High-Performance dsPIC33A Core with Floabng-Point
Unit, High-Speed ADCs and High-ResoluGon PWM

OperadGng CondiGons

+ 3.0Vto 3.6V:-40°C to +85°C, DC to 200 MHz
+ 3.0Vto3.6V:-40°Cto +125°C, DC to 200 MHz
+ 3.0Vto 3.6V:-40°C to +150°C, DC to 200 MHz

High-Performance dsPIC33A DSP/CISC CPU

+ 32-bit Comprehensive Instruction Set for Optimized Speed and Program Code Size:

- 16-bit dsPIC33 core compatible
- Non-paged linear Data/Flash 24-bit addressing space

- 16-bit/32-bit instructions for optimized code size and performance

+ 32-bit Wide Data Paths

+ Single and Double Precision Floating-Point Unit (FPU) Coprocessor

« 2 Kbyte Instruction Cache

+ Sixteen 32-bit Working Registers

+ Dual 72-bit Accumulators Supporting 32-bit and 16-bit Fixed-Point DSP Operations

+ Eight Level Deep Working Register Contexts

+ Eight Level Deep Accumulator Register Contexts

+ Eight Level Deep Floating Point Register Contexts

Memory Features

+ Up to 128 Kbytes of Program Flash Memory:

10,000 erase/write cycle endurance

20 years minimum data retention
Self-programmable under software control
Programmable code protection

Flash Error Correcting Code (ECC)
Programmable OTP regions

Entire Flash OTP by ICSP™ write inhibit

64 x128-bit OTP area

+ Up to 16 Kbytes of RAM Memory:

6-channel hardware Direct Memory Access (DMA) module
RAM Error Correcting Code (ECC)
RAM Memory Built-In Self-Test (MBIST)

® MICROCHIP

Controller Features

High-Current Sink/Source Capable 1/0s

Programmable Weak Pull-Up and Pull-Down Resistors

Programmable Open-Drain Outputs

Edge or Level Change Notification Interrupt on I/0 pins

Peripheral Pin Select (PPS) Remappable Pins to Reduce Board Layout Complexity
Multiple Interrupt Vectors with Individual Programmable Priority

Five External Interrupt Pins

Selectable Oscillator Options Including:
- 8 MHz, 1% at 0°C-85°C Internal Fast RC (FRC) oscillator

- 8 MHz, 2% Internal Backup Fast RC (BFRC) oscillator with 32 kHz divided output
- High-speed crystal resonator oscillator or external clock
Two 1.6 GHz PLLs for Peripheral which can be clocked from the FRC or a Crystal Oscillator
Reference Clock Output (REFO)
Low-Power Modes (Sleep and Idle)
Power-On Reset and Brown-Out Reset

High-Speed PWM

Four PWM Generators (Four Pairs, Eight Outputs)
Up to 2.5 ns PWM Resolution
Dead Time for Rising and Falling Edges
Dead-Time Compensation Supports Lower Speed Operation
PWM Support for:
- BLDC, PMSM, ACIM, SRM and Stepper Motors
Fault and Current Limit Inputs
Flexible Trigger Configuration for ADC Triggering

@ MICROCHIP

Two High-Speed Analog-to-Digital Converters

+ 12-bit Resolution
* Up to 40 Msps Conversion Rate
+ Upto 22 Analog Input Pins
+ 20 Settings Channels. Each Channel:
- Supports Discrete Configuration
- Can be assigned to any analog input (I/0 pin or internal signal)
- Can be set to a different sampling time
- Can be configured as single-ended or differential
- Conversion result can be formatted as unsigned or signed
- Conversion result can be left-aligned (fraction format)
- Has a separate 32-bit conversion result register
+ Supports Four Sampling modes:
- Oversampling of multiple samples
- Integration of multiple samples
- Window (multiple samples accumulated when the gate signal is active)
- Single Conversion

- All channels have a digital comparator to detect when the conversion result is less than, greater than, in
bounds or out of bounds for the configurable thresholds

- Three channels support second result accumulator to implement second order filters

+ Band Gap Reference and Temperature Sensor Diode Inputs

Other Analog Features

+ Three 5nS Analog Comparators with 12-bit Pulse Density Modulation DACs:
- Input multiplexing
- Slope compensation
- One DAC output buffer
+ Three Rail-to-Rail 100 MHz Operational Amplifiers with:
- 100 V/pS slew rate
- 1 mV offset (typical)
- User calibration of input offset voltage
+ Four 10 pA Constant Sources + Four Programmable Sources

@ MICROCHIP

Peripheral Features

+ Three 4-Wire SPI Modules:
- 4-byte FIFO
- Variable data width
- 1S mode
+ Two I2C modules:
Independent Host and Client Logic
Supports 100 kHz, 400 kHz and 1 MHz Bus Specifications
7-bit and 10-bit Device Addresses
Supports IPMI Standard, SMBus and PMBus

+ Three Protocol UARTs with 8-Character RX/TX FIFOs and Automated Handling Support for:
- LIN2.2

- Digital Multiplex 512 (DMX)
- Smart Card (ISO 7816)
- IrDA’

« Two Single-Edge Nibble Transmission (SENT) Modules
+ One Dedicated 32-bit Timer/Counter

+ Four Single Output Capture/Compare/PWM/Timer (SCCP) Modules:
- Flexible configuration as PWM, input capture, output compare or timers

