w����W0,�[W4],�W5��������;�add�contents�of�W0�to�contents�pointed
���������������������������;�to�by�W4.�Place�result�in�W5.

3.3.8.2� File�Register�InstrucƟons
File register instructions operate on a specific memory address contained in the instruction opcode
and register, W0. W0 is a special Working register used in File register instructions.

The File register address space is determined by the maximum address range of the file
instructions, which is either 64 KB (if a W-reg operand is required) or 1 MB (if no W-reg operand
is required), and encompasses the user RAM area and Special Function Registers (SFRs) within DS.

Example 3-2 shows File register instructions.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 60

Example�3-2.ധFile�Register�InstrucƟons

ADD.w�0x4500,�Wn�����������������;�(0x4500)+w0�->�0x4500
ADD.w�0x4500,�w0,�Wn�����������������������;�(0x4500)+w0�->�0x4500
ADD.w�0x4500,�w4,�Wn�����������������������;�(0x4500)+w4�->�0x4500

3.3.8.3� W�Register�Memory�Mapping
The W registers are not memory-mapped, and thus, it is not possible to access a W register in a File
register instruction. This helps in eliminating data hazards.

3.3.8.4� W�Registers�and�Byte�Mode�InstrucƟons
Byte instructions that target the W register array affect only the Least Significant Byte (LSB) of the
target register. Since the Working registers are memory-mapped, the LSB and the Most Significant
Byte (MSB) can be manipulated through byte-wide data memory space accesses.

3.3.9� Alternate�Working�Register�Arrays
Alternate Working register arrays are a subset of the Working registers (W0 through W7). Depending
on the specific device, up to seven Alternate Working register arrays may be implemented. Each set
implements registers W0 through W7, AccA, AccB, RCOUNT, and DSP related CORCON control bits
(US, SATA, SATB, SATDW, ACCSAT, RND, IF).

The Alternate W registers are not memory-mapped to data memory space just like the default W
array.

All W register arrays are persistent; that is to say, the contents of the default and Alternate W
registers do not change whenever the CPU switches to another set. This saves time by reducing
the amount of saving and restoring of register contents, making this very useful for time-critical
applications.

Each Alternate W array is inherently assigned to a respective IPL (e.g., IPL4 is assigned to Context 4)
and Interrupt Service Routine (ISR) in the application code. The Current Context Identifier (CTX[2:0])
status field is located within the Status Register (SR). Each context is associated with a specific
Interrupt Priority Level (IPLV). The context is exited during execution of RETFIE instruction of the
interrupt ISR.

During an exception processing, the (CTX[2:0]) status field located within the Status Register (SR)
is stacked. The stacked SR.CTX[2:0] represents the CPU register context in use at the time of the
exception. The value is updated whenever the register context is changed, either through automatic
interrupt-based hardware switching, or as the result of a context change brought about by the
execution of a CTXTSWP{W} instruction.

Depending on the device, different context Working register behavior can be observed with nested
interrupts.

Consider the example, as shown in Figure 3-3, where there are nested interrupts. In this case, the
system is configured as follows:

• Timer1 interrupt with an Interrupt Priority Level (IPL) of 1. The Alternate Working Register Set 1
(CTX1) has an IPL of 1.

• ADCAN1 interrupt with an IPL of 4. The Alternate Working Register Set 4 (CTX4) has an IPL of 4.
• PWM1 interrupt with an IPL of 5, The Alternate Working Register Set 5 (CTX5) has an IPL of 5.

The application begins in the main function. At some point in time, the Timer1 interrupt flag is
set and the program jumps to the Timer1 ISR. The register set switches from the default Working
register set 0 to the Alternate Working register set 1, CTX1. At some point during the Timer1 ISR, the
ADCAN1 conversion completes, and its interrupt flag is set. Because it has a higher IPL, the program
jumps to the ADCAN1 ISR. The register set switches from the set 1, CTX1 Alternate Working register
set to the Alternate Working register set 4, CTX4. At some point during the ADCAN1 ISR, the PWM1

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 61

interrupt flag is set. Because the PWM1 IPL is higher than the ADCAN1 IPL, the program jumps to the
PWM1 ISR and remains in the Alternate Working register set 5 CTX5.

Once the PWM ISR execution is completed, the program jumps back to the ADCAN1 ISR using CTX4.
Similarly, after the execution of the ADCAN1 ISR, the program jumps back to the Timer1 ISR using
CTX1. Exceptions above IPL7 (i.e., traps) will execute in whatever register context the CPU was in
prior to the trap event.

Figure�3-3.�Nested�Interrupt�Context�Flow�for�dsPIC33A�Devices

SET1

SET5

SET4

SET5 SET5

SET4 SET4

SET1 SET1

Main
DEFAULT

3.3.9.1� Alternate�Working�Register�Set
Alternatively, before enabling interrupts associated with a particular context, the application may
manually switch to it by executing the CTXTSWP�instruction. CTXTSWP�does not affect the CPU IPL;
it is used to support software context switching for either context initialization, run-time usage of
contexts within procedure calls or the like, thus operating independently from the interrupt system.

3.3.10� SoŌware�Stack�Pointer
The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified
by exception processing, subroutine calls and returns; however, W15 can be referenced by any
instruction in the same manner as all other W registers. This simplifies reading, writing and
manipulating the Stack Pointer (for example, creating stack frames).
Note: To protect against misaligned stack accesses, W15[1:0] is fixed to ‘00’ by the hardware.

W15 is initialized to 0x4000 during all Resets. This address ensures that the Software Stack Pointer
points to valid RAM in all dsPIC33A devices and permits stack availability for non- maskable trap
exceptions. These can occur before the SSP is initialized by the user software. Reprogramming the
SSP to any location within data space is possible during initialization.

The Software Stack Pointer always points to the first available free word in the data space (RAM) and
fills the software stack, working from lower toward higher addresses. Figure 3-4 illustrates how it
pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC[23:0] are pushed onto the first available stack word, as
shown in Figure 3-4.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 62

Figure�3-4.�Stack�OperaƟon�for�a�CALL�InstrucƟon

(Free Word)
8’h00, PC[23:1], 1’b0

031

W15 (before CALL)
W15 (after CALL)

St
ac

k
G

ro
w

s
To

w
ar

ds
H

ig
he

r A
dd

re
ss

PUSH: [W15]+=4
POP: [W15 - =4]

3.3.10.1�SoŌware�Stack�Examples
The software stack is manipulated using the PUSH and POP instructions. The PUSH and POP
instructions are the equivalent of a MOV instruction with W15 as the Destination Pointer. For
example, the contents of W0 can be pushed onto the stack by:

PUSH�W0

This syntax is equivalent to:

MOV.L�W0,[W15++]

The contents of the Top-of-Stack (TOS) can be returned to W0 by:

POP�W0

This syntax is equivalent to:

MOV.L�[--W15],W0

Figure 3-5 through Figure 3-8 illustrate examples of how the software stack is used. Figure 3-5
illustrates the software stack at device initialization. W15 has been initialized to 0x00004000. This
example assumes the values, 0xAAAAAAAA and 0xBBBBBBBB, have been written to W0 and W1,
respectively. In Figure 3-6, the stack is pushed for the first time and the value contained in W0
is copied to the stack. W15 is automatically updated to point to the next available stack location
(0x00004004). In Figure 3-7, the contents of W1 are pushed onto the stack. Figure 3-8 illustrates how
the stack is popped and the Top-of-Stack value (previously pushed from W1) is written to W3.

Figure�3-5.�Stack�Pointer�at�Device�Reset

W15

W0
W1 =

End of RAM

W15 = 0x00004000
= 0xAAAAAAAA

0xBBBBBBBB

0x00000000

0x00004000

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 63

Figure�3-6.�Stack�Pointer�AŌer�the�First�PUSH�InstrucƟon

W15
PUSH W0

W15 = 0x00004004
W0 = 0xAAAAAAAA
W1 = BBBBBBBB

0x000000

0x004000
0x004004

End of RAM

0xAAAAAAAA

Figure�3-7.�Stack�Pointer�AŌer�the�Second�PUSH�InstrucƟon

W15

PUSH W1

W15 =
W0
W1 =

0x000000

0x004000
0x004004
0x004008

End of RAM

0x00004008
= 0xAAAAAAAA

0xBBBBBBBB

0xAAAAAAAA
0xBBBBBBBB

Figure�3-8.�Stack�Pointer�AŌer�a�POP�InstrucƟon

W15
POP W3

W15 =

0x000000

0x004000
0x004004

End of RAM

0x00004004
0xBBBBBBBB W3

0xAAAAAAAA
0xBBBBBBBB

3.3.10.2�W14�SoŌware�Stack�Frame�Pointer
A frame is a user-defined section of memory in the stack that is used by a single function. The
Working register, W14, can be used as a Stack Frame Pointer with the LNK�(link) and ULNK�(unlink)
instructions. W14 can be used in a normal Working register by instructions when it is not used as a
Frame Pointer.

3.3.10.3�Stack�Pointer�OverŇow
The Stack Pointer Limit (SPLIM) register specifies the size of the stack buffer. SPLIM is a 32-bit
register, but SPLIM[1:0] is fixed to ‘00’ because all stack operations must be long word-aligned.

The stack overflow check is not enabled until a Long word write to SPLIM occurs. After this, it can
only be disabled by a device Reset. All Effective Addresses (EAs), generated using W15 as a source
or destination, are compared against the value in SPLIM. If Effective Addresses (EAs) exceed the
contents of the SPLIM register, and a PUSH operation is performed, a stack error trap occurs on a
subsequent PUSH operation. For example, if it is desirable to cause a stack error trap when the stack
grows beyond address 0x5000 in RAM, initialize the SPLIM with the value 0x4FFC.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 64

Note: A stack error trap can be caused by any instruction that uses the contents of the W15
register to generate an Effective Address (EA). Therefore, if the contents of W15 are greater than
the contents of the SPLIM register by a value of four, and a CALL instruction is executed or if an
interrupt occurs, a stack error trap is generated.

If stack overflow checking is enabled, a stack error trap also occurs if the W15 Effective Address
calculation wraps over the end of data space.

A pre/post inc/dec operation is performed on W15 that results in EA[1:0] != 2’b00 (i.e., not long word
aligned). This will detect byte and word pre/post inc/dec operations that are otherwise considered
aligned but would result in a misaligned Stack Pointer.

Note: A write to the SPLIM should not be followed by an indirect read operation using W15.

3.3.10.4�Stack�Pointer�UnderŇow
The stack is initialized to 0x4000 during a Reset. A stack error trap is initiated if the Stack Pointer
address is less than 0x4000.

Note: Locations in data space between 0x0000 and 0x3FFF are, in general, reserved for core and
peripheral Special Function Registers (SFRs).

3.3.11� ArithmeƟc�Logic�Unit�(ALU)
The dsPIC33A ALU is 32 bits wide and is capable of addition, subtraction, single bit shifts and
logic operations. Unless otherwise mentioned, arithmetic operations are 2’s complement in nature.
Depending on the operation, the ALU can affect the values of the following bits in the STATUS
Register:

• Carry (C)
• Zero (Z)
• Negative (N)
• Overflow (OV)

The ALU can perform 8/16-bit or 32-bit operations, depending on the mode of the instruction that is
used. Data for the ALU operation can come from the W register array or data memory depending on
the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W
register array or a data memory location.

Note: 
1. Byte operations use the 16-bit ALU and can produce results in excess of eight bits. However, to

maintain backward compatibility with PIC® MCU devices, the ALU result from all byte operations
is written back as a byte (i.e., the MSB is not modified) and the STATUS Register is updated based
only upon the state of the LSB of the result.

3.3.11.1�Byte�to�Word�Conversion
The dsPIC33A CPU has two instructions that are helpful when mixing 8-bit and 16-bit ALU
operations.

The Sign-Extend (SE) instruction takes a byte value in a W register or data memory and creates a
sign-extended word value that is stored in a W register.

The Zero-Extend (ZE) instruction clears the 8 MSbs of a word value in a W register or data memory
and places the result in a destination W register.

3.3.12� DSP�Engine
The DSP engine is a block of hardware that is fed data from the W register array, but contains its
own specialized result registers. The DSP engine is driven from the same instruction decoder that
directs the MCU ALU. In addition, all operand Extended Addresses (EAs) are generated in the W
register array. Concurrent operation with MCU instruction flow is not possible, though both the MCU
ALU and DSP engine resources can be shared by all instructions in the instruction set.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 65

The DSP engine consists of the following components:

• High-speed, 33-bit by 33-bit multiplier
• Barrel shifter
• 72-bit adder/subtractor
• Two target Accumulator registers
• Rounding logic with selectable modes
• Saturation logic with selectable modes

Data input to the DSP engine is derived from one of the following sources:

• Directly from the W array for dual source operand DSP instructions. Data values fetched via the X
and Y memory data buses.

• From the X memory data bus for all other DSP instructions.

Data output from the DSP engine is written to one of the following destinations:

• The target accumulator, as defined by the DSP instruction being executed.
• The X memory data bus to any location in the data memory address space.

The DSP engine can perform inherent accumulator-to-accumulator operations that require no
additional data.

The MCU shift and multiply instructions use the DSP engine hardware to obtain their results. The X
memory data bus is used for data reads and writes in these operations.

Figure 3-9 illustrates a block diagram of the DSP engine.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 66

Figure�3-9.�DSP�Engine�Block�Diagram

Ze
ro

Sign/Zero Extend

Sh
ift

er

72-bit Accumulator A
72-bit Accumulator B

R
ou

nd
Lo

gi
c

X
D

at
a

B
us

Multiplier/Scaler

To/From W Array (clocked on core_clk)

Adder
Saturate

33-bit

Saturate

Negate

Saturated 32-bit

B
ac

kf
ill

3.3.12.1�Data�Accumulators
Two 72-bit data accumulators, ACCA and ACCB, are the Result registers for the DSP instructions
listed in 3.3.12.2.1. DSP Multiply Instructions. Each accumulator is not memory-mapped and is
referred as these three registers, where ‘x’ denotes the particular accumulator:

• ACCxL: ACCx[31:0]
• ACCxH: ACCx[63:32]
• ACCxU: ACCx[71:64]

For fractional operations that use the accumulators, the radix point is located to the right of bit 31.
The range of fractional values that can be stored in each accumulator is -256 to +(256 - 2**-63).

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 67

For integer operations that use the accumulators, the radix point is located to the right of bit 0.
The range of integer values that can be stored in each accumulator is -0x80_00000000_00000000 to
0x7F_FFFF_FFFF_FFFF_FFFF.

3.3.12.2�MulƟplier
The dsPIC33A devices feature a 33-bit-by-33-bit multiplier shared by both the MCU ALU and the DSP
engine. The multiplier is capable of signed, unsigned or mixed-sign operation and supports either
9.31 fractional (Q.31) or 64-bit integer results.

The multiplier takes in 32-bit input data and converts the data to 33 bits. Signed operands to
the multiplier are sign-extended. Unsigned input operands are zero-extended. The internal 33-bit
representation of data in the multiplier allows correct execution of mixed-sign and unsigned 32-bit
by 32-bit multiplication operations.

The representation of data in hardware for Integer and Fractional Multiplier modes is as follows:

• Integer data is inherently represented as a signed two’s complement value, where the Most
Significant bit (MSb) is defined as a Sign bit. Generally speaking, the range of an N-bit two’s
complement integer is -2(N-1) to 2(N-1)-1.

• Fractional data is represented as a two’s complement fraction, where the MSb is defined as a
Sign bit and the radix point is implied to lie just after the Sign bit (Q.X format). The range of an
N-bit two’s complement fraction with this implied radix point is -1.0 to (1 – 2(1-N)).

The range of data in both Integer and Fractional modes is listed in Table 3-3. Figure 3-10 and Figure
3-11 illustrate how the multiplier hardware interprets data in Integer and Fractional modes.

The Integer or Fractional Multiplier Mode Select (IF) bit (CORCON[0]) determines integer/ fractional
operation for the instructions listed in Table 3-4. The IF bit does not affect MCU multiply instructions
listed in Table 3-5, which are always integer operations. The multiplier scales the result one bit to
the left for fractional operation. The LSb of the result is always cleared. The multiplier defaults to
Fractional mode for DSP operations at a device Reset.

Table�3-3.�dsPIC33A�Data�Ranges
Fraction Range Fraction Resolution

16-Bit -32768 to
32767

-1.0 to (1.0 – 2-15) (Q1.15
Format)

3.052x10-5

32-Bit -2,147,483,648to
2,147,483,647

-1.0 to (1.0 – 2-31) (Q1.31
Format)

4.657x10-10

64-Bit -9.223372037e18 to
9.223372037e18

-1.0 to (1.0 – 2-63) (Q.1.63
Format)

1.08420x10-19

72-Bit -2.361183241e21 to
2.361183241e21

-256.0 to (256.0 – 2-63) (Q.9.63
Format with 8 Guard bits)

1.08420x10-19

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 68

Figure�3-10.�Integer�and�FracƟonal�RepresentaƟon�of�0x40000001

Different Representations of 0x40000001

Integer:

-2^31 2^30 2^29

1.31 Fractional:

2-1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2^31

0x40000001 = 2^30+2^0 = 1073741825

0x40000001 = 2^-1+2^-31 = 0.5000000005

Figure�3-11.�Integer�and�FracƟonal�RepresentaƟon�of�0xC0000002

Different Representations of 0xC0000002

Integer:

1.15 Fractional:

2-1

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

2^31 2^30 2^29

0xC0000002 = 2^31+2^29+2^1=49154

0xC0000002 = -2^0+2^-1+2^-30 = 1-0.5-9.313225746e-10 = 0.4999999991

3.3.12.2.1�DSP�MulƟply�InstrucƟons
The DSP instructions that use the multiplier are summarized in Table 3-4.

Table�3-4.�DSP�InstrucƟons�that�Use�the�MulƟplier
Description Algebraic Equivalent

MAC Multiply and Add to Accumulator or Square and Add to
Accumulator

a = a + b * c a = a + b2

MSC Multiply and Subtract from Accumulator a = a – b * c

MPY Multiply a = b * c

Note: 
1. DSP instructions using the multiplier can operate in signed or unsigned Fractional (1.15/1.31) or Integer modes.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 69

Description Algebraic Equivalent

MPYN Multiply and Negate Result a = -b * c

SQR Square to Accumulator a = b ^ 2

SQRAC Square and Accumulate a = a + (b ^ 2)

ED Partial Euclidean Distance a = (b – c)2

EDAC Add Partial Euclidean Distance to the Accumulator a = a + (b – c)2

Note: 
1. DSP instructions using the multiplier can operate in signed or unsigned Fractional (1.15/1.31) or Integer modes.

The DSP Multiplier Unsigned/Signed Control (US) bits (CORCON[12]) determine whether the DSP
multiply instructions are signed (default) or unsigned. The US bits do not influence the MCU multiply
instructions, which have specific instructions for signed or unsigned operation. If the USx bits are set
to ‘01’, the input operands for instructions shown in Table 3-4 are considered as unsigned values,
which are always zero-extended into the 33rd bit of the multiplier value. If the USx bits are set to
‘00’, the operands are sign-extended.

If the USx bits (CORCON[13:12]) are set to ‘10’, the operands for the instructions listed above
are considered as unsigned values. The result is zero-extended prior to any operation with the
accumulator (which will always effectively be signed).

3.3.12.2.2�MCU�MulƟply�InstrucƟons
The same multiplier supports the MCU multiply instructions, which include integer, 32-bit signed,
unsigned and mixed-sign multiplies, as shown below. All multiplications performed by the MUL
instruction produce integer results. The MUL�instruction can be directed to use byte or word- sized
operands. Byte input operands produce a 16-bit result and word input operands produce either a
16-bit result or a 32-bit result, either to the specified register(s) in the W array or to an accumulator.
Word input operands produce a 32-bit result and word input operands produce either a 32-bit
result or a 64-bit result, either to the specified register(s) in the W array or to an accumulator.

Table�3-5.�MCU�InstrucƟons�that�UƟlize�the�MulƟplier

MUL/MUL.UU Multiply two unsigned integers and generate 64-bit results.
MUL.SS Multiply two signed integers and generate 64-bit results.
MUL.SU/MUL.US Multiply a signed integer with an unsigned integer and

generate 64-bit results.
MULD.UU Multiply two unsigned integers and generate 72-bit results.
MULD.SS Multiply two signed integers and generate 72-bit results.
MULD.SU/�MULD.US Multiply a signed integer with an unsigned integer and

generate a 72-bit result.
MULW.UU Multiply two unsigned integers and generate 32-bit results.
MULW.SS Multiply two signed integers and generate 32-bit results.
MULW.SU/MULW.US Multiply a signed integer with an unsigned integer and

generate a 32-bit result.
MULB Multiply two unsigned 8-bit integers and generate 16-bit

results.
MULW Multiply two unsigned 16-bit integers and generate 32-bit

results.
MULL Multiply two unsigned 32-bit integers and generate 32-bit

results.
Note: 
1. MCU instructions using the multiplier operate only in Integer mode.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 70

3.3.12.3�Data�Accumulator�Adder/Subtractor
The data accumulators have a 72-bit adder/subtractor with automatic sign extension or zero
extension logic for the multiplier result. It can select one of two accumulators (A or B) as its
pre-accumulation source and post-accumulation destination. For the ADD�(accumulator) and LAC
instructions, the data to be accumulated or loaded can optionally be scaled via the barrel shifter
prior to accumulation.

The 72-bit adder/subtractor can optionally negate one of its operand inputs to change the sign of
the result (without changing the operands). The negate is used during multiply and subtract (MSC) or
multiply and negate (MPYN) operations.

The 72-bit adder/subtractor has an additional saturation block that controls accumulator data
saturation, if enabled.