- Two 16-bit timers or one 32-bit timer in each module
- Single PWM output pin
* One Quadrature Encoder Interface (QEI):
- Four inputs: Phase A, Phase B, Home, Index
« Four Configurable Logic Cells (CLC) with Internal Connections to Select Peripherals and PPS
+ Bidirectional Serial Synchronous (BiSS) Encoder Interface with up to Four Client Encoders Support

+ Peripheral Trigger Generator (PTG):
10 input trigger sources from other peripheral modules

5 output triggers to other peripheral modules

4 individual interrupt request signals

CPU independent state machine-based instruction sequencer

Security Module

* Secure Boot

+ Secure Debug

* Immutable Root of Trust (IRT)

+ Code Protect

+ ICSP Program/Erase Disable (Entire Flash OTP by ICSP Write Inhibit)
* Firmware IP Protection

* Flash Write Protection

@ MICROCHIP

Safety Features

+ Windowed Watchdog Timer (WDT)

+ Deadman Timer (DMT)

* Four I/0 Integrity Monitors (I0IM)

+ Fail-Safe Clock Monitor (FSCM) with Automatic Switchover to Backup Clock Source with:
- Programmable over-frequency/under-frequency thresholds

+ Flash Error Correcting Code (NVM ECC)

* RAM Error Correcting Code (RAM ECC)

+ RAM Memory Built-In Self-Test (MBIST)

+ 32-bit Cyclic Redundancy Check (CRC) Module

+ Entire Flash OTP by ICSP™ Write Inhibit

+ Capless Internal Voltage Regulator

+ Virtual PPS Pins for Redundancy and Monitoring

+ Temperature Sensor Diode

FuncBonal Safety
Functional Safety Readiness - I1SO 26262/IEC 61508/IEC 60730

To learn about the Functional Safety Readiness of this device family and various Functional Safety standards an
application can target using this device family, visit www.microchip.com/dsPIC33-Functional-Safety

Quali}cabon

AEC-Q100 REV H:
* Grade 1:-40°C to +125°C

* Grade 0: -40°C to +150°C Planned

Programming and Debug Interfaces

+ Three Programming and Debugging Interfaces:

- Two-wire ICSP™ interface with non-intrusive access and real-time data exchange with application
+ Five Program Addresses and Five Full-Featured Breakpoints
+ |EEE Standard 1149.2 Compatible (JTAG) Boundary Scan

Targeted ApplicaBons

* Power Factor Correction (PFC):
- Interleaved PFC

- Critical Conduction PFC
- Bridgeless PFC

+ DC/DC Converters:
- Buck, Boost, Forward, Flyback, Push-Pull

- Half/Full-Bridge
- Phase-Shift Full-Bridge

@ MICROCHIP

- Resonant Converters
+ DC/AC:
- Half/Full-Bridge Inverter
- Resonant Inverter
* Motor Control:
- BLDC
- PMSM
- SR
- ACIM
« Advanced Sensor Interfacing
+ High-Performance Embedded Control
+ Safety-Critical Designs
+ Digital Lighting

@ MICROCHIP

dsPIC33AK128MC106 Product Family

The dsPIC33A family names, pin counts, memory sizes and peripheral availability of each device are listed in
Table 1, and their pinout diagrams are included as well.

@ MICROCHIP

d401L/N40A
d401/N40A
N4OA
N4OA/dOSS
d401/N40A
d401/N4OA
N4OA
N4OA/dOSS
d401/N40A
d401/N40A
N4OA
N4OA/dOSS

W OV VW VL VW VWV ©V ©V VvV VW OV v

(sppuueyd) NG

NN N AN NN NN NN NN

m M M M M M M M M M M oM

sOvaug-zi

m M M M M M M M M M MO ™M

siojesedwo)

N M M M N M N MmO N ;N ;O m

ssadwy do

N AN N AN NN NN NN NN

mmmmmmmmmmmm

5> RERIRAD IR AR A AR AR 20 SR R

Q‘V?VQ’VQ‘VQ‘?Q‘Q‘

= — e . N

—

IS\ ™ ™ ™M m m m m ;o o m 0nm

- — | —

—

@
8l
Sl
Ll
[44
8l
1"
Ll
@
8l
1
Ll

(sinduj Sojeuy [euss1xg) sOAV NG-T| OML

[£9%
[£%4
[£%%
(4574
(474
(4574
(474
[£%4
[£%%
[£%4
[£%%
(4574

(sdjed 101eJ2UDD) INMd UONN|OSAY-YSIH

6v/6v
SE/S€E
Le/Lc
6L/61
6v/6v
SE/SE
Le/Le
6L/61
6v/6v
SE/SE
Le/Lc
6L/61

Sdd/0/1 asodind |esauan

9l
9l
9l
9l
9l
9l
9l
9l

(s234q)) Aioway eleQ
(s93Aqgy) Auows weasoud

8¢l
8¢l
8¢l
8¢l
9
9
9
9
[43
[43
[43
[43

Allwed 90TINSTZINVEEDIASP “T dlqeL

¥9
8v
9¢
8¢
9
87
9¢
8¢
9
8v
9¢
8¢

*JAWIN NG-ZE X | 40 SIdWIY 3g-9] X Z ‘@4edwod Indino ‘aunyded 1ndul ‘Indino suo yum WA e se paundiyyuod aq ued dJJs L