3.3.12.3.1�Accumulator�Status�Bits
Six STATUS Register bits that support saturation and overflow are located in the CPU STATUS
Register (SR) and are listed in Table 3-6.

Table�3-6.�Accumulator�OverŇow�and�SaturaƟon�Status�Bits

OA ([15]) Accumulator A overflowed into guard bits (ACCA[71:63])

OB ([14]) Accumulator B overflowed into guard bits (ACCB[71:63])

SA ([13]) ACCA saturated (bit 63 overflow and saturation) or
ACCA overflowed into guard bits and saturated (bit 71 overflow and saturation)

SB ([12]) ACCB saturated (bit 63 overflow and saturation) or
ACCB overflowed into guard bits and saturated (bit 71 overflow and saturation)

OAB ([11]) OA logically ORed with OB, clearing OAB clears both OA and OB

SAB ([10]) SA logically ORed with SB, clearing SAB clears both SA and SB

The OA and OB bits are modified each time data passes through the accumulator add/subtract logic.
When set, they indicate that the most recent operation has overflowed into the accumulator guard
bits (ACCx[71:64]). This type of overflow is not catastrophic; the guard bits preserve the accumulator
data. The OAB Status bit is the logically OR value of OA and OB.

The OA and OB bits, when set, can optionally generate an arithmetic error trap. The trap is enabled
by setting the corresponding Overflow Trap Flag Enable bit (OVATE or OVBTE) in Interrupt Control
Register 4 (INTCON4[10:9]) in the interrupt controller. The trap event allows the user to take
immediate corrective action, if desired.

The SA and SB bits can be set each time data passes through the accumulator saturation logic.
Once set, these bits remain set until cleared by the user application. The SAB Status bit indicates the
logical OR value of SA and SB. When set, these bits indicate that the accumulator has overflowed
its maximum range (bit 63 for 64-bit saturation or bit 71 for 72-bit saturation) and are saturated (if
saturation is enabled).

When saturation is not enabled, the SA and SB bits indicate that a catastrophic overflow has
occurred (the sign of the accumulator has been destroyed). If the Catastrophic Overflow Trap Enable
(COVTE) bit (INTCON4[8]) is set, SA and SB bits will generate an arithmetic error trap when saturation
is disabled. The SA and SB bits can be set in software, enabling efficient context state switching.

3.3.12.3.2�SaturaƟon�And�OverŇow�Modes
The dsPIC33A CPU supports three Saturation and Overflow modes.

• Accumulator 71-Bit Saturation
In this mode, the saturation logic loads the maximally positive 9.63 value
(0x7F_FFFF_FFFF_FFFF_FFFF) or maximally negative 9.63 value (0x80_0000_0000_0000_0000) into

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 71

the target accumulator. The SA or SB bit is set and remains set until cleared by the user
application. This Saturation mode is useful for extending the dynamic range of the accumulator.
To configure for this mode of saturation, set the Accumulator Saturation Mode Select (ACCSAT)
bit (CORCON[4]). Additionally, set the ACCA Saturation Enable (SATA) bit (CORCON[7] and/or the
ACCB Saturation Enable (SATB) bit (CORCON[6]) to enable accumulator saturation.

• Accumulator 63-Bit Saturation
In this mode, the saturation logic loads the maximally positive 1.63 value
(0x00_7FFF_FFFF_FFFF_FFFF) or maximally negative 1.63 value (0xFF_8000_0000_0000_0000) into
the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When
this Saturation mode is in effect, the guard bits, 64 through 71, are not used except for sign
extension of the accumulator value. Consequently, the OA, OB or OAB bits in SR are never set.
To configure for this mode of overflow and saturation, the ACCSAT (CORCON[4]) bit must be
cleared. Additionally, the SATA (CORCON[7]) and/or SATB (CORCON[6]) bits must be set to enable
accumulator saturation.

• Accumulator Catastrophic Overflow
If the SATA (CORCON[7]) and/or SATB (CORCON[6]) bits are not set, then no saturation operation
is performed on the accumulator, and the accumulator is allowed to overflow all the way up to
bit 71 (destroying its sign). If the Catastrophic Overflow Trap Enable (COVTE) bit (INTCON4[8] in
the interrupt controller) is set, a catastrophic overflow initiates an arithmetic error trap.

Accumulator saturation and overflow detection can only result from the execution of a DSP
instruction that modifies one of the two accumulators via the 72-bit DSP ALU. Saturation and
overflow detection do not take place when the accumulators are accessed via the MCU class
of instructions. Furthermore, the Accumulator Status bits shown in Table 3-6 are not modified.
However, the MCU Status bits (Z, N, C, OV, DC) will be modified, depending on the MCU instruction
that accesses the accumulator.

3.3.12.3.3�Data�Space�Write�SaturaƟon
In addition to adder/subtractor saturation, writes to data space can be saturated without affecting
the contents of the source accumulator. This feature allows data to be limited, while not sacrificing
the dynamic range of the accumulator during intermediate calculation stages. Data space write
saturation is enabled by setting the data space write from the DSP Engine Saturation Enable
(SATDW) Control bit (CORCON[5]). Data space write saturation is enabled by default at a device
Reset.

The data space write saturation feature works with the SAC and SACR instructions. The value held
in the accumulator is never modified when these instructions are executed. The hardware takes the
following steps to obtain the saturated write result:

1. The read data is scaled based upon the arithmetic shift value specified in the instruction.
2. The scaled data is rounded (SACR only).

3. For Word mode instruction, scaled/rounded value is saturated to a 16-bit result based on the
value of the guard bits. For data values greater than 0x007FFF, the data written to memory is
saturated to the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data
written to memory is saturated to the maximum negative 1.15 value, 0x8000. Similarly, the data
written to memory is saturated to maximum positive/negative 1.31 value for Long Word mode
operation.

3.3.12.3.4�Accumulator�Write�Back
The MAC�and MSC�instructions can optionally write a rounded version of the accumulator that is
not the target of the current operation into data space memory. The write is performed across the
X-bus into the combined X and Y address space. This accumulator write-back feature is beneficial in
certain algorithms, such as FFT and LMS filters.

Two addressing modes are supported by the accumulator write-back hardware:

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 72

• W0, W1, W2, W3 or W13, Register Direct: The rounded contents of the non-target accumulator
are written into the destination register as a 1.15 (Word mode) or 1.31 (Long Word mode)
fractional result.

• [W13++] or [W15++], Register Indirect with Post-Increment: The rounded contents of the non-
target accumulator are written into the address pointed to by W13 or W15 as a 1.15 (Word
mode) or 1.31 (Long Word mode) fraction. W13 or W15 is then incremented by 2/4 depending on
selected Word/Long Word mode. [W15++] is equivalent to a push onto the system stack.

3.3.12.4�Round�Logic
The round logic can perform a conventional (biased) or convergent (unbiased) round function during
an accumulator write (store). The Round mode is determined by the state of the Rounding Mode
Select (RND) bit (CORCON[1]). It generates a 16-bit 1.15 or 32-bit 1.31 data value, which is passed to
the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15
or 1.31 data value is stored.

The two Rounding modes are shown in Figure 3-12. Conventional rounding takes bit 31 of the
accumulator, zero-extends it and adds it to the most significant word (msw), excluding the guard or
overflow bits (bits 32 through 63). If the least significant word (lsw) of the accumulator is between
0x80000000 and 0xFFFFFFFF (0x80000000 included), the msw is incremented. If the lsw of the accu-
mulator is between 0x0000 and 0x7FFFFFFF, the msw remains unchanged. A consequence of this
algorithm is that over a succession of random rounding operations, the value tends to be biased
slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding except
when the lsw equals 0x80000000. If this is the case, the LSb of the msw (bit 16 of the accumulator) is
examined. If it is ‘1’, the msw is incremented. If it is ‘0’, the msw is not modified. Assuming that bit 16
is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC�and SACR�instructions store either a truncated (SAC) or rounded (SACR) version of the
contents of the target accumulator to data memory via the X-bus (subject to data saturation).

For the MAC�class of instructions, the accumulator write-back data path is always subject to
rounding. An overflow that occurs as a consequence of a rounding operation will also be subject
to saturation.

Figure�3-12.�ConvenƟonal�and�Convergent�Rounding�Modes

Conventional (Biased) Convergent (Unbiased)

16 15 32 31

Round Up (add 1 to msw) when:
lsw ≥0x80000000

Round Up (add 1 to msw) when:
1. lsw = 0x80000000 and bit 32
= 1

16 15 32 31

Round Down (add nothing) when:
lsw < 0x80000000

Round Down (add nothing) when:
1. lsw = 0x80000000 and bit 32 =
0

0xxx xxxx xxxx xxxxmsw

1xxx xxxx xxxx xxxxmsw msw 1 1000 0000 0000 0000

msw 0 1000 0000 0000 0000

3.3.12.5�Barrel�ShiŌer
The barrel shifter can perform up to a 32-bit arithmetic right shift, or up to a 32-bit left shift, in a
single cycle. DSP or MCU instructions can use the barrel shifter for multibit shifts.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 73

The shifter requires a signed binary value to determine both the magnitude (number of bits) and
direction of the shift operation:

• A positive value shifts the operand right
• A negative value shifts the operand left
• A value of ‘0’ does not modify the operand

The barrel shifter is 72 bits wide to accommodate the width of the accumulators. A 72-bit output
result is provided for DSP shift operations, and a 32-bit result is provided for MCU shift operations.

Table 3-7 provides a summary of instructions that use the barrel shifter.

Table�3-7.�InstrucƟons�that�Use�the�DSP�Engine�Barrel�ShiŌer

ASR Arithmetic multibit right shift of data memory location

LSR Logical multibit right shift of data memory location

SL Multibit shift left of data memory location

SAC Store DSP accumulator with optional shift

SFTAC Shift DSP accumulator

3.3.12.6�DSP�Engine�Mode�SelecƟon
These operational characteristics of the DSP engine, discussed in previous sections, can be selected
through the CPU Core Configuration register (CORCON):

• Fractional or integer multiply operation
• Conventional or convergent rounding
• Automatic saturation on/off for ACCA
• Automatic saturation on/off for ACCB
• Automatic saturation on/off for writes to data memory
• Accumulator Saturation mode selection

3.3.12.7�DSP�Engine�Trap�Events
Arithmetic error traps that can be generated for handling exceptions in the DSP engine are selected
through the Interrupt Control Register 4 (INTCON4). These are:

• Trap on ACCA overflow enable using OVATE (INTCON4[21])
• Trap on ACCB overflow enable using OVBTE (INTCON4[20])

• Trap on catastrophic ACCA and/or ACCB overflow enable using COVTE (INTCON4[19]).
Occurrence of the traps is indicated by these error status bits:

– OVAERR (INTCON4[5])
– OVBERR (INTCON4[4])
– COVAERR (INTCON4[3])
– COVBERR (INTCON4[2])

An arithmetic error trap is also generated when the user application attempts to shift a value
beyond the maximum allowable range (±32 bits) using the SFTAC instruction. This trap source
cannot be disabled and is indicated by the Shift Accumulator Error Status (SFTACERR) bit
(INTCON4[1] in the interrupt controller). The instruction will execute, but the results of the shift
are not written to the target accumulator.

3.3.13� Divide�Support
The dsPIC33A CPU supports the following types of division operations:

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 74

• DIVF: 16/16 signed fractional divide

• DIVF: 32/16 signed fractional divide

• DIVF.L: 32/32 signed fractional divide

• DIV.SL: 32/32 signed divide

• DIV.UL: 32/32 unsigned divide

• DIV.S: 32/16 signed divide

• DIV.U: 32/16 unsigned divide

• DIV.S: 16/16 signed divide

• DIV.U: 16/16 unsigned divide

The quotient for all divide instructions can placed in any Working register, Wm. The remainder is
placed in W(m+1). The 32/16-bit divisor can be located in any W register. A 32/16-bit dividend can
be located in any W register. The integer 16/16 divide instructions will either zero or sign extend the
least significant dividend word into the most significant dividend word during the first iteration to
create a 32-bit dividend.

All 16-bit/16-bit and 32-bit/16-bit divide instructions are iterative operations and must be executed
six times within a REPEAT loop. All 32-bit/32-bit divide instructions are iterative operations and must
be executed ten times within a REPEAT loop.

The developer is responsible for programming the REPEAT instruction. A complete divide operation
takes seven or eleven instruction cycles to execute.

The divide flow is interruptible, just like any other REPEAT loop. All data is restored into the
respective data registers after each iteration of the loop, so the user application is responsible for
saving the appropriate W registers in the ISR. Although they are important to the divide hardware,
the intermediate values in the W registers have no meaning to the user application. The divide
instructions must be executed seven or eleven times in a REPEAT loop to produce a meaningful
result.

A divide-by-zero error generates a math error trap. This condition is indicated by the Arithmetic
Error Status (DIV0ERR) bit (INTCON4[0] in the interrupt controller).

3.3.14� InstrucƟon�Flow�Types
Most instructions in the dsPIC33A architecture occupy a single word of program memory and
execute in a single cycle. However, some instructions take two or more instruction cycles to execute.
Consequently, there are seven different types of instruction flow in the dsPIC® DSC architecture.

3.3.15� Loop�Constructs
The dsPIC33A CPU supports two REPEAT constructs to provide unconditional automatic program
loop control. The REPEAT�instruction implements a single instruction program loop. REPEAT
instructions use control bits within the CPU STATUS Register (SR) to temporarily modify CPU
operation.

3.3.15.1�REPEAT�Loop�Construct
The REPEAT instruction causes the instruction that follows it to be repeated a specified number of
times. A literal value contained in the instruction, or a value in one of the W registers, can be used
to specify the REPEAT count value. The W register option enables the loop count to be a software
variable.

An instruction in a REPEAT loop is executed at least once. The number of iterations for a
REPEAT loop is the 20-bit literal value + 1 or Wn + 1. The syntax for the two forms is shown in
3.3.15.1. REPEAT Loop Construct.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 75

Example�3-3.ധREPEAT�Loop�Construct

;����Using�a�literal�value�as�a�counter
REPEAT�#lit20����;�RCOUNT�<--�lit20
(Valid�target�Instruction)
;
;����Using�a�W�register�as�a�counter
REPEAT�Wn����;�RCOUNT�<--�Wn
(Valid�target�Instruction)

3.3.15.1.1�REPEAT�OperaƟon
The loop count for REPEAT operations is held in the 32-bit Repeat Loop Counter register (RCOUNT),
which is memory-mapped. RCOUNT is initialized by the REPEAT instruction. The REPEAT instruction
sets the REPEAT Loop Active (RA) Status bit (SR[4]) to ‘1’ if the RCOUNT is a non-zero value.

RA is a read-only bit and cannot be modified through software. For REPEAT loop count values
greater than ‘0’, the Program Counter is not incremented. Furthermore, Program Counter
increments are inhibited until RCOUNT = 0.

For a loop count value equal to ‘0’, REPEAT has the effect of a NOP and the RA (SR[4]) bit is not set.
The REPEAT loop is essentially disabled before it begins, allowing the target instruction to execute
only once while pre-fetching the subsequent instruction (i.e., normal execution flow).

Note: The instruction immediately following the REPEAT instruction (i.e., the target instruction) is
always executed at least one time and it is always executed one time more than the value specified
in the 20-bit literal or the W register operand.

3.3.15.1.2�InterrupƟng�a�REPEAT�Loop
A REPEAT instruction loop can be interrupted at any time.

The state of the RA bit is preserved on the stack during exception processing to enable the user
application to execute further REPEAT loops from within any number of nested interrupts. After SR
is stacked, the RA Status bit is cleared to restore normal execution flow within the ISR.

Note: If a REPEAT loop has been interrupted, and an ISR is being processed, the user application
must stack the Repeat Count register (RCOUNT) before it executes another REPEAT instruction
within an ISR.
If a REPEAT instruction is used within an ISR, the user application must unstack the RCOUNT register
before it executes the RETFIE instruction.

Returning into a REPEAT loop from an ISR using the RETFIE instruction requires no special handling.
RETFIE pops the PC and that becomes the address of the next instruction to be fetched in its F-stage.
The RETFIE instruction is "padded" with FNOPs (2) so the target instruction of the RETFIE PFC can
execute as normal.

Early�TerminaƟon�of�a�REPEAT�Loop
An interrupted REPEAT loop can be terminated earlier than normal in the ISR by clearing the
RCOUNT register in software.

3.3.15.1.3�RestricƟons�on�the�REPEAT�InstrucƟon
Any instruction can immediately follow a REPEAT except for the following:

• Program Flow Control instructions (any branch, compare and skip, subroutine calls, returns, etc.)
• Another REPEAT or DTB instruction

• DISICTL, ULNK, LNK, PWRSAV or RESET instruction
– MOV.D instruction

Note: Some instructions and/or Instruction Addressing modes can be executed within a
REPEAT loop, but it might not make sense to repeat all instructions.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 76

3.3.16� Data�Space�Address�GeneraƟon�Units�(AGUs)
dsPIC33AK128MC106 family devices contain three independent address generator units. The X
RAGU and X WAGU support byte (.b), word (.w) and long (.l) word sized data space reads and writes,
respectively, for MCU instructions, and word or long word reads and writes for DSP instructions. The
Y AGU supports word and long word sized data reads for the DSP MAC-class of instructions only.
The AGUs are each capable of supporting two types of data addressing:

• Linear Addressing
• Modulo (circular) Addressing

In addition, the X WAGU can support Bit-Reversed Addressing.

Linear and Modulo Data Addressing modes can be applied to any address within the unified address
space. Although Bit- Reversed Addressing will work with any EA calculation, by definition it is only
applicable to data space.

Data space memory is organized as 32-bit words; all Effective Addresses (EAs) point to bytes.
Instructions can thus access any byte or aligned word (data words at an even byte address) or
aligned long word (data words at an even 32-bit word address).

Misaligned accesses are not supported, and if attempted they will initiate an address error trap. The
least significant 2 bits of the EA is used to determine the byte or upper/lower 16-bit word access.
EA[0] will always be 1’b0 for word accesses, and EA[1:0] will always be 2’b00 for long word accesses.

SFRs and RAM support byte, word, and double word read or write operations.

When executing instructions that require just one source operand to be fetched from (and one
result to be written back to) data space, the X RAGU and X WAGU are used to calculate the EAs of the
source and destination, respectively. The AGUs can generate an address to point to anywhere in the
16 Mbyte address space. They support all MCU addressing modes and Modulo Addressing for low
overhead circular buffers. The X WAGU also supports Bit-Reversed Addressing to facilitate FFT data
reorganization.

When executing instructions which require two source operands to be concurrently fetched (i.e. the
MAC class of DSP instructions), both the X RAGU and Y AGU are used simultaneously.

The dsPIC33AK128MC106 device family contains an X AGU and a Y AGU for generating data memory
addresses. Both X and Y AGUs can generate any EA within the available data memory range.
However, EAs that are outside of the physical memory provided return all zeros for data reads and
writes to those locations and therefore have no effect. Furthermore, an address error trap will be
generated. For more information on address error traps, refer to 10. Interrupt Controller.

3.3.16.1�Address�GeneraƟon�Units�and�DSP�Class�InstrucƟons
The Y AGU and Y memory data path are used in concert with the X RAGU by the DSP class of
instructions to provide two concurrent data read paths. For example, the MAC instruction can
simultaneously fetch two operands to be used in the next multiplication.

DSP class of instructions may use any W-reg (except W15) for either X or Y address space accesses,
unlike previous dsPIC devices. Any data write performed by a DSP class instruction takes place in the
combined X and Y data space and the write occurs across the X-bus. Consequently, the write can be
to any address regardless of where the EA is directed.

The Y AGU only supports Post-Modification Addressing modes associated with the DSP class of
instructions. The Y AGU also supports Modulo Addressing for automated circular buffers. All other
(MCU) class instructions can access the Y data address space through the X AGU when it is regarded
as part of the composite linear space.

3.3.16.2�Data�Alignment
The ISA supports long word (32-bit), word (16-bit) and byte (8-bit) sized operations. Data is aligned
in data memory and registers as long words, but all data space EAs resolve to bytes. Data word and
byte reads will read the complete 32-bit word that contains the word or byte, using the LSbs of any

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 77

EA to determine which word or byte to select within the CPU. The selected word or byte is placed
onto the lsw or byte of the X data path (no byte accesses are possible from the Y data path as the
MAC-class of instruction can only fetch words or long words). That is, data memory and registers are
organized as four parallel byte-wide entities with a shared (long word) address decode but separate
write lines. Data byte writes will only write to the corresponding side of the array or register which
matches the byte address.

Note: Byte reads will always read the entire word, so mechanisms to clear or set peripheral status
bits when read (e.g. quick flag clearing mechanisms) are not allowed.

As a consequence of this byte addressability, all EA calculations must be scaled to step through
long word aligned memory. For example, the core must recognize that post modified register
indirect addressing mode, [Ws]+=1, will result in a value of Ws+1 for byte operations, Ws+2 for word
operations, and Ws+4 for long word operations.

Misaligned word or long word accesses are not supported. For word accesses, the LSb of the EA
must be 1’b0. For long word accesses, the least significant 2 bits of the EA must be 2’b00. Therefore,
care must be taken when mixing operations of different data widths or translating from 16-bit
dsPIC code. Should a misaligned read or write be attempted, an address error trap will be forced.
If the fault occurs during a read access, the read will be allowed to complete. If the fault occurs
during a write access, the write will also be allowed to complete (inhibiting the write would have
been possible but inconsistent with other situations where an errant write could not be inhibited).
In both cases, the address error trap will be asserted. The next instruction (already pre-fetched
and underway) will be executed while the exception is arbitrated and acknowledged. When this
instruction completes, the trap will then be taken, allowing the system and/or user to examine the
machine state subsequent to execution of the address fault.

Note: Byte and word ALU operations can produce results in excess of a byte or a word. However,
to maintain 16-bit dsPIC backwards code compatibility, the ALU result destination write from all
operations maintains the same width as that of the source operands (i.e. MSbs of the destination
are not modified) and the SR is updated based only upon the state of the result data.

A sign extend (SE) instruction is provided to allow users to translate 8-bit to16-bit, and 16-bit to
32-bit signed values. Alternatively, for unsigned data, users can clear the MS portion of any W
register through executing a byte or word zero extend (ZE).

Note: Care must be taken when mixing byte and word size instructions/operands.

Although most instructions are capable of operating on long word, word or byte data sizes, it should
be noted that the DSP and some other instructions operate on long word or word sized data only.

Figure�3-13.�Data�Alignment

15 7 0
24’h00_0000

24’h00_0004

24’h00_0008

Byte 3 Byte2 Byte1 Byte 0

Byte 7 Byte6 Byte5 Byte 4

Byte 11 Byte10 Byte9 Byte 8

2331 Address

3.3.17� MAC�InstrucƟons
The dual source operand DSP instructions (ED,�EDAC, MAC, MPY, MPYN, SQR, SQRAC, MSC, SQRSC and
SQRN), also referred to as MAC instructions, use a simplified set of addressing modes to allow the
user application to effectively manipulate the Data Pointers through register indirect tables.

These instructions support various addressing modes for X and Y data bus, where W-registers
accessing these data buses may be any W-reg (except W15) for either X or Y address space accesses.
Pre or post modification values are scaled based upon instruction operand width. The MAC-class
instruction also supports the ability to write the contents of the accumulator that is not being used

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 78

as the instruction result destination to a memory or W-register as defined by the instruction with a
restricted set of addressing modes. This is referred to as the Accumulator Write Back (AWB).

Note: 
AWB is only intended for use when the DSP engine is operating in fractional data mode. It can only
write the MS portion of the target accumulator fractional value.

MAC-class instructions are no longer tied to operand reads of X and Y address space. Operands
may both be sourced from X-space, resulting in reading the operand data sequentially rather than
concurrently. This will add an additional RAM data fetch delay (typically one cycle) to all such
instructions.

3.3.18� Modulo�Addressing
Modulo Addressing mode is a method of providing an automated means to support circular data
buffers using hardware. The objective is to remove the need for software to perform data address
boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism
is essentially the same for both). One circular buffer can be supported in each of the X (which also
provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on
any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since
these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there
are certain restrictions on the buffer start address (for incrementing buffers) or end address (for
decrementing buffers) based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these
buffers satisfy the start and end address criteria, they can operate in a Bidirectional mode (that is,
address boundary checks are performed on both the lower and upper address boundaries).

3.3.18.1�Start�and�End�Address
The Modulo Addressing scheme requires that a starting and ending address be specified and loaded
into the 24-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND.

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is
always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between
the corresponding start and end addresses. The maximum possible length of the circular buffer is
32K words (64 Kbytes).

3.3.18.2�W�Address�Register�SelecƟon
The Modulo and Bit-Reversed Addressing Control register, MODCON[15:0], contains enable flags, as
well as a W register field to specify the W Address registers. The XWM and YWM fields select the
registers that operate with Modulo Addressing:

• If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled

• If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W (XWM) register, to which Modulo Addressing is to be applied, is
stored in MODCON[3:0]. Modulo Addressing is enabled for X Data Space when XWM is set to any
value other than ‘1111’ and the XMODEN bit is set (MODCON[15]).

The Y Address Space Pointer W (YWM) register, to which Modulo Addressing is to be applied, is
stored in MODCON[7:4]. Modulo Addressing is enabled for Y Data Space when YWM is set to any
value other than ‘1111’ and the YMODEN bit is set (MODCON[14]).

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 79

Figure�3-14.�Modulo�Addressing�OperaƟon�Example

0x4000

0x4063

Start Addr = 0x4000
End Addr = 0x4063
Length = 0x0032 words

Byte
Address

; Set XMODEN bit and XWM = w7
 ; w7 selected for X-AGU modulo addressing
 MOV.l 0x8007, w6
 MOV.l w6, MODCON

; set modulo start address
 MOV.l #0x4000, w6
 MOV.l w6, XMODSRT
 ; set modulo end address
 MOV.l #0x4063, w7
 MOV.l w7, XMODSRT

MPY.l [w7]+=4, w5, A; w7 = 0x4004
 REPEAT #10
 MAC.l [w7]+=4, w5, A
 ;Content of W7 rolled back to 0x4000

3.3.18.3�Bit-Reversed�Addressing
Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It
is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order
reversed. The address source and destination are kept in normal order. Thus, the only operand
requiring reversal is the modifier.

3.3.18.3.1�Bit-Reversed�Addressing�ImplementaƟon

Bit-Reversed Addressing can only be enabled through the use of the movr.(w/l) instruction. This type
of addressing is effective when used with pre-modified or post-modified destination addressing. The
destination Bit-Reversed Addressing modifier is sourced from XBREV.XB[14:0].

If the length of a bit-reversed buffer is M = 2N bytes, the last ‘N’ bits of the data buffer start address
must be zeros.

The XB[14:0] bits are the Bit-Reversed Addressing modifier, or ‘pivot point’, which is typically a
constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note: All bit-reversed EA calculations assume either word-size (where the least significant bit of
every Effective Address is always clear) or long word-size (where the two least significant bits of the
Effective Address are always clear), based on the operation data width selected. The XB value is
scaled accordingly to generate compatible (byte) addresses.

Bit-Reversed Addressing is only possible when using the MOVR instruction, and it can target a
16-bit or 32-bit sized data. MOVR instruction supports Register Indirect with Pre-Increment or Post-
Increment Addressing and 16/32 bit-sized data writes. When Bit-Reversed Addressing is active, the
W Address Pointer is always added to the address modifier (XB) and the offset associated with the
Register Indirect Addressing mode is ignored. In addition, the LSb of each 16-bit address and the LS
2-bits of each 32-bit address, will always be zero for both source and destination EAs. The MOVR
instruction also supports “in-place” data re-ordering (where only one data buffer is used for both
source and destination), source and destination indirect addressing may use the same register

Note: Modulo Addressing and Bit-Reversed Addressing can be enabled simultaneously using the
same W register, but the Bit-Reversed Addressing operation will always take precedence for data
writes when enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV[15]) bit, a write to
the XBREV register should not be immediately followed by an indirect read operation using the W
register that has been designated as the Bit-Reversed Pointer.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 80

Figure�3-15.�Bit-Reversed�Addressing�Example

b3 b2 b1 0

b2 b3 b4 0

Bit Locations Swapped Left-to-Right
Around Center of Binary Value

Bit-Reversed Address

XB = 0x0008 for a 16-Word Bit-Reversed Buffer

b7 b6 b5 b1

b7 b6 b5 b4b11 b10 b9 b8

b11 b10 b9 b8

b15 b14 b13 b12

b15 b14 b13 b12

Sequential Address

Pivot Point

Around the Center of Binary Value

Table�3-8.�Bit-Reversed�Addressing�Sequence�(16-Entry)

A3 A2 A1 A0 Decimal A3 A2 A1 A0 Decimal

0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 8

0 0 1 0 2 0 1 0 0 4

0 0 1 1 3 1 1 0 0 12

0 1 0 0 4 0 0 1 0 2

0 1 0 1 5 1 0 1 0 10

0 1 1 0 6 0 1 1 0 6

0 1 1 1 7 1 1 1 0 14

1 0 0 0 8 0 0 0 1 1

1 0 0 1 9 1 0 0 1 9

1 0 1 0 10 0 1 0 1 5

1 0 1 1 11 1 1 0 1 13

1 1 0 0 12 0 0 1 1 3

1 1 0 1 13 1 0 1 1 11

1 1 1 0 14 0 1 1 1 7

1 1 1 1 15 1 1 1 1 15

Example�3-4.ധ32-Bit�Data,�Two�Buīer�Bit-Reversed�Data�Reordering�Example

;�Two�buffer�(input�and�output)�bit�reversed�data�re-order�subroutine�for�32-
bit�(real)
;�data�values
;
;�W0:�Temp
;�W1:�Data�table�size�N�(long�words)
;�W8:�Input�data�table�pointer�(natural�order)�initialized�to�start�of�table
;�W9:�Output�data�table�pointer�(bit�reversed)�initialized�to�start�of�table

�������push.l�w0
�������mov.sl�#_XBREV,�w0
�������lsr.l�w1,�#1,�[w0]�;�XBREV�=�N/2

�������sub.l�#1,�w1
�������repeat�w1
�������movr.l�[w8++],�[w9++]�;�Move�data�from�input�to�output�buffer,�then
�����������������������������;�bump�natural�order�and�bit�reversed�pointers
�������pop.l�w0
�������return

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 81

3.3.19� Address�Register�Dependencies
The dsPIC33A architecture supports a data space read (source) and a data space write (destination)
for most MCU class instructions. The EA calculation by the AGU, and subsequent data space read or
write, each take one instruction cycle to complete. This timing causes the data space read and write
operations for each instruction to overlap.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 82

3.3.20� MulƟplier
Using the high-speed, 33-bit x 33-bit multiplier, the ALU supports an unsigned, signed or mixed-sign
operation in several MCU Multiplication modes:

• 32-bit x 32-bit signed
• 32-bit x 32-bit unsigned
• 32-bit signed x 5-bit (literal) unsigned
• 32-bit signed x 32-bit unsigned
• 32-bit unsigned x 5-bit (literal) unsigned
• 32-bit unsigned x 32-bit signed
• 16-bit unsigned x 16-bit unsigned

3.4� Prefetch�Buīer�Unit�(PBU)
The Prefetch Buffer Unit (PBU) in the dsPIC33A core devices accelerates the interface between the
dsPIC33A program Flash memory and the CPU instruction bus. The PBU can predictively prefetch
the next sequential address and cache fetched program data that are the target of a CPU instruction
fetch.

PBU in dsPIC33A core devices supports the following functions:

1. PBU accelerates the execution of linear program code flow.
2. As cache accelerates the execution of non-linear program flow changes (branches).

The PBU in the dsPIC33A core devices have the following features:

• Provides interface between Program Flash Memory (PFM) and CPU instruction bus
• Instruction Stream Buffers for prefetching and caching of linear PFM instruction flows
• Instruction Cache for caching of most frequently hit target instructions
• Provides parity checks on program data stored in the Instruction Cache to ensure data integrity

The PBU block diagram in Figure 3-16 shows data paths to and from the PBU in the dsPIC33A
environment. The PBU provides data when the CPU fetches program data from Flash memory. It
may provide program data from an internal buffer, or it may fetch program data from Flash if the
requested program data is not available. Flash fetch operations are therefore accelerated when data
are sourced from internal PBU buffers.

Figure�3-16.�PBU�Block�Diagram

Prefetch Branch Unit (PBU)

Direct Mapped
Cache

140-bit
Flash

Memory

E
C
C

ISB

128 S D
S D

Buffer 2

Buffer 3

Buffer N

128 P

32-bit Pgm Data

Tag Memory

Tag & LRU

128 P
128 P

128 P
Parity Logic

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 83

3.4.1� Architectural�Overview
The PBU is a direct mapped 128-line cache that helps in providing faster program data fetches to the
CPU from Flash memory. The PBU provides program data from an internal instruction buffer (ISB),
but if it is not available in the internal buffer, the PBU may fetch program data from Flash. Flash
fetch operations are therefore accelerated when data are sourced from internal PBU buffers.

The PBU provides an interface between the Program Flash Memory (PFM) and the CPU instruction
bus and have the following components associated for operation:

• Instruction Stream Buffer (ISB) - Also termed as the Prefetch Unit (PFU), is available for
prefetching and caching of linear PFM instruction flows. ISB is the component that buffers
program data words from the program memory. The ISB consists of one or more buffers of
a fixed depth. Each buffer holds one or more lines of data fetches from Flash memory. The data
held in each buffer represents a linear code flow. These are termed as internal PBU buffers.

• Instruction Cache (IC) - Also known as Branch Target Instruction Cache (BTIC), is used for the
caching of target instructions that are most frequently hit. The Instruction Cache refers to the
cache memory and associated control logic that form the cache. A cache consists of N lines,
directly mapped or through M-way associative. The PBU supports a direct mapped 128-line
cache. The required width for the cache is 129-bits. The PBU Cache has two operating modes: IC
mode and BTIC mode.

• Integrity Checking Logic - Provides parity checks on program data stored in the Instruction Cache
to ensure data integrity. This logic provides parity checking and fault injection on the contents of
RAM associated with the Instruction Cache.

The PBU assumes Flash data width and Flash access speed are sufficient to allow linear program
execution at the desired speed using only the ISB. The ISB serves as the prefetch buffer and allows
the next line of Flash to be fetched as instructions from the current line are executed.

The Instruction Cache becomes useful when there are frequent program flow changes in the source
code. A program flow change will result in extra clock cycles because the current Flash fetch must
be allowed to complete and then a new fetch must be initiated at the new location. If the desired
program data is available in the Instruction Cache, the data may be sourced immediately without
waiting for the ISB to complete a new fetch from Flash. However, PBU uses a larger, direct-mapped
Instruction Cache and has little control and status interface available to the user as its operations
are transparent.

The PBU does not provide data or caching for initiators other than the CPU instruction bus. Data
access by the CPU data bus and other bus initiators is accomplished via a dedicated read buffer in
the NVM wrapper.

The ISB has multiple buffers also called slices. The ISB Slices help increase performance with CALL/
RETURN and other flow changes in the code that return back to the previous code stream.

The ISB is two levels deep in the dsPIC33A PBU. For the first generation of dsPIC33A devices, Flash
access time is fast enough to support linear code execution with the given program data word
width. Therefore, only one level of prefetch buffer is required. The CPU can execute from the first
level, while the next fetch occurs into the second level.

In the case where the code to be executed has a linear flow, no further caching of data would be
necessary. However, program flow changes insert latency into the code flow. A prior Flash fetch
must be completed and discarded. Then, a new Flash fetch must be started in the new flow. This
process can add a variable amount of clock cycles to the execution time, depending on when the
flow change occurred relative to the prefetch that was in progress.

When Flash access time is fast enough to support continuous linear program flow, full instruction
caching is not required. The cache could be configured as a BTIC, for which only the targets of
program flow changes are cached. This mode of cache increases the effective cache size because
all program data words do not have to be cached. However, the BTIC operating mode places more

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 84

burden on the internal data buses of the PBU. Program data must be transferred from the cache
memory to the ISB when a flow change occurs so that a prefetch of the following data words can
take place.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 85

3.4.2� Register�Summary

0x1E60 CHECON

31:24
23:16 ISBBUF
15:8 ON CHEINV CHECOH
7:0 FLTINJ

0x1E64 CHESTAT

31:24
23:16
15:8
7:0 TPE RD PAR

0x1E68 CHEFLTINJ

31:24
23:16
15:8
7:0 FLTPTR[7:0]

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 86

3.4.2.1� Cache�Control�Register

CHECON
0x1E60

Notes: 
1. After being set, this bit will be cleared by hardware after the cache and ISB invalidations are

completed. Any automatic invalidation will also result in this bit being cleared.
2. This setting is useful when programming non-program data into Flash (emulated EEPROM).

Legend: R = Readable bit; S = Settable bit; Hardware Clearable bit

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 ISBBUF

Access R/W
Reset 1

Bit 15 14 13 12 11 10 9 8
 ON CHEINV CHECOH

Access R/W R/S/HC R/W
Reset 1 1 1

Bit 7 6 5 4 3 2 1 0
 FLTINJ

Access R/S/HC
Reset 1

ISB Buffer Selection bit

1 When On = 0, ISB buffer 1 will be used for prefetch
0 When On = 0, ISB buffer 0 will be used for prefetch

Cache ON bit

1 Cache and all ISB slices are enabled
0 All cache lines and ISB buffers except for the first buffer slice are invalidated. ISB operates with one buffer

slice, two deep buffer (basic prefetch mode)

 Manual Invalidate Control bit(1)

1 Force invalidation of all cache and ISB lines
0 Invalidation of Instruction Cache and ISBs occurs according to CHECOH bit

 Cache Coherency Control bit(2)

1 Invalidate cache upon a Flash programming event
0 Do not invalidate cache on a Flash programming event

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 87

Fault Inject Control bit

1 Parity fault injection enabled for one-time event; cache line will be invalidated and flushed when access occurs
and upbs_event[1] will be asserted to indicate an integrity error to the system.

0 Parity fault injection disabled

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 88

3.4.2.2� Cache�Status�Register

CHESTAT
0x1E64

Legend: R = Readable bit; S = Settable bit; Hardware Clearable bit

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 TPE RD PAR

Access R/C/HAS R/W R/S/HC
Reset 0 1 1

Read Error Status bit

1 A read error event has occurred; the parity error is latched and a MISS is generated
0 No TAG memory read error event has occurred

Read Error Status bit

1 A read error event has occurred; the CPU has fetched a word from the ISB with a security error
0 No read error event has occurred

Cache Parity Error Status bit

1 A parity error event has occurred; the CPU has fetched a word from the cache with a parity error
0 No parity error event has occurred

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 89

3.4.2.3� Cache�Fault�InjecƟon�Register

CHEFLTINJ
0x1E68

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 FLTPTR[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 1

Fault Injection Pointer bits

255-129 No effect
128 Cache Data Line Parity bit
127 Bit 127 of cache data line
...

1 Bit 1 of cache data line
0 Bit 0 of cache data line

3.4.3� OperaƟon
The PBU registers only have control to enable or disable certain PBU functions. Parameters such as
ISB depth, ISB number of buffers, cache associativity, etc., are all fixed.

The CHECON.ON bit is reset to ‘1’ by default. This provides the best CPU performance for both linear
code and program flow changes. The ON bit can be cleared in software to disable most caching
functions and make the PBU behave as a basic 2-deep prefetch buffer. This results in lower code
performance due to longer program flow changes but still gives deterministic execution behavior,
and thus the program flow changes to longer execution time but takes a constant number of cycles.

3.4.3.1� Cache/ISB�Manual�InvalidaƟon
Manual invalidation of the Instruction Cache and ISBs is used to force cache coherency when
the user knows that the cache and Flash contents may not match. It occurs under the following
conditions:

• CHECON.CHEINV Control bit: When set by software, this bit will invalidate both the Instruction
Cache and all ISBs. This bit will clear automatically by hardware after the cache and ISB memory
have been invalidated.
Note: CHECON.CHEINV is also cleared should an automatic invalidation occur after the bit has
been set.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 90

• CHECON.ON control bit: The Instruction Cache memory and ISB buffers are invalidated when the
CHECON.ON bit is cleared. This will be the case out of Reset. Execution continues using only a
single default ISB slice. Setting CHECON.ON has no effect with respect to cache/ISB invalidation
as it is already invalidated and the active ISB will contain valid data from the current instruction
flow.

3.4.3.2� Cache/ISB�AutomaƟc�InvalidaƟon
Automatic invalidation of the Instruction Cache and ISBs is used to ensure cache coherency when
the device knows that the cache and Flash contents may not match. It occurs under the following
conditions:

• Flash write operation: Automatic invalidation only occurs if the Cache Coherency Control bit
(CHECON.CHECOH) is set (default) and Flash is programmed/erased. This is only applicable for
writing to the active panel in dual-panel devices.

• Parity error: Refer to 3.4.3.3. PBU Data Error Handling for further details. Only the accessed
cache line of the ISB buffer is affected, and the remainder of the cache memory does not need to
be invalidated.

3.4.3.2.1�Cache�InvalidaƟon�when�WriƟng�to�Flash
Whenever the Flash is written, the user has the option to automatically invalidate the instruction
Cache and ISBs using the CHECON.CHEOH control bit. If instruction data are being written to Flash,
invalidation ensures Flash memory contents remain synchronized with the Cache and ISB contents.

Note: To fully ensure correct operation, it is recommended that the final instruction that initiates
Flash programming be followed by 4 NOP instructions to flush the instruction pipeline. This ensures
coherency since the remaining instructions in the CPU pipeline will take no action.

3.4.3.3� PBU�Data�Error�Handling
The PBU handles error correction in two ways. First, any data errors that originate from the program
memory are tracked. Secondly, internal PBU data errors that may occur while program data are
stored in the PBU Cache RAM are monitored.

3.4.3.3.1�Program�Memory�Data�Errors
Error status is captured from the program memory and buffered along with the fetched program
data word in the ISB. Consequently, each line in the ISB has 129 bits: 128 bits of data and 1
bit for error status. The error status bit indicates the data read from the program memory are
unusable and incorrect. The program memory data can be bad for multiple reasons, including an
uncorrectable ECC error and a security violation that would suppress the data. In any case, the data
are not a valid CPU instruction and should not be executed by the CPU.

The PBU does not generate any kind of event, trap or interrupt when bad data are fetched from
the program memory. This is because the ISB may speculatively fetch data that would never be
executed by the CPU. Secondly, the CPU may speculatively fetch instructions from the PBU during
conditional branches that may never get executed.

A bus error signal is passed with the program data to the CPU for instructions fetched from the
PBU. If the program data are invalid with the bus error signal asserted, then the CPU can suspend
execution in the pipeline and cause a trap event to occur.

3.4.3.3.2�Cached�Data�Error
The second method of PBU error handling occurs when the cache has detected a parity error on a
cached line of program word data. When valid program data is cached for later consumption, then
the error status bit is stripped, and the program data word is stored in the cache memory. A single
even parity bit is calculated and stored along with the data. This parity bit is used to protect the
system from data corruption that could occur in the cache RAM.