330N
90LIONBZINVEEDIDSP
SOLDINBZINVEEDIdSP
E0LDINBZINVEEDIASP
COLDNBZINVEEDIDSP
90 LDINYINVEEDIASP
SOLONYINVEEDIASP
€0 LDINYIONVEEDIASP
COLIONPINVEEDISP
90 LIOINCENVEEDISP
SOLDNZENVEEDIASP
E0LIINCENVEEDICSP
COLDINZENVEEDICSP

PNpoId

@ MICROCHIP

Pin Diagrams

Figure 1. 28-Pin SSOP
|:| 5V Tolerant

RAO [|1 ~ 28] MCLR
RA1[]2 27 1Vop
AVss [[3 26[] Vss
AVpp [4 ~ 25] RD3
Ra2[]5 T 24[JRD2
RA3[|6 2 23[JRD1
RA4[]7 ;? 22|71 RDO
ves[]8 & 21[JRc4
voo[]o & 20[dRc3
RBO[]10 @ 19[JRC2
rRe1¥]11 18] Vpp
RB2[]12 17] Vss
RB3 [13 16 [7] RC1
RB4 [|14 15] RCO®
Table 2. 28-Pin SSOP Complete Pin Func8on Descrip&ons(®3)
hin " Rincion 1 hin_ Function
1 PGD2/AD2AN6/CMP3C/ISRC2/IBIAS2/RP1/SDA2/IOMF2/RA0 15 OSCO/CLKO/RP33/I0MF5/RCO()
2 PGC2/DACOUT1/AD1AN7/AD2AN3/CMP1D/CMP2D/ 16 OSCI/CLKI/RP34/I0MF6/RC1
CMP3D/RP2/SCL2/RA1
3 AVg 17 Vs
4 AVpp 18 Vpp
5 OA10UT/ADTANO/CMP1A/RP3/RA2 19 PGC3/RP35/PWM4H/RC2
6 OA1IN-/ADTANN1T/AD2ANO/RP4/RA3 20 PGD3/RP36/PWM3H/IOMDO/RC3
7 OA1IN+/ADTAN1/CMP1B/RP5/RA4 21 RP37/PWM3L/IOMD1/RC4
8 Vg 22 RP49/PWM2H/IOMD2/RDO
9 Vpp 23 TCK/RP50/PWM2L/IOMD3/RD1
10 OA20UT/AD2AN1/CMP2A/RP17/INTO/RBO 24 TDO/RP51/PWM1H/IOMD4/RD2
11 TMS/OA2IN-/AD1AN4/AD2ANN1/RP18/RB1(4 25 TDI/RP52/PWM1L/IOMD5/RD3
12 OA2IN+/AD2AN4/CMP2B/RP19/RB2 26 Vg
13 PGD1/AD1AN5/CMP1C/ISRCO/IBIASO/RP20/SDA1/RB3 27 Voo
14 PGC1/AN2ANS5/CMP2C/ISRC1/IBIAS1/RP21/SCL1/RB4 28 MCIR
Note:

1. RPnrepresents remappable peripheral functions.
2. This pin has 8x drive strength.
3. Unless otherwise stated, pins are 4x drive strength. Refer to Electrical Specifications for current drive strength details.

4. A pull-up resistor is connected to this pin when device is erased (JTAG enabled) and during programming.

@ MICROCHIP

Pin Diagrams

Figure 2. 28-Pin VQFN
|:| 5V Tolerant

1

o 848388538

= > > X r ¥

o LILILICICICILC]

28 27 26 25 24 23 22
RAO| |1 21[|rRca
RA1[|2 20[|RC3
AVgs| |3 19| re2
AVop j4 dsPIC33AKXXXMC102 18D Voo
RA2 | |5 17[| Vss
RA3| |6 16[_|RC1
RA4[|7 15[_|Rc0®@

8 9 10 11 12 13 14

N B N O A

8 8 8% 3 3

> > x E X x

Table 3. 28-Pin VQFN Complete Pin Func8on DescripBons(t3)

I O - S
PGD2/AD2AN6/CMP3C/ISRC2/IBIAS2/RP1/SDA2/IOMF2/RA0. 15 OSCO/CLKO/RP33/I0MF5/RC0(2
2 PGC2/DACOUT1/AD1AN7/AD2AN3/CMP1D/CMP2D/ 16 OSCI/CLKI/RP34/I0MF6/RC1
CMP3D/RP2/SCL2/RA1
3 AVss 17 Vss
4 AVpp 18 Vpp
5 OA10UT/AD1ANO/CMP1A/RP3/RA2 19 PGC3/RP35/PWM4H/RC2
6 OA1IN-/AD1ANN1/AD2ANO/RP4/RA3 20 PGD3/RP36/PWM3H/IOMDO/RC3
7 OA1IN+/AD1AN1/CMP1B/RP5/RA4 21 RP37/PWM3L/IOMD1/RC4
8 Vss 22 RP49/PWM2H/IOMD2/RDO0
9 Vpp 23 TCK/RP50/PWM2L/IOMD3/RD1
10 OA20UT/AD2AN1/CMP2A/RP17/INTO/RBO 24 TDO/RP51/PWM1H/IOMD4/RD2
11 TMS/OA2IN-/AD1AN4/AD2ANN1/RP18/RB1(4) 25 TDI/RP52/PWM1L/IOMD5/RD3
12 OA2IN+/AD2AN4/CMP2B/RP19/RB2 26 Vss
13 PGD1/AD1AN5/CMP1C/ISRCO/IBIASO/RP20/SDA1/RB3 27 Vpp
14 PGC1/AD2AN5/CMP2C/ISRC1/IBIAS1/RP21/SCL1/RB4 28 MCLR
Note:

1. RPnrepresents remappable peripheral functions.
2. This pin has 8x drive strength.
3. Unless otherwise stated, pins are 4x drive strength. Refer to Electrical Specifications for current drive strength details.

4. A pull-up resistor is connected to this pin when device is erased (JTAG enabled) and during programming.

10

@ MICROCHIP

Pin Diagrams

Figure 3. 36-Pin VQFN
|:| 5V Tolerant

or

\a 53 523858
S @ e > > x r o
LI I J T I
36 35 34 33 32 31 30 29 28

RAO| |1 27[| Rca
RA1[|2 26 | Re3
Ass| |3 25| Res

AVpp | |4 24[| RC2
raz[|5 dsPIC3BAKXXXMC103 5[vy,

RA3| |6 22[| Vss
RA4| |7 21[| rRet

RA5| |8 20[| Rco®
RAG]Q 19[RB7
10 11 12 13 14 15 16 17 18
N I
v o a o £ N o < ©
m n O m ~ m om [a1] om
¥r > > x '&3 ¥ ¢ © o

Table 4. 36-Pin VQFN Complete Pin Funcon Descrip8ons(%-3)

I . .
PGD2/AD2AN6/CMP3C/ISRC2/IBIAS2/RP1/SDA2/IOMF2/RA0 19 AD2ANN2/AD2AN8/RP24/IOMFO/RB7
2 PGC2/DACOUT1/AD1AN7/AD2AN3/CMP1D/CMP2D/ 20 OSCO/CLKO/RP33/I0MF5/RC0®@
CMP3D/RP2/SCL2/RA1
3 AVss 21 OSCI/CLKI/RP34/IOMF6/RC1
4 AVpp 22 Vs
5 OA1TOUT/AD1ANO/CMP1A/RP3/RA2 23 Vpp
6 OA1IN-/AD1ANN1/AD2ANO/RP4/RA3 24 PGC3/RP35/PWM4H/RC2
7 OA1IN+/AD1AN1/CMP1B/RP5/RA4 25 RP38/PWMA4L/RC5
8 OA30UT/AD1AN3/CMP3A/RP6/RAS 26 PGD3/RP36/PWM3H/IOMDO/RC3
9 OA3IN-/AD1AN2/RP7/RA6 27 RP37/PWM3L/IOMD1/RC4
10 OA3IN+/AD2AN2/CMP3B/RP22/RB5 28 RP49/PWM2H/IOMD2/RDO0
11 Vss 29 TCK/RP50/PWM2L/IOMD3/RD1
12 Vpp 30 TDO/RP51/PWM1H/IOMD4/RD2
13 OA20UT/AD2AN1/CMP2A/RP17/INTO/RBO 31 TDI/RP52/PWM1L/IOMD5/RD3
14 TMS/OA2IN-/AD1AN4/AD2ANN1/RP18/RB1(4) 32 Vss
15 OA2IN+/AD2AN4/CMP2B/RP19/RB2 33 Vpp
16 PGD1/AD1AN5/CMP1C/ISRCO/IBIASO/RP20/SDA1/RB3 34 RP53/PCI22/RD4
17 PGC1/AD2AN5/CMP2C/ISRC1/IBIAS1/RP21/SCL1/RB4 35 RP60/RD11
18 AD1ANN2/AD1AN8/RP23/RB6 36 MCLR
Notes:

1. RPnrepresents remappable peripheral functions.
2. This pin has 8x drive strength.
3. Unless otherwise stated, pins are 4x drive strength. Refer to Electrical Specifications for current drive strength details.