A maskable interrupt event is generated by the PBU when a parity error is detected on a cache line.
In this case, the cache will invalidate the line with the parity error and the program data must be
re-fetched from the program memory. Other than the interrupt event, the only other effect that can

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 91

be observed during a cache parity error is additional execution latency caused by Flash program
fetch. No address associated with the parity error is captured.

3.4.3.3.3�Corrected�Program�Memory�Data�Errors
The program memory error correction logic may correct a data error in the program data
supplied to the PBU. These corrections are not reported to the PBU which is usually done for the
uncorrectable errors. Specifically, a single-bit corrected error (SEC event) is not reported to the PBU.

The program memory is responsible for tracking and reporting the corrected event. These actions
serve as a warning to the system software that integrity of the NVM data may be failing.

3.4.3.4� Cache�Fault�InjecƟon
A single bit error can be injected on any of the data bits of the cache line or the associated parity
bit. The error injection is performed by XORing the data read from the cache line with a ‘1’. Since the
PBU can cache program data from a variety of address locations depending on the program flow, it
is impractical to perform error injection for a particular program memory fetch address.

The PBU error injection, when enabled with the FLTINJ bit, will cause a one-time error injection the
next time the cache memory is accessed by the CPU. The CHESTAT.PAR bit will indicate when the
error injection has been performed. At this time, the PBU will also signal that an integrity error has
occurred by creating an interrupt event. The user will not be able to determine which line of the
cache buffer caused the event and fetch address.

A write to the FLTPTR register while FLTINJ = 1 will have the effect of re-arming the fault injection.
This will help facilitate a software test routine that cycles through an error injection on each bit.

3.4.3.5� Non-Cached�Events
Certain fetches from the NVM are not cached. These include:

• Interrupt Vector fetches
• Fetches of debug executive code
• Fetches of invalid program memory data

All these types of fetches are not cached to avoid cache thrashing. Thrashing occurs when other
useful data are evicted from the cache and replaced with less useful or invalid data. Inhibiting
caching during the above fetches is expected to improve the overall efficacy of the cache, resulting
in more cache hits at run-time.

Interrupt Vector fetches are a special type of non-cached event. Specifically, only one program word
is fetched from the NVM when the CPU indicates a vector fetch and the ISB is bypassed. When an
interrupt occurs, the interrupt vector address is fetched from the vector table, then the instruction
at the interrupt vector address is fetched. There is no need for an ISB to perform a prefetch and
fetch the program word after the one that contains the interrupt vector address. This would be
wasteful and produce extra latency in the servicing of the interrupt event.

The PBU monitors whether the CPU is executing user code or debug executive code. Instructions
fetched from the debug executive code are not cached. This avoids additional indeterministic
behavior when code execution transitions from the debug executive code back to user mission-
mode code.

In addition, the BMX supports execution from RAM, and a RAM based Interrupt Vector Table
(IVT). Program or vector fetches from RAM are also non-cached events. However, this capability
introduces the possibility of both a vector and its associated handler routine being in either NVM or
RAM. Whenever the IVT and/or an exception handler (interrupt or trap) is located within RAM, this is
treated as a special case by the PBU to maintain efficient operation.

3.4.3.6� PBU�Performance�Monitoring
Each word of data requested on the CPU instruction bus will be sourced either from the ISB or the
Instruction Cache and not the external NVM. This ensures that each fetch of program data can be
completed in minimal time, which maximizes application performance.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 92

Program data that are not already present in the ISB or cache must be fetched from the NVM,
which takes additional cycles and decreases overall application performance. Once program data in
a particular NVM program word has been consumed by the CPU, it is stored in the Instruction Cache
for later use. The exceptions to this are program data with uncorrectable errors, security violations,
or debugger executive program data. Once stored, the program data will be available for later reuse
in the Instruction Cache until those contents are erased and replaced with another program data
word.

3.4.3.6.1�Cache�Busy�Cycles
The program word is cached on the cycle following the fetch from NVM. During this time, the IC will
be busy because of the write to cache memory. If the CPU requests program data during this cycle,
the PBU will check the contents of the ISB for an address tag match. In most cases, the data may
be sourced from the ISB while the IC is busy. This results in an ISB hit and no extra cycle penalty is
incurred. When the IC is busy and no ISB hit occurs, then an extra cycle of latency will be inserted
while the PBU waits for the IC write cycle to complete. Then, the IC address tags are checked for an
IC hit.

3.4.3.6.2�PBU�Performance�Event�Outputs
The PBU has event outputs that can be connected to external performance counters at the device
level for characterization of the PBU performance. These events can be counted over a period of
application execution and compared with the total number of executed instructions and/or the total
number of elapsed clock cycles to get a measurement of the PBU efficacy. The performance event
signals available from the PBU include:

• Instruction Cache “hit” event
• Instruction Stream Buffer “hit” event
• PBU “hit” event
• Instruction Cache “busy” event

The IC hit event indicates when a particular instruction was fetched from the cache memory. The ISB
hit event indicates when a particular instruction was fetched from the ISB. This generally happens
on the second fetch from a program word while that word is written to the cache memory.

The PBU hit event is of most interest for PBU performance analysis. This event signal is the logical
OR of the IC hit and the ISB hit events and indicates that the PBU was able to source the requested
data without initiating a new NVM fetch.

The IC busy event is used to count the number of extra cycles that were inserted when the ISB
could not source the requested data and a Wait state was necessary to determine if the data were
available in the IC. An IC busy event is expected to be infrequent and would occur during program
flow changes.

3.4.3.6.3�Factors�AīecƟng�PBU�Eĸcacy
PBU efficacy is not a constant value. For a given code segment such as function call, the efficacy of
the PBU will be very much dependent on these factors:

• The code that was executed prior to a given code segment
• The size of the code
• The specific location of this code in memory
• Flow changes that occur during the execution of a specific code segment

Different performance results are possible when a specific segment of code is executed in one
context vs. another context. The prior code executed will determine what code data is present in
the cache memory. The prior code may have evicted all program data associated with the segment
of interest. However, if the segment of interest is repetitively executed, then there is a strong
possibility that program data associated with this segment will remain in the cache memory without
eviction.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 93

In general, a small segment of code which is repetitively executed will produce the best PBU
performance results. This is because the code size is small enough to fit within the cache memory
and the repetitive nature of the code will maximize the reuse of the cache contents with a
minimum of evictions. The absolute location of a code segment within memory will impact the
PBU performance. This is closely related to how the code is compiled, optimized, and linked during
the software development process.

Two different program data words in a segment of code could have the same address tags. If these
program data words are executed often, then numerous cache evictions and NVM fetches will result
during code execution. A larger cache memory and/or increased cache associativity can both help
this issue. A larger cache memory increases the number of available address tags, while increased
associativity increases the number of location options where a specific program data word could be
stored. The more flow changes that occur in each segment of code, the higher the possibility that
PBU performance will be reduced.

3.4.3.6.4�ImplicaƟons�of�Variable�NVM�Wait�States
The NVM Wait states are currently fixed at three, supporting a 4-cycle NVM read access time, and
the nature of the PBU/NVM data access handshake is not sensitive to NVM access time. However,
variable access times could be advantageous:

1. Devices are designed to target maximum frequency, and the NVM read access time is based
upon this requirement. But not all applications will require full-speed operation and/or may
be willing to trade-off speed for lower power consumption. Consequently, it may be desirable
to allow the user to select fewer (or no) NVM read access Wait state when operating at lower
frequencies. This will improve the IC/ISB miss latency and decrease the effective CPI (clocks per
instruction) metric, improving overall device execution efficacy.

2. Slower Flash panels will consume less power so future devices may support different speed
NVM. Zero Wait state linear code execution directly from Flash would, of course, no longer be
possible but would rely on the ISB and IC implementations.

3.5� Performance�Monitor�Unit�(PMU)
The performance monitor provides a method to analyze code efficiency, and allows software
routines that incur processor stalls to be identified and optimized. In the dsPIC33A family of devices,
the architecture does not have a fixed relationship between the CPU clock speed in MHz and the
throughput of the CPU in MIPS (Million Instructions per Second). The throughput of the CPU is
dependent on extra cycles incurred from the following:

• CPU pipeline data dependency
• Branches or program flow changes
• Cache misses
• Slow memory or SFR accesses
• Arbitration between bus masters
• A bus that is slower than the CPU

The performance monitor counts the events that cause extra cycles to be inserted into the program
flow and the number of elapsed clock cycles. Using this information, the cycles-per-instruction (CPI)
can be calculated and the reasons for poor code efficiency can be determined. The CPI value is the
number of elapsed clock cycles divided by the number of opcodes that were executed. The stall
cycle types listed above will increase the CPI.

The performance monitor uses a set of event signals from the CPU to determine stalls. The module
features eight independent 64-bit counters to capture the number of events.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 94

3.5.1� Device-SpeciĮc�InformaƟon

Table�3-9.�Performance�Monitor�Summary

8 Standard Standard Speed Peripheral Clock

Table�3-10.�Counter�Event�Source�SelecƟon

18 Fetch stage PBU miss This event indicates that the requested program data could not be sourced from
either the cache memory or the ISB. Therefore, a new fetch from program memory
with additional execution cycles was required to obtain the data.

17 Fetch stage PBU hit This event indicates that the requested program data was sourced from either the
cache memory or the ISB. Therefore, no additional execution cycles were required
to fetch the instruction.

16 Fetch stage cache busy Indicates a cycle during which time the cache was busy transferring data from the
instruction stream buffer (ISB) to the cache memory.

15 Fetch stage program
memory vector fetch

Indicates that the CPU is fetching an interrupt vector and is aligned with a Program
Flow Change event. This event can be used to count interrupt events.

14 Fetch stage program
memory program flow
change

Indicates that a change in program flow has occurred. This could be due to a CALL,
RETURN, RETFIE, conditional or unconditional branch, or interrupt event.

13 Fetch stage read stall Indicates an extra cycle is needed to fetch a program word from memory. This
could be caused by a cache miss or an arbitration conflict when fetching program
words and data from the same memory.

12 Fetch stage interrupt
latency count enable

Indicates the number of cycles due to interrupt latency.

11 Address stage stall Indicates that CPU pipeline was stalled in the Address stage for any reason, possibly
because the instruction is being discarded.

10 Address stage read stall Indicates that an instruction could not continue because of extra latency reading a
RAM or SFR location.

9 Address stage FPU read
stall

Indicates that CPU execution is presently stalled because the CPU cannot read from
a FPU register. This has occurred because the FPU is currently busy updating the
register data.

8 Address stage FPU
instruction stall

Indicates that execution in the FPU coprocessor is currently stalled due to a register
data dependency.

7 Address stage hazard Indicates an extra execution cycle caused by a data dependency upon an earlier
instruction in the CPU pipeline, which could not be forwarded.

6 Read stage branch
mispredict

Indicates an extra execution cycle caused by mispredicted program flow changes.

5 Read stage conditional
branch

Indicates the occurrence of a conditional branch instruction. The count of
conditional branch instructions can be compared to the number of branch
mispredictions in order to determine the effectiveness of the CPU branch prediction
logic.

4 Write stage stall Indicates that an instruction could not continue because of extra latency writing to
RAM or SFRs.

3 Write stage FPU stall Indicates that CPU execution is presently stalled because the CPU cannot write to
the FPU registers. This has occurred because the FPU is currently busy working on
the existing register data.

2 CPU instruction
completed

Indicates that an instruction in the CPU pipeline has completed.

1 CPU cycle elapsed
(reference)

This event count provides the total number of CPU clock cycles elapsed.

0 None

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 95

3.5.2� Register�Summary

0x1E10 HPCCON

31:24
23:16
15:8 ON CLR
7:0

0x1E10 HPCSEL0

31:24 SELECT[3][4:0]
23:16 SELECT[2][4:0]
15:8 SELECT[1][4:0]
7:0 SELECT[0][4:0]

0x1E14 HPCSEL1

31:24 SELECT[7][4:0]
23:16 SELECT[6][4:0]
15:8 SELECT[5][4:0]
7:0 SELECT[4][4:0]

0x1E18
...

0x1E1F
Reserved

0x1E20 HPCCNTL0

31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]

0x1E24 HPCCNTH0

31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

0x1E28 HPCCNTL1

31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]

0x1E2C HPCCNTH1

31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

0x1E30 HPCCNTL2

31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]

0x1E34 HPCCNTH2

31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

0x1E38 HPCCNTL3

31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]

0x1E3C HPCCNTH3

31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

0x1E40 HPCCNTL4

31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]

0x1E44 HPCCNTH4

31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

0x1E48 HPCCNTL5

31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 96

0x1E4C HPCCNTH5

31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

0x1E50 HPCCNTL6

31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]

0x1E54 HPCCNTH6

31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

0x1E58 HPCCNTL7

31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]

0x1E5C HPCCNTH7

31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 97

3.5.2.1� HPCCON�Register

HPCCON
0x1E10

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 ON CLR

Access R/W R
Reset 0 0

Bit 7 6 5 4 3 2 1 0

Access
Reset

On Control bit

1 Module is enabled and counters increment on event signals
0 Module is disabled and counters do not event on event signals. Counter values may be read.

Clear Control bit
A write of a ‘1’ to this location will cause the event counters to clear. This bit may be set at any time
whether the PMU is in the Enabled state or the Disabled state. This bit location always reads as ‘0’.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 98

3.5.2.2� HPCSEL0�Register

HPCSEL0
0x1E10

Bit 31 30 29 28 27 26 25 24
 SELECT[3][4:0]

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 SELECT[2][4:0]

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 SELECT[1][4:0]

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 SELECT[0][4:0]

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Counter #3 Event Source Selection bits
These control bits determine which event is counted by the associated counter.
See Table 3-10 for assignments.

11111-000
01

Selects the event to be monitored

00000 No event selected (1’b0), counter is disabled

Counter #2 Event Source Selection bits
These control bits determine which event is counted by the associated counter.
See Table 3-10 for assignments.

11111-000
01

Selects the event to be monitored

00000 No event selected (1’b0), counter is disabled

Counter #1 Event Source Selection bits
These control bits determine which event is counted by the associated counter.
See Table 3-10 for assignments.

11111-000
01

Selects the event to be monitored

00000 No event selected (1’b0), counter is disabled

Counter #0 Event Source Selection bits
These control bits determine which event is counted by the associated counter.
See Table 3-10 for assignments.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 99

11111-000
01

Selects the event to be monitored

00000 No event selected (1’b0), counter is disabled

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 100

3.5.2.3� HPCSEL1�Register

HPCSEL1
0x1E14

Bit 31 30 29 28 27 26 25 24
 SELECT[7][4:0]

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 SELECT[6][4:0]

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 SELECT[5][4:0]

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 SELECT[4][4:0]

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Counter #7 Event Source Selection bits
These control bits determine which event is counted by the associated counter.

11111-
00001

Selects the event to be monitored

00000 No event selected (1’b0), counter is disabled

Counter #6 Event Source Selection bits
These control bits determine which event is counted by the associated counter.

11111-
00001

Selects the event to be monitored

00000 No event selected (1’b0), counter is disabled

Counter #5 Event Source Selection bits
These control bits determine which event is counted by the associated counter.

11111-
00001

Selects the event to be monitored

00000 No event selected (1’b0), counter is disabled

Counter #4 Event Source Selection bits
These control bits determine which event is counted by the associated counter.

11111-
00001

Selects the event to be monitored

00000 No event selected (1’b0), counter is disabled

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 101

3.5.2.4� HPCCNTLx�Register

HPCCNTLx
0x1E20, 0x1E28, 0x1E30, 0x1E38, 0x1E40, 0x1E48, 0x1E50, 0x1E58

Bit 31 30 29 28 27 26 25 24
 HPCCNT[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 HPCCNT[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 HPCCNT[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 HPCCNT[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Event Counter bits

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 102

3.5.2.5� HPCCNTHx�Register

HPCCNTHx
0x1E24, 0x1E2C, 0x1E34, 0x1E3C, 0x1E44, 0x1E4C, 0x1E54, 0x1E5C

Bit 31 30 29 28 27 26 25 24
 HPCCNT[63:56]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 HPCCNT[55:48]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 HPCCNT[47:40]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 HPCCNT[39:32]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Event Counter bits

3.5.3� OperaƟon
The performance monitor operates on the basis of comparing the counter values to the number of
CPU cycles. To capture the number of CPU cycles as a reference, one of the available counters is
used.

For example, counter 0 can be used for the reference count, and the remaining counters can be
used to monitor the available events.

3.5.3.1� Event�SelecƟon
Each counter has an associated control to select one of the event sources. The SELECTn[4:0] bits in
HPSEL0 and HPSEL1 select one of the signals that are listed in Table 3-10. The CPU cycle elapsed
event is the reference and is incremented on each CPU cycle. The CPU instruction completed event
indicates that the CPU pipeline has completed. Comparing instructions completed to cycles elapsed
yields the CIP value. The ideal value is one. The remaining stall, branch or hazard events can be used
to determine where stalls occur and what part of the code to optimize.

3.5.3.2� Counters
Each 64-bit counter is split across a pair of 32-bit registers, HPCCNTLx and HPCCNTHx. The registers
are read- only and do not have provisions for saturation or roll over events. It is up to user
software to halt the module before saturation occurs. The counters can be reset with the CLR bit
(HPCCON[13]). The counters are started and stopped using the ON bit (HPCCON[15]). The count
values should only be read when ON = ‘0’.

3.5.3.3� Debugging
Provisions have been made to support the performance monitor in Debug mode. By default, the
module is halted in Debug mode to avoid counting cycles associated with the debug executive.

3.5.3.4� OperaƟon�in�power�saving�modes
The Performance Monitor module does not operate in Sleep or Idle modes.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 103

3.6� FloaƟng-Point�Unit�(FPU)�Coprocessor
The dsPIC33A FPU Coprocessor includes hardware implementations of the most common floating-
point operations for both Single Precision (32-bit) and Double Precision (64-bit) data formats. It
is intended to significantly accelerate C compiler floating point operations when compared to
executing software library equivalents and is designed to be compliant with the IEEE 754-2008/2019
floating point standards. It also includes additional non-IEEE compliant features which may be
enabled to handle subnormal values and improve performance.

3.6.1� Features
• Comprehensive IEEE 754-2008/2019 compliant instruction set

– Supports both Single and Double Precision operations for most instructions
– Supports all required rounding modes

• Closely coupled to dsPIC33A CPU core
– Instructions issued from CPU core as part of application instruction stream
– Independent instruction pipeline and hazard management

• 32 x 32-bit data registers (F-regs)
– May be used to hold 32-bit Single Precision or 64-bit Double Precision values
– Base plus 7 partial FPU register contexts

• Optional subnormal handling for improved performance
– Subnormal result “Flush-To-Zero” (FTZ) mode
– Subnormal operand “Subnormals-Are-Zero” (SAZ) mode

• Comprehensive exception implementation and reporting structure
– IEEE 754-2019 compliant exception implementation
– Additional exceptions supported for Huge Integer results and Subnormal operands

• Debug features supported:
– Exception address capture register (FEAR)
– Exception break signaling
– NaN propagation

3.6.2� Architectural�Overview
The FPU macro relies on the associated dsPIC33A CPU for all instruction fetches, most decoding,
and for all operand movement to and from the system memory. The FPU contains no local memory
other than its own register set. Being coupled to the CPU, data size nomenclature is common to
both CPU and FPU wherein a word is 16-bits wide, a long word is 32-bits wide and a double word is
64-bits wide.

FPU instructions are part of the CPU Instruction Set Architecture and are executed as part of the
CPU code image. FPU instructions are therefore executed as a part of the normal execution flow.
There are no restrictions with regards to when FPU instructions may appear within the instruction
flow.

The CPU can issue, and the FPU can accept, no more than one instruction per clock cycle. However,
once issued, the CPU and FPU use independent pipelines to execute the instruction. Consequently,
there can be multiple instructions in the process of being executed in both pipelines at any one
time. The FPU pipeline will stall the CPU when it is unable to accept any more instructions. The FPU
pipeline is also sensitive to speculative instruction control from the CPU (i.e., such that not all issued
FPU instructions will be committed). This allows FPU instructions to be located within speculative
execution slots that follow conditional branches.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 104

After successful issue of an FPU instruction, the CPU continues as if executing a single cycle FNOP
instruction, and the FPU instruction execution continues within the FPU. Therefore, as some FPU
instructions require several cycles to complete, subsequent CPU (and/or FPU) instructions can be
fetched, issued and executed (dependencies aside) while the FPU operation progresses. Only when
the CPU encounters a hazard with the FPU will it be stalled until the hazard is resolved.

Data and structural hazards are detected and mitigated in both the CPU and FPU and can result
in operational stalls which will extend the execution time and increase the effective Cycles Per
Instruction of both CPU and FPU instructions.

Note: Refer to the dsPIC33A Programmer's Reference Manual for the syntax of all FAND, FIOR,
FMUL, etc, instructions.

3.6.2.1� InstrucƟon�Pipeline�Overview
The pipeline stages consist of Read (RD), Execute (X[n]) and Write-Back (WB), differentiated from
the equivalent CPU pipeline stages through the use of different nomenclature. The RD-stage is a
single cycle operation (unless stalled). The WB-stage is always a single cycle operation. However,
the execute stage will consist of as many cycles as deemed necessary for the selected instruction
functional block. Most basic functions are single cycle execute operations, though more complex
functions (e.g., divide) can be many cycles.

Each instruction that is issued to the FPU must be completed (or killed if speculative) in the order
issued. That is, Out of Order (OoO) execution is not supported. However, as the execution time of
the FPU instructions can vary considerably, in-order execution requires logic to tag each instruction
as it is committed for execution, then track its progress as it flows through the instruction pipeline.
Subsequent instructions will therefore be stalled until such time that earlier ones have progressed
to allow for sequential, in-order execution.

3.6.2.2� IntroducƟon�to�FloaƟng�Point
The IEEE standard for Floating-Point Arithmetic (IEEE 754-2008) specifies the floating-point data
formats which are comprised of a Sign bit, an exponent value and a (fractional) mantissa value. The
dsPIC33A Floating-Point Unit (FPU) supports both Single Precision (32-bit, SP) and Double Precision
(64-bit, DP) operations for most (though not all) instructions. To avoid the need for another Sign
bit in the exponent, the IEEE floating-point format exponent is biased by 127 (SP) or 1023 (DP).
Consequently, for any datum, the required IEEE exponent value = datum exponent + bias.

In addition, the ‘1’ to the left of the most significant bit of the mantissa is implied for all numbers
except subnormal numbers and is consequently referred to as the leading bit convention “hidden
bit.” The mantissa is therefore a fractional value with an implied integer value of [1].

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 105

Figure�3-17.�IEEE�FloaƟng-Point�Data�Formats�and�Single�Precision�Example

03031
Single Precision Floating-Point

23 22

S 8-bit exponent 23-bit mantissa

biased exponent
0 = +127

06263
Double Precision Floating-Point

52 51

S 11-bit exponent 52-bit mantissa

biased exponent
0 = +1023

03031 23 22

1 10000001 01110000000000000000000

129 [1].4275

-5.75 =

An IEEE floating-point number can therefore be represented as:

(-1)S x [1].(m (base2)) x 2(e-bias)

where:

• ‘S’ indicates the sign of the number (same values as a signed integer value)
• ‘e’ represents the exponent value
• ‘m’ represents the fractional mantissa value
• ‘bias’ is 127 (SP) or 1023 (DP)

For example, -5.75 = -(1.4275 x 22). In IEEE SP format this would be represented as:

(-1)1 x [1].4275 x 2(129-127)

or (as shown in Figure 3-17):

S = 1, exponent = 12910, mantissa = [1].427510 or:

0xC0B8 0000

3.6.2.2.1�IEEE�754-2008�Compliance
This module is compliant with the IEEE 754-2008 Standard for Floating-Point Arithmetic for data
formats, supported signaling and quiet branch predicates, exception status flags, and exception
status behavior.

Note that the IEEE 754-2008 minNum(x,y) and maxNum(x,y) definitions are supported only through
the largely compatible IEEE 754-2019 minimumNum(x,y) and maximumNum(x,y) operations via the
FMINNUM and FMAXNUM instructions. The functional differences related to how +0 and -0 are
considered:

• IEEE 754-2008 minNum(x,y) / maxNum(x,y): Operand values +0 and -0 are regarded as equivalent.
The (implementation dependent) result could therefore be either +0 or -0.

• IEEE 754-2019 minimumNum(x,y) / maximumNum(x,y): Operand values +0 and -0 are not
regarded as equivalent such that -0 compares to less than +0. The result will therefore be the
correct sign of 0 based on the selected operation.

Features�Beyond�IEEE�754�Requirements

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 106

ExcepƟon�Address�Capture�Register
The Floating-Point Exception origination address capture register (FEAR) captures the address of the
instruction that generates a floating-point macro exception, provided the associated exception mask
bit is clear. If the exception is masked, nothing is captured.

This register is intended for use during system debug, though the FEAR register is read/write in both
Mission and Debug modes.

Huge�Integer�ExcepƟon
This exception is signaled whenever a Float-to-Integer conversion operation (FF2DI and FF2LI) results
in an integer value that is larger than the destination register can represent. It is not defined within
any IEEE 754 specification apart from a reference to setting the Invalid exception should an integer
value exceed the destination size unless this “cannot otherwise be indicated.”

3.6.2.2.2�IEEE�754-2019�Compliance

Minimum�and�Maximum�FuncƟons
The FPU module supports all minimum and maximum operations defined in the IEEE 754-2019
standard. The IEEE 754-2008 minNum(x,y) and maxNum(x,y) operations are not directly supported.

• FMINNUM, FMAXNUM: IEEE 754-2019 minimumNumber(x,y)/maximumNumber(x,y) functions.
When one of the input operands is a NaN and the other input is a floating-point number (that is
not a NaN), the instructions will return the floating-point number. If both input operands are a
NaN, the instructions will return a qNaN.

• FMIN, FMAX: IEEE 754-2019 minimum(x,y)/maximum(x,y) functions. When one (or both) of the
input operands is a NaN, the instructions will return a qNaN.

Refer to the truth table shown in Table 3-11 for a definition of how NaN operands are handled.

For all minimum and maximum operations, any finite operand value will compare as less than
+infinity, or greater than -infinity. Operand value of -0 compares to less than +0.

Table�3-11.�FMINNUM/FMAXNUM/FMIN/FMAX�OperaƟon

FMINNUM
FMAXNUM FMIN
FMAX

FPN1 FPN2 Don’t care FPN1 or
FPN2(1,2,3,4)

0 No

qNaN1 qNaN2 Don’t care qNaN1 or
qNaN2 (5)

0 No

sNaN qNaN 1 qNaN (Fs) (6) 1 No

0 Yes

qNaN sNaN 1 qNaN (Fb) (6) 1 No

0 Yes

sNaN1 sNaN2 1 Quieted sNaN1
or sNaN2 (5)

1 No

0 Yes

FMINNUM
FMAXNUM

FPN1 qNaN Don’t care FPN1 0 No

qNaN FPN2 Don’t care FPN2 0 No

FPN1 sNaN 1 FPN1 1 No

0 Yes

sNaN FPN2 1 FPN2 1 No

0 Yes

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 107

FMIN FMAX FPN1 qNaN Don’t care qNaN (Fs) 0 No

qNaN FPN2 Don’t care qNaN (Fb) 0 No

FPN1 sNaN 1 Quieted sNaN
(Fs)

1 No

0 Yes

sNaN FPN2 1 Quieted sNaN
(Fb)

1 No

0 Yes

Notes: 
1. FPN1 and FPN2 are floating-point numbers that are not a NaN (i.e., normal, zero, infinity or

sub-normal).
2. Result determined by FMINNUM/FMIN or FMAXNUM/FMAX operation.
3. Operand value of -0 compares to less than +0.
4. If Fb = Fs (and of the same sign, including infinities), result (Fd) will be loaded with Fb.
5. NaN with largest significand will be passed to result (Fd), quieted if an sNaN.
6. qNaN values have priority over sNaN values (see Table 3-13).

Clamping�(Limit)�FuncƟons
Although not specified in any IEEE 754 standard, the ISA supports a clamping (or limit) instruction
(FFLIM) intended for use where an input operand needs to be constrained between an upper and
lower limit. It serves a similar purpose to the integer equivalent FLIM instruction and is essentially
a concurrent execution of FMIN and FMAX operations with a common operand. Refer to the truth
table shown in Table 3-12 for a definition of how NaN operands are handled.

Any finite operand value will compare as less than +infinity or greater than -infinity. Operand value
of -0 compares to less than +0.

For FFLIM operations, when both upper and lower limits are either both qNaN or both sNaN values,
a NaN significand comparison (to select result NaN source) is not required, and the Fb NaN will be
the default source for the result. This differs from how coincident NaN values are treated in general.

Furthermore, a NaN input value (Fd) will cause the limit values to be ignored and will become the
source for the result. That is, checks between input NaNs and limit values (NaNs or otherwise) are
also not required.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 108

Table�3-12.�FFLIM�OperaƟon

FPNL FPNU FPN Don’t care FPNL or FPNU
or FPN(2)or
Distinguished
qNaN(3)

0 No

FPNL qNaN_U FPN Don’t care qNaN_U 0 No

FPNL sNaN_U FPN 1 Quieted sNaN_U 1 No

0 Yes

qNaN_L FPNU FPN Don’t care qNaN_L 0 No

sNaN_L FPNU FPN 1 Quieted sNaN_L 1 No

0 Yes

sNaN_L sNaN_U FPN 1 Quieted
sNaN_L(5)

1 No

0 Yes

sNaN_L qNaN_U FPN 1 qNaN_U(6) 1 No

0 Yes

qNaN_L sNaN_U FPN 1 qNaN_L(6) 1 No

0 Yes

qNaN_L qNaN_U FPN Don’t care qNaN_L(5) 0 No

Don’t care Don’t care sNaN 1 Quieted sNaN(7) 1 No

0 Yes

Don’t care Don’t care qNaN Don’t care qNaN 0 No
Notes: 
1. FPNL and FPNU are floating-point numbers that are not a NaN.

2. Result determined by FFLIM operation.

3. If Fs is less than Fb (and neither Fs nor Fb are NaN values), the result will be the distinguished qNaN, and the Invalid
exception will be signaled.

4. FFLIM operation based on IEEE 754-2019 minimum(x,y) and maximum(x,y) operation definitions.

5. Unlike FMIN/FMAX operations, no magnitude comparison of limit NaN values is required. Default result will always be
sourced from Fb.

6. qNaN values have priority over sNaN values (see Table 3-13).

7. Unlike FMIN/FMAX operations, no comparison of limit and input (Fd) values is required. Default result will always be
sourced from Fd.

NaN�PropagaƟon
The FPU macro supports NaN (payload) propagation to facilitate code debugging. After the CPU
issues an instruction to the FPU, the source operands are examined and a NaN value detected,
compared, and then propagated. Two operand instructions propagate NaN values as shown in
Table 3-13.

The FMAC instruction is a special case with respect to NaN propagation as it consists of essentially
three operands consisting of the two source operands (for the multiply) and a prior FMAC result
value (i.e, the intermediate used for the accumulate function). The source operands are examined
as usual but in conjunction with the selected intermediate result, and any NaN values detected are
propagated as defined by Table 3-13.

FFLIM is also a three-operand instruction, though it is ultimately either a two-operand maximum or
minimum operation based on the value of the source operand. NaN values detected are propagated
as defined by Table 3-12.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 109

Table�3-13.�NaN�PropagaƟon�Priority

FPN sNaN Quieted sNaN — INVAL signaled

FPN qNaN qNaN — -

sNaN FPN Quieted sNaN — INVAL signaled

qNaN FPN qNaN — -

qNaN1 qNaN2 qNaN1 qNaN1 ≥qNaN2 -

qNaN2 qNaN2 > qNaN1 -

sNaN qNaN qNaN — INVAL signaled

qNaN sNaN qNaN — INVAL signaled

sNaN1 sNaN2 Quieted sNaN1 sNaN1 ≥ sNaN2 INVAL signaled

Quieted sNaN2 sNaN2 > sNaN1

NaN�PropagaƟon�Rules
For instructions that generate a result, special propagation rules apply when one or both source
operands are NaN values, such that sNaNs can be successfully used as “tracer” values.

When both source operands are NaNs, qNaNs take priority over sNaNs. The appropriate NaN values
will be selected as the operation default result as shown in Table 3-13. In the absence of any
NaN source operands, any other floating-point numbers will be processed by the FPU module to
generate the result.

Note: Source sNaN values will always generate an Invalid exception, but the corresponding quieted
sNaN may not always be the operation result.

This magnitude comparison is based on the magnitude of the significand associated with each of
these values (the sign is ignored). It is straightforward to implement because:

• The MSb of a sNaN significant is 0 (with any non-zero value in the remaining bits).
• The MSb of a qNaN significant is 1 (with any value in the remaining bits).

An example tracer sNaN propagation is shown in Figure 3-18. When an FPU operation (Op1)
executes with a sNaN and a normal floating-point number, the sNaN will be quieted and propagate
as the result. In Figure 3-18, this is sNaN1 (the initial tracer) being propagated as qNaN1. Should
a subsequent operation (Op2) execute with qNaN1 and, for example, a later sNaN tracer (sNaN2),
operand qNaN1 will have priority, thereby maintaining propagation of the original tracer payload.
However, should that qNaN1 value then be presented to another FPU operation (Op3) together
with another qNaN, the qNaN result could be either of the source qNaNs, depending upon the
magnitude of their respective significands.

However, if the significand of the initial sNaN1 tracer is large enough, it will ultimately be able to
continue to propagate past all subsequent NaNs and be available to view at the end of the code
block, thereby allowing it to be traced back to its source.

Figure�3-18.�Tracker�sNaN�Operand�PropagaƟon�Example

sNaN1
(tracer)

FPN Op1 Op2sNaN2 Op3qNaN2
qNaN1 qNaN1

Result

If qNaN1 >= qNaN2, Result = qNaN1

Fs

Fb

Fs

Fb

Fs

Fb

If qNaN2 > qNaN1, Result = qNaN2

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 110

Table�3-14.�FMAC�NaN�PropagaƟon�Priority

FPN FPN FPN FPN FPN

qNaN qNaN

sNaN Quieted sNaN INVAL
signaled

Distinguished
qNaN(3)

FPN Distinguished
qNaN

INVAL
signaled

qNaN1 Distinguished
qNaN or
qNaN1(2)

INVAL
signaled

sNaN Distinguished
qNaN or
Quieted
sNaN(2)

INVAL
signaled

FPN sNaN1 Quieted
sNaN1

FPN Quieted
sNaN1

INVAL
signaled

qNaN Quieted
sNaN1 or
qNaN(2)

INVAL
signaled

sNaN2 Quieted
sNaN1(2)

INVAL
signaled

FPN qNaN1 qNaN1 FPN qNaN1

qNaN2 qNaN1 or
qNaN22

sNaN qNaN1 INVAL
signaled

qNaN1 qNaN2 qNaN1 or
qNaN2(2)

FPN qNaN1 or
qNaN2(2)

qNaN3 qNaN1 or
qNaN2 or
qNaN3(2)

sNaN qNaN1 or
qNaN2(2)

INVAL
signaled

sNaN1 sNaN2 Quieted
(sNaN1 or
sNaN2)(2)

FPN Quieted
(sNaN1 or
sNaN2)(2)

INVAL
signaled

qNaN Quieted
(sNaN1 or
sNaN2)(2) or
qNaN

INVAL
signaled

sNaN3 Quieted
(sNaN1 or
sNaN2)(2)

INVAL
signaled

Notes: 
1. FPN is a floating-point number that is not a NaN.

2. Using significand magnitude comparisons as defined in Table 3-13.

3. Distinguished qNaN intermediate result will arise when operands are 0 and Inf (any sign).

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 111

3.6.3� Zero,�InĮnity,�Not�a�Number�(NaN)�and�Subnormal�Values
The IEEE 754-2008/2019 standards reserve data encoding to represent special values, as shown in
Figure 3-19.

Zero is conveyed when both exponent and mantissa are all 0’s. Zero is a signed value (for some
operations) as determined by the Sign bit. Infinity is conveyed by an exponent value of all 1’s with an
all 0’s mantissa. Infinity is a signed value as determined by the Sign bit.

A Signaling NaN is conveyed by an exponent value of all 1’s with the MSb of the mantissa set to 0
(remaining mantissa bits may be set to any value). The Quiet Nan (qNaN, see 3.6.3.1. Not a Number
(NaN)) is conveyed by an exponent value of all 1’s with the MSb of the mantissa set to 1 (remaining
mantissa bits may be set to any value). NaN values are not signed, so the Sign bit may be any state.

A Subnormal value (see 3.6.3.2. Subnormal Number) is conveyed by an exponent of all 0’s and any
non-zero mantissa value. Subnormals are signed values as determined by the Sign bit.

3.6.3.1� Not�a�Number�(NaN)
The Signaling NaN (sNaN) and Quiet NaN (qNaN) are specific data codes that indicate certain
situations. In all cases, an exponent value of all 1’s with a non-zero mantissa signifies a NaN (an
exponent value of all 1’s with an all 0’s mantissa is used to convey Infinity).

qNaNs may be generated as the result of an invalid operation, such as taking the square root
of a negative floating-point number. A qNaN will propagate through subsequent floating-point
operations. Operations that will generate an Invalid exception for each instruction are documented
in Table 3-18.

sNaNs are reserved input operands which, under default exception handling, will signal an Invalid
exception when encountered. This may be used to indicate uninitialized variables, or as debug aids,
but they are never generated by arithmetic computations or comparisons. Whenever the source
operand of operation is an sNaN, the result will be a qNaN.

Both sNaNs and qNaNs can store “Payloads” in the mantissa bit field. The payload must not affect
the MSB of the mantissa. The payload can be used as a debugging aid in tracing through complex
arithmetic calculations.

3.6.3.1.1�qNaN�and�sNaN�PropagaƟon
The IEEE 754-2008/2019 standards indicates that source qNaNs should be propagated, including any
associated payload. The FPU module does not propagate any source qNaNs, but instead generates
fixed distinguished qNaN results.

In keeping with other device floating-point implementations, this module will propagate qNaN and
sNaN values where possible. Refer to NaN Propagation for further detail.

For instructions where a source operand qNaN is not available, a distinguished qNaN value as
shown below will be provided as the result whenever those instructions suffer a computational
error.

• Single Precision: Distinguished qNaN = 0x7FC0_0001
• Double Precision: Distinguished qNaN = 0x7FF8_0000_0000_0001

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 112

Figure�3-19.�FloaƟng-Point�Encodings

03031 23 22

S 00000000 00000000000000000000000

06263 52 51

S 00000000000 00

S 11111111

03031 23 22

x 11111111 0 ... Not All Zeros

= ±0

= ±∞

= sNaN

x 11111111 1 ... Any Value = qNaN

= ±0

06263 52 51

S 11111111111 00 = ±∞

06263 52 51

x 11111111111 0 Not All Zeros = sNaN

06263 52 51

x 11111111111 1 Any Value = qNaN
Note: sNaN and qNaN values may be of either sign.

Note: sNaN and qNaN values may be of either sign.

03031 23 22

S 00000000 Not All Zeros = ±Subnormal

00000000000000000000000

06263 52 51

S 00000000000 = ±SubnormalNot All Zeros

03031 23 22

S Not all Ones Any ValueNot all Zeros

Single Precision

Double Precision
06263 52 51

S Any Value Not all Ones
Not all Zeros

= ±Normal

= ±Normal

03031 23 22

03031 23 22

3.6.3.1.2�NaN�Operands�with�Float-to-Integer�Conversion
The FF2DI and FF2LI are the float-to-integer instructions. These instructions can output Huge Integer
in lieu of Invalid when the source is a value that would convert to an integer outside the range
of the result format under the applicable rounding attribute. This output is implemented as a new
exception, Huge Integer (FSR.HUGI).

The IEEE 754-2008/2019 standard calls for Invalid to be signaled if this situation cannot otherwise
be indicated. The FSR.HUGI exception is considered an implementation of “otherwise indicated,”
making the FF2DI and FF2LI instructions compliant.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 113

The module drives status output Invalid (and does not drive Huge Integer) when the source is ±NaN,
or ±∞ per the IEEE 754-2008/2019 standards. Note that Invalid is also driven for a qNaN input

3.6.3.2� Subnormal�Number
A subnormal number (historically also referred to as a denormal number) is a non-zero floating-
point number with a magnitude of less than that of the smallest normal number representable in
the given format. The benefit of subnormal numbers is that they allow for gradual underflow when
a result is very small (when compared to that without subnormal numbers). The IEEE 754 standard
represents subnormal numbers as a special case.

Using Single Precision data format as an example, the smallest normal numbers around 0 are
greater than +2-126 or less than -2-126, which occur when the floating-point number exponent is 1
(bearing in mind that the 8-bit exponent is defined with a bias of +127) and the mantissa is all 0’s.

The exponent value of 0 is reserved for subnormal numbers. However, the IEEE 754 standard treats
subnormal numbers as a special case where the hidden mantissa bit becomes 0 and the exponent
bias is changed (by +1) to compensate, such that the datum exponent becomes -126. This allows the
subnormal range to surround 0 and be between a little greater than -2-126 to a little less than -2-126.
That is:

-2-126 < subnormal < +2-126

The minimum exponent value is referred to as Emin, and is -126 for Single Precision and -1023 for
Double Precision formats. A subnormal number would therefore be represented as:

(-1)S x [0].m base2 x 2Emin

where:

-‘S’ indicates the sign of the number (same values as a signed integer value)

-‘m’ represents the fractional mantissa value

For example, the largest SP positive subnormal number will be when all mantissa bits are all set
(0x007F_FFFF), and the smallest number will be when all mantissa bits are all clear (0x0000_0000),
which is 0.0.

3.6.3.2.1�Subnormal�Number�Handling
Should any floating-point calculation generate a subnormal result, the FSR.UDF will be set; if it is not
already set, the sticky status FSR.UDFS will also be set. In addition, if any instruction is presented
with a subnormal operand value, FSR.SUBO will be set. If it is not already set, the sticky status
FSR.SUBOS will also be set.

Subnormal�Override�FuncƟons
Although not IEEE 754 compliant, subnormal operands and/or results may be overridden to improve
the performance of some applications that do not require subnormal number precision. Use of the
subnormal override function:

• Avoids the consequences of processing or having to deal with subnormal datum.
• Handles result underflows when a result is subnormal, negating the need to handle an underflow

exception.

The subnormal override functions consist of two parts, one to flush subnormal input operands
to zero (referred to as Subnormals-Are-Zeros, or SAZ mode), and the other to remove subnormal
results (referred to as Flush-To-Zero, or FTZ mode).

Note: Subnormal override modes are not applicable to FCPS/FCPQ (no result to override), FAND,
FIOR, FTST, FMOV, FMOVC or any CPU to/from FPU data move instruction.

Subnormals-Are-Zero�(SAZ)
Subnormals-Are-Zero (SAZ) mode is enabled when FCR.SAZ is set and will ensure that any
subnormal operand input to a Functional Block is replaced with a 0 value of the same sign as

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 114

the subnormal value it is replacing. This avoids the consequences of processing or having to deal
with subnormal datum. This operation applies to all floating-point instructions except: FMOV, FMOVC,
FAND, FIOR, FTST, FLI2F and FDI2F.