4. A pull-up resistor is connected to this pin when device is erased (JTAG enabled) and during programming.

11

@ MICROCHIP

Pin Diagrams

Figure 4. 48-Pin VQFN, TQFP

|:| 5V Tolerant

v
03 2328588885838
= X >>roweeeeoowrKo
I o o o B
48 47 46 45 44 43 42 41 40 39 38 37
RAO | |1 36 [| Voo
RA7 []2 35 | Vss
RA1[|3 34 [[] RC4
RAS|[|4 33| RC3
RA9|[|5 32[]RC5
AVss| |6 31[] rRC2
AVpp | 17 dsPIC33AKXXXMC105 30 [| Vop
RA2 | |8 29| |Vss
RA3 []9 28 [[| RC1
RA4 [] 10 27 [T RCO®@
RAS [] 11 26 [|RC7
RA6 [] 12 25| RC6
13 14 15 16 17 18 19 20 21 22 23 24
CICIC I I eI
B 8833883335
r > > g ¥ > >roe oo
Table 5. 48-Pin VQFN, TQFP Complete Pin Func8on DescripSons(-3)
I . . S
PGD2/AD2AN6/CMP3C/ISRC2/IBIAS2/RP1/SDA2/IOMF2/RA0. 25 RP39/RC6
2 AD1ANG6/RP8/IOMF1/RA7 26 RP40/RC7
3 PGC2/DACOUT1/AD1AN7/AD2AN3/CMP1D/CMP2D/ 27 OSCO/CLKO/RP33/I0OMF5/RCO2)
CMP3D/RP2/SCL2/RA1
4 AD2ANY/ISRC3/IBIAS3/RP9/RA8 28 OSCI/CLKI/RP34/IOMF6/RC1
5 AD1ANN3/AD1AN9/RP10/RA9 29 Vss
6 AVSS 30 VDD
7 AVpp 31 PGC3/RP35/PWM4H/RC2
8 OATOUT/AD1ANO/CMP1A/RP3/RA2 32 RP38/PWM4L/RC5
9 OATIN-/AD1ANN1/AD2ANO/RP4/RA3 33 PGD3/RP36/PWM3H/IOMDO/RC3
10 OA1IN+/AD1AN1/CMP1B/RP5/RA4 34 RP37/PWM3L/IOMD1/RC4
11 OA30UT/AD1AN3/CMP3A/RP6/RA5 35 Vss
12 OA3IN-/AD1AN2/RP7/RA6 36 Vpp
13 OA3IN+/AD2AN2/CMP3B/RP22/RB5 37 RP49/PWM2H/IOMD2/RDO
14 Vss 38 TCK/RP50/PWM2L/IOMD3/RD1
15 Vpp 39 TDO/RP51/PWM1H/IOMD4/RD2
16 OA20UT/AD2AN1/CMP2A/RP17/INTO/RBO 40 TDI/RP52/PWM1L/IOMD5/RD3
17 TMS/OA2IN-/AD1AN4/AD2ANN1/RP18/RB1(4) 41 RP54/ASCL1/RD5
18 OA2IN+/AD2AN4/CMP2B/RP19/RB2 42 RP55/ASDA1/RD6
19 Vss 43 RP56/ASCL2/IOMD7/IOMF4/RD7
20 Vpp 44 RP57/ASDA2/IOMD6/IOMF3/RD8
21 PGD1/AN1P5/CMP1C/ISRCO/IBIASO/RP20/SDA1/RB3 45 Vs
22 PGC1/AD2AN5/CMP2C/ISRC1/IBIAS1/RP21/SCL1/RB4 46 Vpp
23 ADTANN2/AD1ANS/RP23/RB6 47 RP53/PCI22/RD4
24 AD2ANN2/AD2ANS/RP24/IOMFO/RB7 48 MCLR

@ MICROCHIP

12

........... continued
[Pn | Fucon | Pn | _________ Fndon |
Note:

1. RPnrepresents remappable peripheral functions.
2. This pin has 8x drive strength.

3. Unless otherwise stated, pins are 4x drive strength. Refer to Electrical Specifications for current drive strength details.

A pull-up resistor is connected to this pin when device is erased (JTAG enabled) and during programming.

- 13
@ MICROCHIP

Pin Diagrams

Figure 5. 64-Pin VQFN, TQFP

\:| 5V Tolerant

X o o~
2553 25485853885858
S rXre >S>Srrerewowowow ¥ X o
OO AAAAE AR
(0382583358833 85382)
RAO [|1 48 [|Vpp
RA7 [|2 47 [] Vss
RA1[|3 46] RC11
Ves [4 45 [T RC10
Voo L5 44 [T] RC4
RA11[|6 43 []RC3
RA8 [|7 42] RC5
RA9 [|8 41 []RC2
RA10[]9 dsPIC33AKXXXMC106 40 [] Vpp
AVgs [] 10 39 [|Vss
AVpp [11 38] RC1
RA2 [|12 37 [] RCO®@
RA3 [|13 36 [] RC7
RA4 [14 35] RC6
RA5 [| 15 34 [RCO®
RA6 | 16 33 []rcs®
~ oo ©

L 83T 3838833858
n:>>ac5crn:n:>>n:n:mn:5§
¥ 4
Table 6. 64-Pin VQFN, TQFP Complete Pin Func8on Descrip8ons(1-3)
T . A T
PGD2/AD2AN6/CMP3C/ISRC2/IBIAS2/RP1/SDA2/IOMF2/RA0 33 RP41/I0OMD11/IOMF11/PCI20/RC8®)
2 AD1AN6/RP8/IOMF1/RA7 34 RP42/I0MD10/SDO2/IOMF10/PCI19/RCO?)
3 PGC2/DACOUT1/AD1AN7/AD2AN3/CMP1D/CMP2D/ 35 RP39/RC6
CMP3D/RP2/SCL2/RA1
4 Ve 36 RP40/RC7
5 Vpp 37 OSCO/CLKO/RP33/IOMF5/RCO®)
6 AD1AN10/RP12/RAT1 38 OSCI/CLKI/RP34/IOMF6/RC1
7 AD2ANO/ISRC3/IBIAS3/RP9/RAS 39 Ve
8 AD1ANN3/AD1AN9/RP10/RA9 40 Vpp
9 AD2ANN3/AD2AN7/RP11/RA10 41 PGC3/RP35/PWM4H/RC2
10 AVss 42 RP38/PWMA4L/RC5
11 AVpp 43 PGD3/RP36/PWM3H/IOMDO/RC3
12 OATOUT/ADTANO/CMP1A/RP3/RA2 44 RP37/PWM3L/IOMD1/RC4
13 OATIN-/AD1ANN1/AD2ANO/RP4/RA3 45 RP43/IOMD9/IOMF9/RC10
14 OATIN+/AD1AN1/CMP1B/RP5/RA4 46 RP44/IOMD8/IOMF8/RC11
15 OA30UT/AD1AN3/CMP3A/RP6/RAS 47 Vs
16 OA3IN-/AD1AN2/RP7/RA6 48 Vpp
17 OA3IN+/AD2AN2/CMP3B/RP22/RB5 49 RP58/IOMF7/RD9
18 Vs 50 RP59/RD10
19 Vpp 51 RP49/PWM2H/IOMD2/RDO
20 OA20UT/AD2AN1/CMP2A/RP17/INTO/RBO 52 TCK/RP50/PWM2L/IOMD3/RD1