Note: SAZ mode is applied to FABS and FNEG instructions to ensure result consistency with that of
an equivalent sequence of FPU arithmetic instructions.

Note: Does not apply to FPU to CPU or CPU to FPU move instructions.

3.6.3.2.2�Flush-To-Zero�(FTZ)
Flush-To-Zero (FTZ) mode is enabled when both FCR.FTZ and FCR.UDFM are set. If the underflow
exception is unmasked (FCR.UDFM = 0), then the FCR.FTZ bit will have no effect. Should a
floating-point operation generate an infinitely precise result that is less than the smallest possible
subnormal number, then the Functional Block will round this to a result of 0 with the same sign
as the subnormal value. This will occur irrespective of whether FTZ mode is enabled or not. Both
Underflow (FSR.UDF) and Inexact (FSR.INX) will be signaled (if not already set, sticky status FSR.UDFS
and FSR.INXS will also be set). Should a floating-point result be a subnormal number (that the
Functional Block has not rounded up to the smallest magnitude normal number), and FTZ mode is
enabled, the result will be replaced with 0 of the same sign as the subnormal value it is replacing.
Again, both Underflow (FSR.UDF) and Inexact (FSR.INX) will be signaled (if not already set, sticky
status FSR.UDFS and FSR.INXS will also be set), though the Underflow exception has to be masked
(in order to enabled FTZ mode), so no interrupt will be issued. Forcing the result to 0 allows the user
to ignore underflows (though at the expense of some accuracy).

The FCR.FTZ bit is only examined during the WB-stage of an instruction such that it may be modified
as late as the cycle before the instruction enters the WB-stage. For example, the following code
sequence will only apply the FTZ function to the FSUB instruction:

�*�Assume�FCR.FTZ=0�&&�FCR.UDFM=1�at�entry
FADD.s�F0,�F1,F2�����������������;add�without�FTZ
FIOR�#0x0400,�FCR����������������;�set�FCR.FTZ
FSUB.s�F3,�F4,F5�����������������;sub�with�FTZ
FAND�#0xFBFF,�FCR����������������;clear�FCR.FTZ
FADD.s�F2,F6,F7������������������;add�without�FTZ

3.6.3.2.3�Subnormal�Operand�ExcepƟon
Should any affected instruction execute using a subnormal operand, and SAZ mode is disabled, the
Subnormal Operand (FSR.SUBO) exception will be signaled. This provides a mechanism to indicate
the use of a subnormal value without requiring the operand be tested (FTST).

Should SAZ mode be enabled and a subnormal operand is encountered (and changed to a 0 value),
SUBO will not be signaled.

SAZ mode may be enabled irrespective of whether the SUBO exception is masked or not (though
when enabled will never signal SUBO).

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 115

3.6.4� FloaƟng-Point�Data�Register�(F0-F31)

Fn

Bit 31 30 29 28 27 26 25 24
 Fn[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 Fn[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 Fn[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 Fn[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Floating-Point Data Register bits

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 116

3.6.5� FloaƟng-Point�Control�Register

FCR

Note: 
1. Floating-Point Exception Mask bits, FCR [6:0]: Each Exception Mask bit corresponds to an

Exception Status flag in the FSR. The Mask bit must be clear to allow the exception event to
generate an interrupt to the CPU. The Underflow Mask bit (FCR.UDFM) is also used as part of the
Flush-to-Zero (FTZ) mode enable as discussed in 3.6.3.2.2. Flush-To-Zero (FTZ).
Floating-point rounding mode control, FCR [9:8]: These bits define the global IEEE 754
compatible rounding mode used by the FPU instruction. 3.6.8.9.3. Rounding Modes.
Floating-point subnormal override mode control, FCR [11:10]: These bits enable the Subnormals-
Are-Zero (SAZ) and Flush-to-Zero (FTZ) subnormal override modes supported by the FPU.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 SAZ FTZ RND [1:0]

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 SUBOM HUGIM INXM UDFM OVFM DIV0M INVALM

Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Subnormals Are Zero Operand Mode bit

1 Subnormals Are Zero mode is enabled
0 Subnormals Are Zero mode is disabled

Flush To Zero Result Mode bit

1 Flush To Zero mode is enabled
0 Flush To Zero mode is disabled

FPU Rounding Mode bit

11 IEEE Round to Negative Infinity (floor)
10 IEEE Round to Positive Infinity (ceiling)
01 IEEE Round to Zero (truncate)
00 IEEE Round to Nearest (even)

Subnormal Operand Exception Mask bit

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 117

1 Subnormal exception is masked
0 Subnormal exception is not masked

Huge Integer Exception Mask bit

1 Huge Integer exception is masked
0 Huge Integer exception is not masked

Inexact Exception Mask bit

1 Inexact exception is masked
0 Inexact exception is not masked

Underflow Exception Mask bit

1 Underflow exception is masked
0 Underflow exception is not masked

Overflow Exception Mask bit

1 Overflow exception is masked
0 Overflow exception is not masked

Divide By Zero Exception Mask bit

1 Divide By Zero exception is masked
0 Divide By Zero exception is not masked

Invalid Exception Mask bit

1 Invalid exception is masked
0 Invalid exception is not masked

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 118

3.6.6� FloaƟng-Point�Status�Register

FSR

Note: Dynamic floating-point exception status, FSR [6:0]: Dynamic status bits are updated based
on the results from each instruction Functional Block and will be updated after execution of each
instruction.

Sticky floating-point exception status, FSR [14:8]: Sticky status bits can be set based on the results
from each instruction Functional Block but cannot be cleared by hardware (other than at device
Reset), and therefore represent a history of status since the last time the sticky bits were cleared.
The FSR bits can be cleared through software.

Floating point compare status, FSR [19:16]: Status generated by executing a floating-point compare
(FCPQ/FCPS) instruction. Used individually or combined to generate the floating-point branch
conditions used by the CPU CBRAn instructions.

Floating-point test status, FSR [27:24]: Floating-point datum characteristic status generated by
executing the floating-point test (FTST) instruction.

Bit 31 30 29 28 27 26 25 24
 SUB INF FN FZ FNAN

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 GT LT EQ UN

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 SUBOS HUGIS INXS UDFS OVFS DIV0S INVALS

Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 SUBO HUGI INX UDF OVF DIV0 INVAL

Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

(FTST) Subnormal Status bit

1 Operand is subnormal
0 Operand result is not subnormal

(FTST) Infinite Status bit

1 Operand is infinite
0 Operand is not infinite

(FTST) Negative Status bit

1 Operand is negative
0 Operand is not negative

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 119

(FTST) Zero Status bit

1 Operand is zero
0 Operand is not zero

(FTST) Not a Number Status bit

1 Operand is a NaN (qNaN or sNaN) value
0 Operand is not a NaN value

(FCPS/FCPQ) Greater Than Status bit

1 Minuend is greater than the subtrahend (Fb > Fs)
0 Minuend is not greater than the subtrahend (Fb ≤ Fs)

(FCPS/FCPQ) Less Than Status bit

1 Minuend is less than the subtrahend (Fb < Fs)
0 Minuend is not less than the subtrahend (Fb ≥ Fs)

(FCPS/FCPQ) Equal Status bit

1 Minuend is equal to the subtrahend (Fb = Fs)
0 Minuend is not equal to the subtrahend (Fb != Fs)

(FCPS/FCPQ) Unordered Status bit

1 Either or both operands are NaN values
0 Neither operands are NaN values

Sticky Subnormal Operand Exception Flag bit

1 Subnormal Operand exception has just occurred, or at some time in the past
0 Subnormal Operand exception has not occurred

Sticky Huge Integer Exception Flag bit

1 Huge Integer exception has just occurred, or at some time in the past
0 Huge Integer exception has not occurred

Sticky Inexact Exception Flag bit

1 Inexact exception has just occurred, or at some time in the past
0 Inexact exception has not occurred

Sticky Underflow Exception Flag bit

1 Underflow exception has just occurred, or at some time in the past
0 Underflow exception has not occurred

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 120

Sticky Overflow Exception Flag bit

1 Overflow exception has just occurred, or at some time in the past
0 Overflow exception has not occurred

Sticky Divide by Zero Exception Flag bit

1 Divide by Zero exception has just occurred, or at some time in the past
0 Divide by Zero exception has not occurred

Sticky Invalid Exception Flag bit

1 Invalid exception has just occurred, or at some time in the past
0 Invalid exception has not occurred

Subnormal Operand Exception Flag bit

1 Subnormal Operand exception has occurred
0 Subnormal Operand exception has not occurred

Huge Integer Exception Flag bit

1 Huge Integer exception has occurred
0 Huge Integer exception has not occurred

Inexact Exception Flag bit

1 Inexact exception has occurred
0 Inexact exception has not occurred

Underflow Exception Flag bit

1 Underflow exception has occurred
0 Underflow exception has not occurred

Overflow Exception Flag bit

1 Overflow exception has occurred
0 Overflow exception has not occurred

Divide by Zero Exception Flag bit

1 Divide by Zero exception has occurred
0 Divide by Zero exception has not occurred

Invalid Exception Flag bit

1 Invalid exception has occurred
0 Invalid exception has not occurred

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 121

3.6.7� FloaƟng-Point�ExcepƟon�Address�Capture�Register

FEAR

Note: 
1. FEAR [1] always set to 1’b0.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 FEAR[22:15]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 FEAR[14:7]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 FEAR[6:0] EACE

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

 Floating-Point Instruction Exception Address Capture Register bits(1)

Exception Address Capture Enable bit

1 FEAR register address capture enabled
0 FEAR register address capture disabled (and FEAR [23:0] may contain a captured address)

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 122

3.6.8� FPU�Module�OperaƟon

Figure�3-20.�Module�Block�Diagram

Result Data Write-back

Output
Selector

Floating-Point
Functional

Units

FPU
X[n]-stages

F-reg Data Register File

FPU Status
Register (FSR)

FPU Control
Register (FCR)

FCR.RND[1:0]

Floating-Point
Exception Control

Fbcc Conditional
Branch Status

Encoding

Instruction
Control
Register

FPU
RD-stage

Register Read/Write Interface

F-reg Partial Contexts

FPU Instruction Select

Rounding Mode Override

FBcc Conditional Branch Status

Instruction Register Selects

Instruction Literal Operand

Instruction Precision Select

Register
Selects

Result Status Update

CP
U

Co
-P

ro
ce

ss
or

In

te
rf

ac
e

Hazard Detection and
Data Forwarding Block

Interrupt Request

FTZ
Override

FCR.FTZ

Context
Selects

SA
Z

Ov
er

rid
e

FC
R.

SA
Z

Instruction Tracking

FCR Contexts

FSR Contexts

FPU
WB-stages

3.6.8.1� FloaƟng-Point�Unit�Registers
The dsPIC Floating-Point Unit (FPU) provides a large set of working registers (F-regs):

• 32 x 32-bit (Single Precision, F0 ... F31) or
• 16 x 64-bit (Double Precision, F0, F2 ... F28, F30) or
• A mix of the two sizes aligned as shown in Figure 3-21.

In addition to the F-regs, status (FSR) and control (FCR) registers are also supported as shown in
Figure 3-21:

• FSR (FPU Status Register, 32-bit): Holds the status of retired floating-point instructions:
– FSR [6:0]: Instruction “most-recent” exception status
– FSR [14:8]: Instruction "sticky" exception status
– FSR [19:16]: FCPS/FCPQ instruction status
– FSR [28:24]: FTST instruction status

• FCR (FPU Control Register, 16-bit):
– FCR [6:0]: Exception mask control
– FCR [9:8]: Rounding mode control
– FCR [10]: Subnormal result “Flush-to-Zero” (FTZ) control
– FCR [11]: Subnormal operand “Subnormals-are-Zero” (SAZ) control

• FEAR: (FPU Exception Address Capture Register, 24-bit): Holds the address of the first instruction
encountered that causes an exception. All subsequent instructions in the FPU pipeline that

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 123

subsequently retire will not affect the FEAR, even if they too generate exceptions. The FEAR is
intended for use during debug of the floating-point software.

Note: The FSR msws and lsws may be read/written independently of each other by some
instructions.

Note: Although inconsistent with device interrupts, where interrupt controls are referred to as
enables (where logic 1 represents enabled), it is more conventional (and in keeping with the
IEEE-754 specification) that the FPU exception controls be referred to as masks (where logic 1
represents masked). These bits are all set at Reset, masking exceptions by default.

3.6.8.1.1�FPU�Register�Access
Data may be moved in and out of any FPU register, from OR to W-regs or DS memory, by using
dedicated coprocessor register move instructions that execute from within the integer pipeline
(refer to MOVCRW, MOVWCR, MOVLCR, LDWLOCR, STWLOCR, PUSHCR and POPCR CPU instructions as
described in 3.6.8. FPU Module Operation).

All data is moved as 32-bit entities, so Double Precision data moves will require the execution of two
instructions (64-bit data moves are not supported in this device).

In addition, the FPU supports FAND and FIOR instructions that can logically AND or OR a literal value
with the FSR (lsw only, exception status), FCR or FEAR (lsw only).

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 124

3.6.8.2� FPU�Programmer’s�Model

Figure�3-21.�FPU�Programmer’s�Model

F0F1
F0

F2F3
F2

F4F5
F4

F6F7
F6

F8F9
F8

F10F11
F10

F12F13
F12

F14F15
F14

F16F17
F16

F18F19
F18

F20F21
F20

F22F23
F22

F24F25
F24

F26F27
F26

F28F29
F28

F30F31
F30

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

FP Working

 FCPS/FCPQ Status (FSR[19:16])

 Exception Masks (FCR[6:0])

Most-Recent Exception Status (FSR[6:0])

FP EXCEPTION ADDRESS CAPTURE REGISTER

FSR[31:0]

FEAR[23:0]

RND[1:0]

UNEQLTGT

INVALMDIV0MOVFMUDFMINXMHUGIM

INVALDIV0OVFUDFINXHUGI

EACE

FCR[15:0]

FP Round Control (FCR[11:8])

0123

Sticky Exception Status (FSR[14:8]) INVALSDIV0SOVFSUDFSINXSHUGIS

Registers

 FTST Status (FSR[28:24]) FNANFZFNINFSUB

63 031

FTZSAZ

SUBOM

SUBO

SUBOS

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 125

3.6.8.3� FPU�Register�Set
The FPU Programmer’s Model of registers is shown in Figure 2-1 and is comprised of floating-point
operand registers (F-regs), a floating-point control register (FCR), a floating-point status register
(FSR), and a floating-point exception address capture register (FEAR). None of the registers are
memory mapped and must be read or written by the CPU using the coprocessor move instructions
(MOVCRW, MOVWCR, PUSHCR, POPCR, LDWLOCR, STWLOCR, and MOVLCR). The FCR, FSR and FEAR
registers may also be subjected to a literal AND or OR operation by the FAND and FIOR instructions
respectively.

3.6.8.3.1�FloaƟng-Point�Operand�Registers�(F-Regs)
To differentiate from the CPU working W-regs, the FPU operand/result data working registers are
referred to as F-regs. The FPU supports up to 32 Single Precision values, or up to 16 Double
Precision values. Aligned pairs of the F-regs registers (e.g., F1:F0 values may be used to provide data
storage for Double Precision values. Single and Double Precision values may be mixed within the
register file. Other than data movement in and out of the FPU, all instructions are register-to-register
operations within the FPU register set.

The F-regs are not memory-mapped and can only be accessed by the CPU using specific instructions
as discussed in 3.6.8.3.3. CPU Access of FPU Registers.

The 32 x 32-bit F-reg array, together with additional register contexts, is implemented as a register
file. FPU instructions can have 1, 2 or 3 operands (read sources) and 0 or 1 result destination, and
most also update status in the FSR. Registers may be used individually for Single Precision data
values or coupled as odd; even pairs (only) should be used to support Double Precision data values
(e.g., F1:F0).

Source registers are bound to an instruction when the instruction is issued and are not writable
by the CPU until the instruction is committed. At this point, they are clocked into operand registers
that drive the target functional block and can therefore be subsequently written. Note that a bound
source register may be read at any time.

Destination registers (F-regs and FSR) are bound to an instruction when the instruction is committed
and are not accessible by the CPU until the instruction has retired.

FloaƟng-Point�Control�Register�(FCR)
The FCR is comprised of the following bit fields as defined in 3.6.5. FCR.

Floating-Point Exception Mask bits, FCR [6:0]: Each Exception Mask bit corresponds to an Exception
Status flag in the FSR. The Mask bit must be clear to allow the exception event to generate an
interrupt to the CPU. The Underflow Mask bit (FCR.UDFM) is also used as part of the Flush-to-Zero
(FTZ) mode enable as discussed in 3.6.3.2.2. Flush-To-Zero (FTZ).

Floating-Point Rounding mode control, FCR [9:8]: These bits define the global IEEE 754 compatible
rounding mode used by the FPU instruction. See 3.6.8.9.3. Rounding Modes.

Floating-Point Subnormal Override mode control, FCR [11:10]: These bits enable the Subnormals-
Are-Zero (SAZ) and Flush-to-Zero (FTZ) subnormal override modes supported by the FPU.

3.6.8.3.2�FloaƟng-Point�Unit�Register�Contexts
To speed up real time control systems and other time critical applications, the dsPIC FPU supports
multiple register contexts that are tied to Interrupt Priority Levels.

The FPU includes a set of hardware register contexts. Each context includes the FSR, FCR and four
register pairs (i.e., F0 through F7). All other F-regs and FEAR are not included and must be saved and
restored through software.

The number of supported register contexts matches that of the CPU and is fixed at seven, which
represents one context per CPU Interrupt Priority Level (IPL). Should the CPU change context, then
the FPU will follow suit, and all subsequent instructions issued to the FPU will execute within that
(new) context. However, all FPU instructions issued in a prior context will be allowed to continue to
execute and retire within that context, irrespective of the context change within the CPU. Similarly,

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 126

any data dependencies that occur within the context of the instruction underway will remain within
that context.

As the FSR is part of the register context, exceptions are context specific. Should the FPU change
register context, any FPU exceptions generated as a result of the execution of FPU instructions
already issued from the prior context will remain pending until the FPU returns to that original
context.

Hazard detection is also context based such that each instruction operand and result register is
tagged with its own context. Hazards can therefore only exist within the same register context.

This concept extends to the FSR and FCR which have an independent representation within each
register context. Consequently, the CPU will not stall (assuming no FSR and/or FCR hazard exists
within the current context) if it were to access the FSR or FCR while the FPU continued to execute
instructions issued from within a different context. These instructions would have access to their
own version of the FSR and FCR.

3.6.8.3.3�CPU�Access�of�FPU�Registers
The following CPU instructions are provided specifically to support data movement into and out of
the coprocessors. The assembler uses the register declarations to direct encoding of the FPU as the
target coprocessor within each instruction op code:

• MOVCRW: Move any FPU register to a W-reg or DS memory (using indirect addressing).

• LDWLOCR: Move the contents of DS memory (read using register+literal offset addressing ([Ws�+
Slit14])) to any FPU F-reg register.

• STWLOCR: Move any FPU F-reg to DS memory (read using register+literal offset addressing
([Wd+Slit14])).

• PUSHCR: 16-bit short instruction dedicated to moving any FPU register onto the system stack.

• MOVWCR: Move a W-reg or DS memory value (using indirect addressing) to any FPU register.

• POPCR: 16-bit short instruction dedicated to moving a value from the system stack to any FPU
register.

• MOVLCR: Move a 32-bit literal value to any FPU register.

Note: These instructions are referred as mov.l, push.l or pop.l. Please refer to the dsPIC33A
Programmer’s Reference Manual for the correct syntax of these instructions.

3.6.8.3.4�Intra-FPU�Register�Moves�and�Logical�OperaƟons
In addition to CPU to/from FPU data movement, the FPU supports instructions that execute within
its own pipeline that perform register to register moves or logical operations:

• FMOV: Copy any F-reg or F-reg pair into another F-reg or F-reg pair.

• FMOVC: Move one of 32 Single or Double Precision constant values into an F-reg or F-reg pair.

• FAND: Logically AND a 16-bit literal value (lit16) with the lsw of the FPU FSR, FCR or FEAR.

• FIOR: Logically OR a 16-bit literal value (lit16) with the lsw of the FPU FSR, FCR or FEAR.

Note: To allow subsequent instruction to immediately utilize FAND and FIOR changes to
FCR.RND[1:0] and FCR.SAZ control bits without stalls, these bits are manipulated and updated in
the first pipeline stage (RD-stage). However, the remaining FCR bits are not written back until the
end of the instruction as usual. Consequently, should the CPU need to read the FCR immediately
after modification, it will be stalled by the FPU until the FAND or FIOR instruction has retired.

3.6.8.4� Data�Hazard�Management
Read-After-Write (RAW) data hazards can arise due to:

• Data dependencies between FPU instructions

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 127

• As the result of a register move from an FPU register to the CPU when an FPU instruction
underway has not yet completed its result write (to the same register)

Write-After-Read (WAR) data hazards within the FPU pipeline alone are not possible because the
pipeline ensures that instruction reads always precede subsequent instruction writes. However, a
WAR hazard can arise when the CPU pipeline writes to an FPU register that has yet to be read by a
previously issued but stalled FPU instruction.

Write-After-Write (WAW) data hazards are possible should the CPU attempt to write to an FPU
register that is also the target of a prior FPU instruction which has not yet completed its result write.

All hazards are detected within the FPU or CPU (or both) and will be mitigated either through data
forwarding or pipeline stalls. Refer to 3.6.8.7. FPU Hazards for further details.

3.6.8.5� FPU�and�CPU�ExcepƟons
Issued FPU instructions that become committed (accepted by the Execute stage) are always atomic
with respect to CPU exceptions. No CPU exception (other than a Reset event) can force the FPU to
abandon an instruction that is already underway.

CPU exceptions will result in a register context switch in both the CPU and FPU. Furthermore, FPU
exceptions are always context specific. That is, any FPU exception occurring after a context switch
will remain pending until the FPU returns to the prior context.

FPU exceptions can only be taken and handled when unmasked (referred to as alternate exception
handling). The FPU will return the calculated result of each operation and signal any exception via an
interrupt to the CPU.

If FPU exceptions are masked, the FPU will return a default result for each operation that generates
an exception as defined in Table 3-15. The exception will be signaled by setting the corresponding
bit(s) in the FSR, but no interrupt will be issued to the CPU. This is intended to allow code to execute
unhindered by exception handling at the time of execution. If required, exception status may be
examined at a later time and appropriate action taken.

3.6.8.5.1�Huge�Integer�and�Subnormal�ExcepƟons
In addition to the IEEE 754-2008/2019 compliant exception support, this macro also offers two
additional exceptions and associated masks that some users may find useful.

• Huge Integer: FSR.HUGI
Exception signaled whenever a Float-to-Integer conversion operation (FF2DI and FF2LI) results in
an integer value that is larger than the destination register can represent.

• Subnormal Operand: FSR.SUBO
Exception signaled whenever an operand of an affected instruction is a subnormal value and
Subnormals-Are-Zeros (SAZ) mode is disabled (FCR.SAZ = 0). This is the only exception that can be
triggered by an operand source condition (all others are related to result conditions).

Table�3-15.�Default�ExcepƟon�Results

Invalid INVAL(2) Distinguished qNaN or quieted sNaN or
Largest integer result (for FF2DI/FF2LI only)

Divide By Zero DIV0 Correctly signed Infinity(3)

Notes: 
1. Under default exception handling, UDF is only set (along with INX) if the result is an inexact underflow. Applies

irrespective of whether FTZ mode is enabled or not.

2. FCPS and FCPQ do not generate a result other than an FSR update. However, INVAL will be set by FCPS if either or both
operands are a qNaN or sNaN, or by FCPQ if either or both operands are an sNaN.

3. 0/0 is a special case (where both the dividend and divisor are not finite) which will return the distinguished qNaN as the
result. INVAL will be set but DIV0 will not.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 128

Overflow OVF

Ro
un

di
ng

 M
od

e Nearest (Even) Infinity with sign of
exact result

Zero Most positive finite
number with sign of
exact result

+Infinity Positive overflow:
+Infinity
Negative overflow:
Most negative finite
number

-Infinity Positive overflow: Most
positive finite number
Negative overflow:
-Infinity

Underflow UDF(1) FCR.FTZ = 0: Rounded subnormal result

FCR.FTZ = 1; Zero with sign of exact result

Inexact INX Rounded (inexact) result

Huge Integer HUGI Largest integer value with sign of input operand

Subnormal Operator SUBO N/A (input operand exception)
Notes: 
1. Under default exception handling, UDF is only set (along with INX) if the result is an inexact underflow. Applies

irrespective of whether FTZ mode is enabled or not.

2. FCPS and FCPQ do not generate a result other than an FSR update. However, INVAL will be set by FCPS if either or both
operands are a qNaN or sNaN, or by FCPQ if either or both operands are an sNaN.

3. 0/0 is a special case (where both the dividend and divisor are not finite) which will return the distinguished qNaN as the
result. INVAL will be set but DIV0 will not.

3.6.8.6� CPU�to�FPU�Interface
The CPU can issue instructions to a coprocessor (FPU), and directly read and write FPU registers.
However, coprocessors otherwise operate independently of the CPU instruction pipeline, executing
their instructions within their own pipeline hardware.

An FPU can only receive, send and process data that is funneled through (and under the
direction of) the CPU. No CPU addressing capability is shared with an FPU. Consequently, an FPU
can only support register direct addressing for all instruction source or destination addressing
modes that target a FPU register. Data flow to and from each FPU is controlled using dedicated
move instructions that execute within the CPU. Because the CPU and FPU pipelines execute
independently, data related hazards that may arise when moving data between the CPU and an
FPU are mitigated using a simple request/grant bus which will stall the CPU as needed.

The CPU supports speculative execution of instructions that immediately follow a conditional
branch. These could be FPU instructions, so a mechanism exists to allow the CPU to cleanly kill
these instructions should the branch prediction prove incorrect.

In case an FPU SFR read is killed, all FPU SFR (e.g., status and control registers) are defined such that
a read of any SFR is not destructive within itself. This will avoid the possibility of a killed SFR read
affecting the state of the FPU.

3.6.8.6.1�FPU�Pipeline�OperaƟon
The CPU decodes all coprocessor instructions during the F-stage. The source and destination
coprocessor registers are extracted from the opcode and supplied to the coprocessor, along with
a corresponding instruction select and control signals such that no instruction decode is necessary
within the coprocessor.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 129

The FPU pipeline stages consist of Read (RD), Execute (X[n]) and Write-Back (WB) stages. The Read
and Write-Back stages consist of a single register and are common to all instructions. The Execute
stage consists of as many stages as required to execute the specific instruction (i.e., X [0], X[1].....
X[n]) but at least X [0].

The CPU pipeline F-stage and A-stage fetch can issue FPU instructions respectively as shown
in Figure 3-23. The pipeline can suffer both structural and data hazards, as discussed later in
3.6.8.7.1. FPU Structural Hazards and FPU Functional Block Unavailable, respectively, which can
result in CPU and FPU pipeline stalls, as shown in the corresponding diagrams.

One instruction may be issued into the RD-stage, where it will remain for one cycle (hazards aside)
until dispatched into the X [0] stage. The number of cycles each instruction remains within the
execute phase varies depending upon the operation. In order to avoid stalling the pipeline for the
duration of any long instruction, up to four instructions may be dispatched into X[0] and executed
concurrently (structural hazards aside).

Instructions retire in the same order in which they are issued. As a consequence of being able to
execute multiple instructions with varying execution times, the pipeline Instruction/Hazard Tracker
logic is designed to ensure that in-order retirement is maintained.

All instructions with an execution latency of four cycles or less are implemented such that the
execution stages are fully pipelined. Consequently, assuming no data dependencies (hazards) arise,
these instructions can be repeatedly issued at a rate of one per cycle (and receive their results at a
rate of one per cycle after an initial execution latency), without incurring a structural hazard stall.

For instructions where the execution latency exceeds four cycles (FDIV and FSQRT), the FPU pipeline
will fill the instruction and then stall subsequent instructions (due to a structural hazard) until the
required execution resource becomes available.

• FDIV: Floating-point divide is implemented as an iterative operation such that the input data
cannot be pipelined until all iterations have completed and the result is passed onto the
adjustment stage within the Functional Block. For example, should the CPU issue two sequential
FDIV instructions, the second FDIV instruction will stall in the RD-stage until the first FDIV enters
the final execution cycle, at which point the second FDIV may be dispatched into execute stage to
commence execution.

• FSQRT: Floating-point square root requires 10 (Single Precision) or 13 (Double Precision) cycles
to execute. The hazard tracker can handle up to four issued instructions, so an FSQRT followed
by up to three sequential FPU instructions (including FSQRT) may be executing at any one time.
The CPU may issue one more instruction, but it will remain in the RD-stage until the oldest FSQRT
instruction underway enters the WB-stage, six cycles later, and subsequently retires. At this point,
one slot within the hazard tracker is now available for use, and the pending FPU instruction
will be committed for execution. Another FSQRT instruction will retire in the next cycle, opening
another hazard tracker slot for another issued FSQRT instruction, and so forth, until the hazard
tracker is full again and the pipeline must wait a further six cycles for the initial FSQRT to retire.
For FSQRT alone, the best case block repeat rate is therefore one per cycle for the initial 4 FSQRT
instructions issued, with a subsequent four FSQRT instructions to be issued after six (Single
Precision) or nine (Double Precision) cycles have passed. This supports an average execution time
of (4+6)/4 or 2.5 cycles/instruction (Single Precision) or (4+9)/4 or 3.25 cycles/instruction (Double
Precision).

FPU�Read�Stage
The FPU pipeline RD-stage receives instructions issued by the CPU. The CPU issues FPU instructions
from the A-stage into the FPU RD stage which consists of a single register, such that only one FPU
instruction can be held at any one time. The instruction is committed when it is dispatched to X[0],
where it will start execution. X[0] holds the instruction such that the CPU is free to issue another
instruction into the RD-stage.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 130

The RD-stage is also subject to hazard checks and can therefore be stalled. Should a RAW hazard be
detected with a prior instruction that is already executing within the FPU pipeline, the hazard will be
detected in the RD-stage which will then be stalled until such time that the hazard is resolved.

Should the CPU subsequently attempt to issue additional FPU instructions, the RD-stage will not be
able to accept them so will also stall the CPU until such time that the RAW hazard has been resolved.
From the CPU perspective, this scenario is viewed as a structural hazard.

The RD-stage will also stall the CPU under the following conditions:

1. Whenever the number of instructions (default value is four) are in their execute X[n] stages, an
instruction is pending in the RD-stage, and the CPU is attempting to issue a further instruction.
In this situation, the Instruction/Hazard Tracker is full so the FPU cannot dispatch another
instruction from the RD-stage into X [0] until one of the instructions currently executing passes
into the WB-stage (refer to 3.6.8.7.1. FPU Structural Hazards). Assuming the default value is four,
this can occur when the pipeline is executing instructions that take longer than four cycles to
execute, and additional FPU instructions are issued while the long instruction is still executing
(i.e., not yet in the WB-stage). The longer instruction(s) execute and retire at a rate which is
slower than the rate at which the Instruction/Hazard Tracker can be filled, resulting in the CPU
being stalled.

2. Whenever the CPU attempts to issue more than two FDIV instructions while a previously
issued and dispatched FDIV instruction is still executing (i.e., not yet in the WB-stage). FDIV is
a special case where no more than one instance can be executed within the pipeline at any one
time. Consequently, executing another FDIV while a prior instance is still executing will cause
this second FDIV to be issued but held pending in the RD-stage (i.e., CPU will not stall). But
attempting to issue a third FDIV instruction while the pending (second) instance has not yet been
dispatched to X [0], will result in a CPU (issue) stall. The RD-stage also includes special logic to
support the FAND and FIOR operations (refer to FAND and FIOR Instructions).

FPU�Execute�Stage
Each instruction may consist of one or more execute stages depending upon the functional block
targeted by the operation. When the instruction enters the X [0]-stage, it is registered such that the
RD-stage is free to receive another instruction issued by the CPU.

All instructions (other than FDIV) are pipelined through as many X[n] stages as deemed necessary to
meet the timing requirements.

The pipeline stages will be added such that the propagation delay of each is as balanced as possible,
and that sequential issue of the same instruction may be fully pipelined (i.e., instructions using
the same Functional Block may be sequentially issued without incurring a structural hazard in the
execute stage).

FPU�Write-Back�Stage
The WB-stage captures each Single Precision or Double Precision result as they exit the execute
stage in dedicated registers. FPU instruction execution time is variable, but only one instruction
is permitted to be in the WB-stage at any one time. If more than one instruction has completed
execution and is in a position to retire, the pipeline will determine which instruction to retire to
maintain instruction execution order and eliminate any WAW hazards. The instruction will then
complete the write-back in one cycle during the WB-stage before being retired. The Instruction/
Hazard Tracker logic will ensure instructions enter the WB-stage in the same order as they were
issued (refer to 3.6.8.7.3. Instruction/Hazard Tracker).

Prior to writing the result, if FTZ mode is enabled (see 3.6.3.2.2. Flush-To-Zero (FTZ)), the result is
modified accordingly if subnormal. This final value is also passed onto the RAW hazard mitigation
forwarding logic (see Internal RAW Hazards).

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 131

FAND�and�FIOR�InstrucƟons
The FAND and FIOR instructions operate with a 16-bit literal, and can only target the FCR, FSR
and FEAR. They are considered a special case as they are executed using custom blocks that are
implemented within the RD-stage for some FCR bits and the WB-stage for everything else.

To allow subsequent instruction to immediately use FAND and FIOR changes to FCR.RND [1:0]
and FCR.SAZ control bits without (RAW hazard) stalls, these bits are modified during the RD-stage,
then updated at the end of the RD-stage such that they are available for immediate use by any
subsequent instruction.

The remaining FCR bits and all FSR and FEAR bits are read, modified and written back during the
WB-stage. Reading the FSR late (i.e., in the WB-stage rather than the RD-stage) avoids a potential
RAW hazard arising between a prior instruction FSR update and a subsequent FAND or FIOR FSR
operation.

3.6.8.7� FPU�Hazards
The coprocessor interface can suffer from structural and data dependencies as described in the
following sections. RAW, WAR and WAW data hazards are possible; RAR hazards are not.

3.6.8.7.1�FPU�Structural�Hazards
When a requested FPU resource is unavailable, a structural hazard will be detected. This may result
in the coprocessor stalling the CPU until the hazard is resolved.

Hazards that arise from actions within the FPU are referred to as “internal” hazards. Those that arise
due to actions between the CPU and FPU are referred to as “external” hazards. Depending upon
how the CPU/FPU pipeline is viewed (separate or conjoined), some of these hazards may be viewed
as either structural (i.e., a resource is unavailable) or data related.

FPU�Pipeline�Full�or�Busy
When the CPU attempts to issue an instruction to the coprocessor and it is unable to accept it
because the pipeline is full or busy, an external structural hazard will result, and the coprocessor will
stall the CPU until such time that the instruction can be accepted.

When an issued instruction is stalled in the FPU RD-stage due to a RAW hazard with a prior currently
executing instruction, the FPU pipeline is considered busy such that further FPU instructions cannot
be accepted. Consequently, should the CPU attempt to issue any additional FPU instructions while
the RD-stage is stalled, the FPU will stall the CPU until such time that the hazard resolves, resulting in
an external structural hazard as shown in Figure 3-24.

The pipeline is considered full when the Instruction/Hazard Tracker FIFO is full, which occurs when
the number of instructions (default value is four) are active within it, including the one waiting in the
RD-stage for dispatch into X[0]. The pipeline will remain full until the oldest instruction enters the
WB-stage. Should the CPU attempt to issue another FPU instruction, the FPU will stall the CPU until
such time that the Instruction/Hazard Tracker FIFO is no longer full.

FPU�FuncƟonal�Block�Unavailable
If the FPU pipeline is not full, and the FPU attempts to dispatch an instruction from the RD-stage that
uses a functional block that is already in use by a prior instruction, an internal structural hazard will
result, and the RD-stage will be stalled until such time that the functional block is no longer in use. If
the CPU attempts to issue another FPU instruction before this occurs, the FPU will then stall the CPU
until the hazard resolves.

This scenario can arise as a result of in-order retirement where instructions that target the same
functional block will be stalled in the pipeline waiting for slower, older instructions to complete
execution. An example is shown in Figure 3-3 where a slow instruction (FSIN) is followed by multiple
instructions that target the same MISC_SP functional block. The first FMOV will stall in X [0] waiting
for the FSIN to retire, resulting in an internal structural hazard. The subsequently issued FMOV will
issue but will be stalled in the RD-stage because it cannot progress into X [0] until the first FMOV is
able to move into the WB-stage, another internal structural hazard. As the RD-stage is now stalled,

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 132

should the CPU attempt to issue any additional FPU FMOV or FMOVC instructions (which share the
same functional block), the FPU will stall the CPU until such time that the pipeline can advance again,
causing an external structural hazard.

This scenario will always arise for sequential issue of the multi-cycle iterative FDIV instruction (all
other instructions can be pipelined) as shown in Figure 3-4.

FPU�Register�Unavailable�to�Read
When the CPU attempts to read a register that is bound to an issued FPU instruction, an external
structural hazard will result and the coprocessor will not be able to read until such time that the
register becomes available, creating a read stall for the CPU.

FPU�Register�Unavailable�to�Write
When the CPU attempts to write to a register that is bound to an issued FPU instruction, the
co-processor will not be able to write until such time that the register becomes available, creating a
write stall for the CPU (see FPU WAW Hazards).

3.6.8.7.2�FPU�Data�Hazards
The coprocessor interface can suffer from data dependencies leading to RAW, WAR and WAW data
hazards (RAR hazards are not possible). Unlike the CPU integer pipeline, a coprocessor hazard does
not necessarily prevent the pipeline from progressing for other coprocessor instructions, unless
subject to other hazards.

Internal�RAW�Hazards
An internal RAW (Read-After-Write) data dependency hazard will occur when the result of an FPU
instruction is not available at the time it is selected as the source operand (F-reg) of a subsequent
FPU instruction. The affected instruction will be stalled in the RD-stage until such time that the
hazard is resolved.

In order to mitigate the hazards, the coprocessor includes data forwarding paths between the FPU
execution result data output and the coprocessor RD-stage (as shown in Figure 3-8). This path will
forward the write data value should the write and read instructions target a common register.
Forwarding as soon as the result data is available (i.e., prior to the FPU register write) will help
mitigate the impact of the hazard.

External�RAW�Hazards
An external RAW (Read-After-Write) data dependency hazard will occur should the contents of an
FPU register be unavailable at the time it is read by the CPU because the register is bound to a
previously issued FPU instruction. The coprocessor will detect the hazard and read will be stalled
until such time that the register becomes available (i.e., after the result has be written), creating a
read stall for the CPU.

In addition, an external RAW hazard will occur if:

• A CPU write to a coprocessor register is immediately followed by the CPU issuing a coprocessor
instruction that uses the same register as an operand source.
or

• A CPU write to a coprocessor register is immediately followed by a CPU read of the same register.

In both of these CPU RAW hazard scenarios, the CPU is responsible for detecting the hazard and
inserting the necessary stall cycle for the coprocessor to resolve the hazard. Hazard detection is the
same for both scenarios.

In order to resolve these hazards, the coprocessor includes data forwarding paths between the CPU
W-stage and both the coprocessor RD-stage (as shown in Figure 3-5) and the CPU read data output
(as shown in Figure 3-6). These paths will forward the write data value should the write and read
instructions target a common register.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 133

Note: When the CPU attempts to write to an F-reg, it is possible that an instruction in the RD-stage
is using the same register as an operand source, and it is stalled as the result of an internal RAW
hazard. Forwarding the new CPU write data into this register would then be incorrect because
the RD-stage instruction was issued prior to the CPU write instruction. Consequently, should the
instruction in the RD-stage have been there for more than one cycle (i.e., be stalled), the FPU will
disable the forward path and allow the stall mechanism to recognize the hazard as usual. This will
prevent the CPU write from completing until such time that the instruction in the RD-stage has been
dispatched to start execution.

CPU write data forwarding to the coprocessor RD-stage allows the CPU to issue a coprocessor
instruction earlier than would be possible if the CPU coprocessor write had to complete. CPU write
data forwarding to the CPU read data path together with a CPU stall cycle (detected and inserted
by the CPU) resolves the (unlikely) hazard that arises when a CPU write is followed immediately by
a CPU read of the same coprocessor register. The converse scenario where a CPU read of an FPU
register into a W-reg is immediately followed by a CPU write of the same W-reg to another F-reg is
shown in Figure 3-7.

FPU�WAR�Hazards
WAR (Write-After-Read) anti-dependency hazard can occur should the pipeline allow read and write
execution to be out of (instruction sequence) order. That is, a WAR hazard will arise whenever an
instruction writes to a register before the same register is read by a prior instruction. That is, the
read and write occur out of execution order resulting in the (older) read instruction ultimately using
the (later) write data which would be incorrect.

Under normal sequential execution conditions, a WAR hazard should never arise because the read
of all older instructions always precedes the writes of later ones. However, a WAR hazard can
arise within the coprocessor pipeline should a slow instruction (e.g., FPU�FSIN) have a result
data dependency (RAW hazard) with a later instruction, and that later instruction is followed by a
MOVWCR or POPCR instruction that targets the same register as the dependency. This is because the
dependency will force an FPU pipeline stall until the result data is available and the RAW hazard is
resolved, but the MOVWCR or POPCR move instructions (which do not execute using the FPU pipeline)
will not be stalled. Consequently, it is possible that the write from the MOVWCR or POPCR instruction
would occur prior to the stalled instruction continuing execution (after the RAW hazard). The write
would then be overwritten by the FPU pipeline and therefore lost. This scenario is detected as a
WAR hazard and prevented from happening by stalling the most recent write, such that the write
order remains correct. CPU to FPU move instructions that do not target the register involved in the
stall will still execute as normal (i.e., without stalling).

The coprocessor must therefore detect the possibility of such a hazard and force in-order execution
of all dependent instructions by stalling the most recent CPU write instruction in the W-stage until
after the prior read is completed.

An example WAR hazard and its resolution is shown in Figure 3-10. A RAW hazard between the
FSIN.s and FMOV.s instructions will stall FMOV.s to resolve the hazard (stall cycles shown in green),
but this will also set the pipeline up for a possible WAR hazard because the subsequent MOVWCR
instruction is not prevented from continuing execution.

As is the case in this example, should the MOVWCR instruction destination be the same F-reg as
that used by the FMOV.s as a source, the MOVWCR must be prevented from writing until the prior
(FSIN.s) has been able to forward the write data to the MOV.s RD-stage. The FSIN.s and MOVWCR
enter their respective write stages together, and the FPU prioritizes the CPU write, maintaining
correct write ordering. This results in a one cycle stall of MOVWCR instruction to resolve the hazard.

FPU�WAW�Hazards
The WAW (Write-After-Write) hazard is a further consequence of allowing instructions to continue
execution while others are stalled or taking longer to execute. As is the case for WAR hazards,
instruction writes can end up out of order, leaving an incorrect (stale) value in a destination register.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 134

WAW output dependency is possible because once the coprocessor instruction is issued, the
CPU and coprocessor pipelines operate independently. A multicycle coprocessor instruction may
therefore complete after one or more CPU instructions that were subsequently issued (i.e., out of
order). A WAW hazard will exist when the CPU instruction is ready to retire before the coprocessor
instruction retires and either:

• The same register is a destination for both the coprocessor instruction and the CPU instruction
that follows it.
or

• The CPU instruction write targets a coprocessor register that is being used by the prior
coprocessor instruction.