14

@ MICROCHIP

........... continued

[pn [Fncion [Pin| Function
21 TMS/OA2IN-/AD1AN4/AD2ANN1/RP18/RB1(4) 53 TDO/RP51/PWM1H/IOMD4/RD2
22 OA2IN+/AD2AN4/CMP2B/RP19/RB2 54 TDI/RP52/PWM1L/IOMD5/RD3
23 AD1AN11/RP25/RB8 55 RP54/ASCL1/RD5
24 AD2AN10/RP26/RB9 56 RP55/ASDA1/RD6
25 Vss 57 RP56/ASCL2/IOMD7/IOMF4/RD7
26 Vpp 58 RP57/ASDA2/IOMD6/IOMF3/RD8
27 PGD1/AD1AN5/CMP1C/ISRCO/IBIASO/RP20/SDA1/RB3 59 Vss
28 PGC1/AD2AN5/CMP2C/ISRC1/IBIAS1/RP21/SCL1/RB4 60 Vpp
29 AD1ANN2/AD1AN8/RP23/RB6 61 RP53/PCI22/RD4
30 AD2ANN2/AD2AN8&/RP24/I0OMFO/RB7 62 RP60/RD11
31 RP27/SCK2/RB10(2) 63 RP61/PCI21/RD12
32 RP28/SDI2/RB11 64 MCLR

Note:

1. RPnrepresents remappable peripheral functions.
2. This pin has 8x drive strength.
3. Unless otherwise stated, pins are 4x drive strength. Refer to Electrical Specifications for current drive strength details.

4. A pull-up resistor is connected to this pin when device is erased (JTAG enabled) and during programming.

@ MICROCHIP

Pinout 1/0 Descripeons

Table 7. Pinout I/0 DescripBons

Buffer
Type Type Description

AN1TPO - ANTP11

ANTN1T - ANTN3 |
AN2PO - AN2P10 |
AN2NT - AN2N3 |

ADTRG31 |
CLKI |

CLKO)

0Osdl

0SCO I/0

REFCLKI |
REFCLKO O
INTO |
INT1 |
INT2 |
INT3 |
INT4 |

IOCA[4:0]

IOCB[15:0]
I0CC[15:0]
IOCDI[15:0]
IOCE[15:0]
IOCF[15:0]
IOMDI[n:0] o}
IOMF[n:0] [

QEIA1 [
QEIB1 [
QEINDX1 [
QEIHOM!1 [
QEICMP o)

RAO-RA4 110

Analog
Analog
Analog
Analog

ST
ST/CMOS

ST/CMOS

ST
ST
ST
ST
ST
ST

ST
ST
ST
ST
ST
ST

ST
ST

ST
ST
ST
ST

ST

No
No
No

Yes
No

No

No

No

Yes
Yes
No
Yes
Yes
Yes
Yes

No
No
No
No
No
No

Yes
Yes

Yes
Yes
Yes
Yes
Yes

No

ADC1 positive input channels
ADC1 negative input channels
ADC2 positive input channels
ADC2 negative input channels

ADC Trigger Input 31

External Clock (EC) source input. Always
associated with OSCI pin
function.

Oscillator crystal output. Connects to crystal or
resonator in Crystal Oscillator mode. Optionally
functions as CLKO in RC and EC modes. Always
associated with OSCO pin function.

Oscillator crystal input. ST buffer when configured
in RC mode; CMOS otherwise.

Oscillator crystal output. Connects to crystal or
resonator in Crystal Oscillator mode. Optionally
functions as CLKO in RC and EC modes.
Reference clock input

Reference clock output

External Interrupt O

External Interrupt 1

External Interrupt 2

External Interrupt 3

External Interrupt 4

Interrupt-on-Change input for PORTA
Interrupt-on-Change input for PORTB
Interrupt-on-Change input for PORTC
Interrupt-on-Change input for PORTD
Interrupt-on-Change input for PORTE
Interrupt-on-Change input for PORTF

1/0 Monitor Reference
1/0 Monitor Feedback

QEl Input A1

QEl Input B1

QEl Index 1 input

QEl Home 1 input

QEI comparator output

PORTA is a bidirectional 1/0 port

Legend: CMOS = CMOS compatible input or output; TTL = TTL input buffer; Analog = Analog input; P = Power; ST = Schmitt Trigger input

with CMOS levels; O = Output; | = Input;
PPS = Peripheral Pin Select

Notes:

1. Not all pins are available in all package variants. See the Pin Diagrams section for pin availability.

2. These pins are remappable as well as dedicated.

@ MICROCHIP

16

........... continued

Buffer
Type Type Description

RBO-RB15
RCO-RC15 110
RDO-RD15 1/0
REO-RE15 110
RFO-RF15 1/0
T1CK |

U1CTS
UTRTS
U1TRX

U1TX

UTDSR
U1DTR

U2CTS
U2RTS
U2RX
u2TXx
U2DSR
U2DTR

o -0 — 0 —

O —-—0 — 0 —

U3CTS
U3RTS
U3RX
U3TX
U3DSR
U3DTR

O —-— 0 — 0O —

SENT1 |
SENT2

SENT10UT
SENT20UT

PTGTRG24
PTGTRG25

TCKI1-TCKI9 |
ICM1-ICM9 I
OCFA-OCFD |
OCM1-OCM9]

SCK1 I/0
SDI1 |

SDO1 ()
SST 1/0

O O OO0 —

ST
ST
ST
ST
ST
ST

ST

ST

ST

ST

ST

ST

ST

ST

ST
ST

ST
ST
ST

ST
ST

ST

No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes

Yes
Yes

Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes

PORTB is a bidirectional I/0 port
PORTC is a bidirectional I/0 port
PORTD is a bidirectional I/0 port
PORTE is a bidirectional I/0 port
PORTF is a bidirectional I/0 port
Timer1 external clock input
UART1 Clear-to-Send

UART1 Request-to-Send

UART1 receive

UART1 transmit

UART1 Data-Set-Ready

UART1 Data-Terminal-Ready

UART2 Clear-to-Send

UART2 Request-to-Send
UART2 receive

UART2 transmit

UART2 Data-Set-Ready
UART2 Data-Terminal-Ready

UART3 Clear-to-Send

UART3 Request-to-Send
UART3 receive

UART3 transmit

UART3 Data-Set-Ready
UART3 Data-Terminal-Ready

SENT1 input
SENT2 input
SENT1 output
SENT2 output

PTG Trigger Output 24
PTG Trigger Output 25

SCCP Timer Inputs 1 through 9
SCCP Capture Inputs 1 through 9
SCCP Fault Inputs A through D
SCCP Compare Outputs 1 through 9

Synchronous serial clock I/0O for SPI1

SPI1 data in

SPI1 data out

SPI1 Client synchronization or frame pulse 1/0

Legend: CMOS = CMOS compatible input or output; TTL = TTL input buffer; Analog = Analog input; P = Power; ST = Schmitt Trigger input

with CMOS levels; O = Output; | = Input;
PPS = Peripheral Pin Select

Notes:

1. Not all pins are available in all package variants. See the Pin Diagrams section for pin availability.

2. These pins are remappable as well as dedicated.

@ MICROCHIP

17

........... continued

Buffer
Type Type Description
SCK2

Synchronous serial clock I/0O for SPI2

SDI2 I ST Yes SPI2 data in

SDO2 0] — Yes SPI2 data out

SS2 I/0 ST Yes SPI2 Client synchronization or frame pulse I/0

SCK3 I/0 ST Yes Synchronous serial clock 1/0 for SPI3

SDI3 I ST Yes SPI3 data in

SDO3 (0] — Yes SPI3 data out

SS3 1/0 ST Yes SPI3 Client synchronization or frame pulse I/0

SCL1 110 ST No Synchronous serial clock 1/0 for 12C1

SDA1 I/0 ST No Synchronous serial data I/0 for 12C1

ASCL1 110 ST No Alternate synchronous serial clock I/0 for 12C1

ASDA1 1/0 ST No Alternate synchronous serial data I/0 for 12C1

SCL2 I/0 ST No Synchronous serial clock 1/0 for 12C2

SDA2 I/0 ST No Synchronous serial data I/0 for 12C2

ASCL2 I/0 ST No Alternate synchronous serial clock 1/0 for 12C2

ASDA2 I/0 ST No Alternate synchronous serial data I/0 for 12C2

BISS1SL | ST Yes BiSS1 Return Input

BISS1GS I ST Yes BiSS1 Get Sense

BISSTMO o) ST Yes BiSS1 Output

BISSTMA o) ST Yes BiSS1 Clock

T™MS | ST No JTAG Test mode select pin

TCK | ST No JTAG test clock input pin

TDI | ST No JTAG test data input pin

TDO O — No JTAG test data output pin

PCI8-PCI18 | ST Yes PWM Inputs 8 through 18

PCI19-PCI22 | ST No PWM Inputs 19 through 22

PWMEA-PWMEF 0 — Yes PWM Event Outputs A through F

PWM1L-PWM4L(2) 0 — Yes PWM Low Outputs 1 through 4

PWM1H-PWM4H) ¢} — Yes PWM High Outputs 1 through 4

CLCINA-CLCIND | ST Yes CLC Inputs A through D

CLC10OUT-CLC8OUT O — Yes CLC Outputs 1 through 8

CMP1 (@) — Yes Comparator 1 output

CMP1A-CMP3A | Analog No Comparator Channels 1A through 3A inputs

CMP1B-CMP3B | Analog No Comparator Channels 1B through 3B inputs

CMP1C-CMP3C | Analog Comparator Channels 1C through 3C inputs

CMP1D-CMP3D | Analog No Comparator Channels 1D through 3D inputs
No

DACOUT1 e} — No DAC1 output voltage

Legend: CMOS = CMOS compatible input or output; TTL = TTL input buffer; Analog = Analog input; P = Power; ST = Schmitt Trigger input
with CMOS levels; O = Output; | = Input;
PPS = Peripheral Pin Select

Notes:
1. Not all pins are available in all package variants. See the Pin Diagrams section for pin availability.