In both cases, the resource cannot be shared.

An internal WAW hazard can arise between successive FPU instructions that have differing execution
time. However, each issued instruction is tracked by pushing its associated functional unit ID into
a FIFO, which is emptied in the same order as it is filled when instructions move results from their
functional units into the WB-stage. Should an expected (from the FIFO) functional unit result not
be ready, this knowledge is used in the write stage to complete the destination write in the correct
sequence, stalling those instructions that arrive out of order, thereby eliminating the WAW hazard.

If the CPU and FPU pipelines are viewed as conjoined, a WAW hazard is also possible should the
CPU attempt to write a value to the same register as that also targeted by a previously issued
FPU instruction whose write has not yet completed. However, access to the write target(s) of
an instruction is inhibited as soon as the instruction is committed (see 3.6.8.5. FPU and CPU
Exceptions). Consequently, any attempt by the CPU to write to an FPU register that is already bound
to a prior FPU instruction being executed will result in the write grant failure (and the CPU write
stalling).

An example WAW hazard and its resolution is shown in Figure 3-11 for an FPU instruction that
requires three iterations of the execute stage to complete. This results in a two cycle write stall
within the CPU instruction pipeline.

Note: For the purpose of WAW hazard detection, the FSR is considered as a single entity.

Note: The FSR is bound to all FPU instructions except for FMOVC and FMOV (these ops do not
update the FSR), and FAND and FIOR unless they will modify the FSR. The FEAR is bound to all FPU
instructions except for FMOVC, FMOV and FTST. It is also not bound to FAND or FIOR unless it will
be modified by them. Note that this applies irrespective of whether FEAR is enabled or not (i.e.,
FEAR.EACE is a “don’t care” with respect to FEAR hazard detection).

3.6.8.7.3�InstrucƟon/Hazard�Tracker
The Instruction/Hazard Tracker is a mechanism whereby hazard related information required while
an instruction is progressing through the execute stages is captured in a FIFO for each issued
instruction when that instruction is committed and enters the FPU pipeline X [0]-stage. The FIFO
depth (Default is four) defines how many instructions may be sequentially dispatched into the
execution stage before it is regarded as full.

Each FIFO entry includes the following information which is used during the X-stages:

1. Entry valid flag.
2. Flags to indicate which Functional Block (function and operation precision) is targeted.
3. Operand source register identification and valid flag such that RAW hazards may be identified as

the instruction progresses.
4. Flags to support Single Precision and Double Precision NaN propagation logic.
5. Flag to indicate if instruction is FDIV or FSUB (where the operand order is reversed).
6. Flag to indicate if instruction is FMAC (special case for NaN propagation).

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 135

Each FIFO entry requires a ‘valid’ bit which is clear whenever the entry is empty or after it has been
used in the WB-stage. This bit will inhibit any associated hazard detection after an instruction has
retired.

Operation precision partially identifies the selected Functional Block but also directs the hazard
logic. Single Precision operations need only check for hazards involving single F-regs whereas
Double Precision must check F-reg pairs for hazards.

Operand register identification and valid flags log which F-regs are used for operands (not all
instructions require all three source operands) for hazard tracking. In addition, each FIFO entry
includes the following information (also detected in the RD-stage) which is used during the
instruction WB-stage:

1. Flags to indicate if any result is to be written to an F-reg and whether the FSR is to be updated.
2. Result destination register (and context) identification (defined as DP targets). Additional flags

select the active registers (i.e., DP F-reg pair or one of two SP F-reg destinations).
3. Flag to indicate if instruction permits FTZ override of result.
4. CPU A-stage instruction address to capture in the FEAR (if enabled) should the instruction

generate an exception.
5. Flags to indicate if the instruction is a FAND or IOR, and the associated FSR/FCR/FEAR target

register select bits.
6. The presence of a subnormal operand (when SAZ mode is disabled) is captured and used to

signal the subnormal exception (i.e., at the same time as any other exceptions the instruction
may generate).

3.6.8.7.4�CPU�Write�Stalls
Whenever the CPU encounters a write stall, the entire integer pipeline is stalled (because the CPU
only supports in-order execution). No subsequent instruction is permitted to move into the W-stage
to retire until the write stall is resolved. Different Pipeline stages are explained in 3.6.8.6.1. FPU
Pipeline Operation.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 136

Figure�3-22.�CPU�Pipeline�Coprocessor�Interface�Flow

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 137

Figure�3-23.�CPU�Pipeline�Coprocessor�Issue�Flow

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 138

Figure�3-24.�Pipeline�and�FuncƟonal�Block�Busy�Internal/External�Structural�Hazards

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

Figure�3-25.�FDIV�Pipeline�and�FuncƟonal�Block�Busy�Internal/External�Structural�Hazards

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 139

Figure�3-26.�External�RAW�Hazard�(CPU�Write�Data�to�FPU�Read�Forwarding)

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 140

Figure�3-27.�External�Raw�Hazard�(CPU�F-REG�Write�Data�to�CPU�F-REG�Read�Forwarding)

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

Figure�3-28.�External�Raw�Hazard�(CPU�W-REG�Write�Data�to�CPU�W-REG�Read�Forwarding)

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 141

Figure�3-29.�Internal�Raw�Hazard�(FPU�Write�Data�to�FPU�Read�Forwarding)

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 142

Figure�3-30.�Internal�Raw�Hazard,�External�and�Internal�Structural�Hazards

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 143

Figure�3-31.�FPU�WAR�Hazard

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 144

Figure�3-32.�CPU/FPU�WAW�Hazard

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

3.6.8.8� Operand�Pre-Processing
Floating-point operands are subject to examination during the RD-stage in order to implement
NaN propagation and the subnormal value override function. This is necessary to apply rules that
determine the outcome in the presence of one or more NaN input values and evaluate operands for
special conditions.

3.6.8.8.1�NaN�PropagaƟon�Operand�DetecƟon
For instructions that generate a result, special propagation rules apply when one or both source
operands are NaN values, such that sNaNs can be successfully used as “tracer” values. Should a NaN
be deemed as propagated, then it will replace the operation result.

With reference to NaN Propagation, all instructions will examine the operands for NaN values during
the RD-stage:

• Two operand instructions:
If one or both operands are NaN values, the RD-stage will apply a propagation priority as shown
in Table 3-13.

• Three operand FMAC instruction:
The source operands are examined in the RD-stage as usual but in conjunction with the selected
intermediate result, and any NaN values detected are propagated as shown in Table 3-14.

• Three operand FFLIM instruction:
If one or both limit operands are NaN values, the RD-stage will apply a propagation priority as
shown in Table 3-12. If the FFLIM input value is a NaN, the limit values are ignored and the input
NaN value is propagated (quieted if an sNaN).

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 145

In all cases, if a NaN is to be propagated, the corresponding NaN value is entered as the operand
value in the Instruction/Hazard Tracker FIFO entry for that instruction. The instruction FIFO entry
also sets a flag to indicate that NaN propagation is enabled.

3.6.8.8.2�Subnormals�Operands
The FPU supports a subnormal operand override mode, Subnormals-Are-Zero (SAZ), the
functionality of which is defined in 3.6.3.2.3. Subnormal Operand Exception. Subnormals- Are-Zero
(SAZ) mode is enabled when FCR.SAZ is set.

Should a subnormal operand be detected when SAZ mode is disabled, the subnormal exception
will be signaled by setting FSR.SUBO (and FSR.SUBOS if not already set) during the WB-stage (i.e., at
the same time as when all other exceptions are signaled). If SAZ mode is enabled, the subnormal
exception will not be signaled.

Note: SAZ mode is not applicable to FAND, FIOR, FMOV, FMOVC or any CPU to/from FPU data move
instruction, none of which can modify any FPU status. In addition, SAZ mode is ignored by FTST
such that a subnormal operand will always be recognized as such by the instruction, irrespective
of the state of FCR.SAZ. However, SAZ mode can influence FF2LI/FF2DI operands. In these cases,
subnormal or zero operands will write the same result (integer value of 0). But if the operand is
subnormal and SAZ mode disabled, a subnormal exception will also be signaled. Conversely, if the
operand is subnormal and SAZ mode enabled, a subnormal exception will not be signaled.

3.6.8.9� Result�Post-Processing
Floating-point results are subject to examination during the WB-stage to implement the subnormal
result override Flush-To-Zero (FTZ) mode and NaN propagation results.

3.6.8.9.1�Subnormal�Results
The FPU supports a subnormal result override mode, Flush-To-Zero (FTZ), the functionality of which
is defined in 3.6.3.2.2. Flush-To-Zero (FTZ). Flush-To-Zero (FTZ) is enabled when both FCR.FTZ and
FCR.UDFM are set. Should the underflow exception be unmasked (FCR.UDFM = 0), then the FCR.FTZ
bit will have no effect.

This mode is implemented within the WB-stage such that results written to the destination register
(and those forwarded) will be adjusted accordingly if FTZ mode is enabled. The FCR.FTZ bit is only
examined during the WB-stage of an instruction such that it may be modified as late as the cycle
before the instruction enters the WB-stage.

Note: FTZ mode is not applicable to FAND, FIOR, FMOV, FMOVC or any CPU to/from FPU data move
instruction, none of which can modify any FPU status. It is also not applicable to FTST because the
FSR is the only possible destination for this operation. In addition, FTZ mode will have no effect
on FF2LI/FF2DI and FLI2F/FDI2F instruction results because - FF2LI/FF2DI results are integers and -
FLI2F/FDI2F destination data may be 0 but never subnormal.

3.6.8.9.2�NaN�PropagaƟon�Result�Write
NaN operand values are detected in the RD-stage, prioritized, and then passed (via an Instruction/
Hazard Tracker FIFO entry) to the instruction WB-stage. A valid NaN propagation will cause the
operation result from the Execute stage to be ignored, and the propagated NaN value to be written
into the result destination instead, as discussed in NaN Propagation.

3.6.8.9.3�Rounding�Modes
The rounding mode for each instruction Functional Block is defined by the value written into
FCR.RND [1:0] as defined in 3.6.5. FCR. The FPU treats the rounding mode input as an operand
supplied from the RD-stage when the instruction is dispatched into the Execute stage.

Note: Rounding Modes are not applicable to FAND, FIOR, FCPQ, FCPS, FTST, FABS, FNEG, FFLIM,
FMAX, FMIN, FMAXNUM, FMINNUM, FMOV, FMOVC or any CPU to/from FPU data move instruction.

There is a 3-bit rounding mode input (rnd [2:0]) to support up to eight different rounding modes for
all FPU conversion operations. Setting rnd [2] = 1 and mapping rnd [1:0] to FCR [9:8] will allow user
selection of the IEEE 754 compliant modes as defined in 3.6.5. FCR.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 146

The integer/floating-point conversion instructions (FDI2F, FLI2F, FF2DI, FF2LI) may either specify
the rounding mode within the instruction syntax or default to that defined in FCR.RND [1:0]. CPU will
issue one of these instructions and the FPU will use it to determine the Functional Block Rounding
mode as shown in Table 3-16.

Table�3-16.�FPU�Conversion�OP�Rounding�Modes�Control

111 IEEE Round to Negative Infinity (floor)

110 IEEE Round to Positive Infinity (ceiling)

101 IEEE Round to Zero (truncate)

100 IEEE Round to Nearest (even)

0xx Global mode (defined by FCR.RND[1:0])

3.6.8.10�FloaƟng�Point�Status
The FPU generates four types of status:

• Exception condition “most-recent” status from most instructions (see Table 3-19). These bits are
located within FSR [6:0]:INX, HUGI, OVF, UDF, DIV0, INVAL, SUBO.

• Exception condition "sticky" status from most instructions (see Table 3-19). These bits are located
within FSR [14:8]: INXS, HUGIS, OVFS, UDFS, DIV0S, INVALS, SUBOS.

• Value ordering relations status to indicate the result of the FCPS/FCPQ compare instructions.
These bits are located within FSR [19:16]:GT, LT, EQ, UN.

• Operand characteristic status from the FTST datum inspection/classify instruction. These bits are
located within FSR [28:24]: SUB, INF, FZ, FN, FNAN.

Operand comparisons are likely to be used frequently, so the compare status bits generated
by the FCPS/FCPQ instructions are supported with CPU conditional branch instructions. All other
status must be read into the CPU (using the MOVCRW instruction) or pushed onto the stack (using
PUSHCR) and then acted upon as necessary.

Note: Irrespective of whether an exception is masked or not, writing a logic 1 to an exception status
flag using any instruction that can write 1’s to the FSR will not result in any associated exception
being taken.

3.6.8.10.1�Compare�Status�and�Predicates
IEEE 754-2008/2019 standards specify Quiet and Signaling Compare Predicates (equations) as shown
in Table 3-17. A “signaling” predicate signals (i.e., attempts to generate an exception) when a Quiet
NaN or Signaling NaN (qNaN or sNaN) operand is detected.

A “quiet” predicate will not signal when a qNaN operand is detected.

An sNaN will always signal an exception when detected as an operand for all instructions except
those that do not generate any exceptions (FMOV, FMOVC, FABS, FNEG and FTST).

The FPU coprocessor macro implements Signaling and Quiet predicates by supporting two floating-
point compare options, one signaling (FCPS), one quiet FCPQ), and a set of floating-point branch
operations that test for the required predicates. Each compare instruction will set one of the four
mutually exclusive ordering relations (GT, LT, EQ, UN status bits) located in the FSR to indicate the
result of the comparison.

• FCPS (signaling compare):
– qNaN or sNaN: If either or both operands are a qNaN or sNaN value, the compare is

considered unordered which will cause the FSR.UN bit to be set. In addition, the FSR.INVAL
bit will be set, causing the CPU to be signaled via the Invalid exception (assuming that the
exception is not masked).

• FCPQ (quiet compare):

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 147

– qNaN: If one or more operands contain a qNaN value, the compare is considered unordered
which will cause the FSR.UN bit to be set. A qNaN will not set the FSR.INVAL bit, so no
signaling will occur.

– sNaN: If either or both operands are a sNaN value, the compare is considered unordered
which will cause the FSR.UN bit to be set. In addition, the FSR.INVAL bit will be set, causing
the CPU to be signaled via the Invalid exception (assuming that the exception is not masked).

The compare operation subtracts Fs (subtrahend) from Fb (minuend). The EQ, GT and LT status bits
are set as follows:

• If the minuend is equal to the subtrahend (Fb = Fs) the EQ status bit is set.
• If the minuend is greater than the subtrahend (Fb > Fs) the GT status bit is set.
• If the minuend is less than the subtrahend (Fb < Fs) the LT status bit is set.

In addition, the UN status bit is set if one or both operands is a NaN. If this is the case, no other
compare status is set (i.e., UN and EQ, GT, LT are mutually exclusive).

Note: The FCPS/FCPQ instructions consider -0 and +0 as equivalent.

Note: Comparing a value to itself should produce an equivalence result. However, UN has
precedence over EQ such that, should two values be identical but both NaN, the UN bit will be
set but the EQ bit will be cleared.

FPU�Status�CondiƟonal�Branches
The CPU has the ability to conditionally branch off various status bits generated within the
coprocessor. In the case of the FPU, an internal status register (FSR) is supported which is updated
at the end of each floating-point operation.

The FPU FSR is comprised of instruction exception status and FCPS/FCPQ/FTST instruction status.
Conditional branching is supported within the CPU for the FCPS/FCPQ compare instructions only.

The CPU ISA includes a set of generic coprocessor conditional branch instructions, CBRA0 through
CBRA15, each of which can operate with any instantiated coprocessor and branch based upon the
state of a corresponding bit within a vector supplied by each coprocessor. In the case of the FPU,
CBRA0 through CBRA13 are used, each represented as an FBRA instruction with its corresponding
assembler attribute, for the FCPS/FCPQ instruction status branch conditions. The FCPS/FCPQ status
is held in FSR [19:16] and indicates the comparison result. CBRA[n] timing is the same as any other
CPU conditional branch, such that the condition is examined at the end of the CBRA[n] R-stage. If
the condition is true, the branch is taken. If the condition is not true, the branch is not taken and
sequential execution continues.

As is the case for all conditional branches, the instruction(s) immediately following the branch are
speculatively executed, and they will either be part of the taken or the not taken path, based on
the direction of the branch. These instructions are permitted to be floating-point operations. This
requires that the FPU accommodate the possibility that these instructions could ultimately be killed
due to a branch mispredict.

Note that the FPU will not return the result of FBRA instruction until any FCPS/FCPQ instruction
already underway in the coprocessor pipeline has retired. The CPU will consequently stall until such
time that the msw of the FSR is available to be read (though these are fast operations, so stalls
should be minimal). In effect, a CPU conditional branch instruction operation will synchronize the
integer and floating-point pipelines with respect to FPU FCPS/FCPQ status.

The LS 3-bits of the branch opcode concatenated with the sub-opcode bit (such that the sub-opcode
bit becomes the LSb of this value), may be used by the CPU decoder as a bit pointer into the
16-bit branch status test value to select the corresponding branch predicate result. The branch then
decides if the outcome is true (taken) or false (not taken) based on the state of the selected bit
(where true is when the bit is set, false when clear).

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 148

Note: FCPS/FCPQ and FTST instructions update two different portions of the FSR. Consequently,
execution of an FTST instruction (which also updates the FSR) will not inhibit the CPU CBRAn
instructions from using the branch status generated from the FSR ordering relation bits.

The FTST instruction will test the operand and update the SUB, INF, FN, FZ, FNAN status bits.
No exceptions will be generated by this instruction. Due to the relative infrequent use of this
instruction, dedicated conditional branches are not supported by the CPU to test these status bits.
The user must read the FSR and then act upon the bits of instruction using existing CPU instructions.

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 1493.
6.
8.
10

.2
�O
pe

ra
nd

�C
ha

ra
ct

er
is

Ɵc
�(T
es
t)
�S
ta
tu
s

Ta
bl
e�
3-
17

.�F
lo

aƟ
ng

-P
oi

nt
�C

on
di

Ɵo
na

l�B
ra
nc
he

s�a
nd

�A
ss
oc
ia
te
d�
Pr
ed

ica
te
s

EQ
CB

RA
0

F
F

T
F

Eq
ua

l
U

N
E

CB
RA

1
T

T
F

T
U

no
rd

er
ed

or
 G

re
at

er
Th

an
 o

r
Le

ss
 T

ha
n

(U
no

rd
er

ed
or

 N
ot

Eq
ua

l)

N
E

CB
RA

2
T

T
F

F
G

re
at

er
Th

an
 o

r
Le

ss
 T

ha
n

(N
ot

 E
qu

al
)

U
EQ

(3
)

CB
RA

3
F

F
T

T
U

no
rd

er
ed

or
 E

qu
al

G
T

CB
RA

4
T

F
F

F
G

re
at

er
Th

an
U

LE
CB

RA
5

F
T

T
T

U
no

rd
er

ed
or

 L
es

s
Th

an
 o

r
Eq

ua
l

G
E

CB
RA

6
T

F
T

F
G

re
at

er
Th

an
 o

r
Eq

ua
l

U
LT

CB
RA

7
F

T
F

T
U

no
rd

er
ed

or
 L

es
s

Th
an

LT
CB

RA
8

F
T

F
F

Le
ss

 T
ha

n
U

G
E

CB
RA

9
T

F
T

T
U

no
rd

er
ed

or
 G

re
at

er
Th

an
 o

r
Eq

ua
l

LE
CB

RA
10

F
T

T
F

Le
ss

 T
ha

n
or

 E
qu

al
U

G
T

CB
RA

11
T

F
F

T
U

no
rd

er
ed

or
 G

re
at

er
Th

an

O
R

CB
RA

12
T

T
T

F
O

rd
er

ed
U

N
CB

RA
13

F
F

F
T

U
no

rd
er

ed

�dsPIC33AK128MC106�Family
CPU

 Data Sheet
© 2023-2024 Microchip Technology Inc. and its

subsidiaries

70005539B - 150

3.6.8.10.3�FPU�InstrucƟon�Kill
As is the case for all instructions executed within conditional branch speculative slots, floating-point
instructions will be killed if a branch mispredict occurs. The CPU will recognize a mispredict prior
to the end of the conditional branch R-stage (i.e., when the prior instruction status is available
to forward). If the instruction in the first speculative slot is an FPU instruction, it will be issued
to the FPU, but the CPU will assert a signal to kill the instruction for one cycle, forcing the FPU
to subsequently abandon execution prior to it being committed. If the instruction in the second
speculative slot is an FPU instruction, it will be abandoned prior to being issued to the FPU.

Figure�3-33.�FPU�InstrucƟon�SpeculaƟve�ExecuƟon

R

A

F R X WA

Fs1
(FPU Op)

A - - -

Fa Aa Ra Xa
(SR rdy) Wa

Bcc A X W

- - -
Fs2

(CPU or FPU
Op)

-

R X W

F

A

R X W

F

A

R X W

F R X WA

Speculatively execute 1st not taken (+ve offset) or taken (-ve offset) path

Predicted target PC

Speculatively execute 2nd not taken (+ve offset) or taken (-ve offset) path

F

F A R X W Speculatively executed FPU instruction issued but subsequently aborted due to
incorrect branch prediction.
Assert kill_r_stage_instruction for 1 cycle to force FPU to abandon execution.

RD

Speculative executed (CPU or FPU) instruction aborted due to
incorrect branch prediction

Forwarded branch decision (status result)

Continue execution from correct path