2. These pins are remappable as well as dedicated.

18

@ MICROCHIP

........... continued

Buffer
Type Type Description

IBIAS3, IBIAS2, IBIAST,
IBIASO/ISRC3, ISRC2,
ISRC1, ISRCO

OATIN+
OA1IN-
OAT0UT
OA2IN+
OA2IN-
OA20UT
OA3IN+
OA3IN-
OA30UT

PGD1

PGC1

PGD2

PGC2

PGD3

PGC3

O—-—-0--0 - —

I/0

1/0

1/0

I1/P

)
)

Analog

ST

ST

ST

ST

ST

ST

ST

No

No
No
No
No
No
No
No
No
No

No

No

No

No

No

No

No

No

No

No
No

Constant-Current Outputs 0 through 3

Op Amp 1+ input

Op Amp 1-input

Op Amp 1 output

Op Amp 2+ input

Op Amp 2- input

Op Amp 2 output

Op Amp 3+ input

Op Amp 3- input

Op Amp 3 output

Data I/0 pin for Programming/ Debugging
Communication Channel 1

Clock input pin for Programming/ Debugging
Communication Channel 1

Data I/0 pin for Programming/ Debugging
Communication Channel 2

Clock input pin for Programming/ Debugging
Communication Channel 2

Data I/0 pin for Programming/ Debugging
Communication Channel 3

Clock input pin for Programming/ Debugging
Communication
Channel 3

Master Clear (Reset) input. This pin is an active-
low Reset to the device.

Positive supply for analog modules. This pin must
be connected at all times.

Ground reference for analog modules. This pin
must be connected at all times.

Positive supply for peripheral logic and I/0 pins

Ground reference for logic and I/0 pins

Legend: CMOS = CMOS compatible input or output; TTL = TTL input buffer; Analog = Analog input; P = Power; ST = Schmitt Trigger input
with CMOS levels; O = Output; | = Input;

PPS = Peripheral Pin Select

Notes:

1. Not all pins are available in all package variants. See the Pin Diagrams section for pin availability.

2. These pins are remappable as well as dedicated.

@ MICROCHIP

19

To Our Valued Customers

It is our intention to provide our valued customers with the best documentation possible to ensure successful
use of your Microchip products. To this end, we will continue to improve our publications to better suit your
needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing
Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:
www.microchip.com/

You can determine the version of a data sheet by examining its literature number found on the bottom outside
corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is
version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended
workarounds, may exist for current devices. As device/documentation issues become known to us, we will
publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it
applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:
+ Microchip's Worldwide Website; www.microchip.com/
* Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature
number) you are using.

Customer Notification System

Register on our website at www.microchip.com/ to receive the most current information on all of our products.

Terminology Cross Reference

Table 8 provides updated terminology for deprecated naming conventions. Register and bit names remain
unchanged, however, descriptions and usage guidance may have been updated.

Table 8. Terminology Cross References

CPU Master Initiator
DMA Master Initiator
12C Master Host
Slave Client
SPI Master Host
Slave Client
UART, LIN Mode Master Commander
Slave Responder
PWM Master Host
Slave Client

20

@ MICROCHIP

Table of Contents

dSPIC33AKT28MCT06 ProdUCE FAMIIY..ccoeiieiieieit ettt sttt st sttt bbb bbb eae s s 7
PN DIAZIAIMIS. e ettt sttt ettt st s e be s ae et e bt eatea e e b e e b e s b e b et s ae e eh e ehe e se e e Rt e ae e sh e b et b e b e et e st e b e eae s benresreens 9
PINOUL /0 DESCIIPTIONS. ¢ttt ettt sttt ettt ettt et st e s he s st e b e s bt ebeebeeb e e sb e e bebesaesmnesnesneeseesas 16
TerminOIOZY CrOSS REFEIENCE......cvvirieuiieterteterieie sttt sttt st ettt b e st s e bt sse s bese st esensese e sseserseresessenseseesenersenas 20
T, DEVICE OVEIVIEW..uitiiiiiiiiiiiiict i s e bbb b b sh e bbbt beb s e e e s s b bbb en s on s 27
2. Guidelines for Getting Started with Digital Signal CONrollers........cccoeiieiiieeiineieceeeeeree e 28
2.1. Basic CONNECLION REQUINEMENTS. ...cc.iviirieiiriieierie ettt sttt sttt et er et sbe bbbt sresn e st e st esnene e 28
2.2, DECOUPINEG CAPACITOIS..cuiirieireeuirieiertrieirtee sttt e st tesesteb e te b st ebesesbe bt sbebeshebeseebe st shesesese e ebestesentsbeseseesenessenens 28
2.3, MaASEEE ClEAT (IMICLR) PiNluuvtiveieteeeeeeeeetieeeeeeeteeeeeeesteeesseesseeeestessesaeessessesseenstaseesesseensessessesssessesssessesseessessessen 29
2.4, TCSP PiNSuiiitiiiieiteteetetee ettt st ettt ea sttt et et sh et bt b st b sttt h Rt e b et Rt b bk R e e b bt et bt st e b s b eaeb e enenenhebens 30
2.5, EXEErNal OSCIllAator PiNS.....ciieeiiieieieiiieteieiet ettt ettt sttt eb st s eee bbbt se b ene b nenseneneee 30
2.6. External Oscillator LayOUt GUILANCE.......ccciirerriererieireet ettt s ber et sttt b et bt bbb e bene e 30
2.7. Oscillator Value Conditions 0N DeVICE Start-UP.....cccceecerrererirrererieeniiereeeisieeseeserteesessesesseses e seseesesesseseenes 31
2.8, UNUSEA I/0S... ittt ettt st et b et sttt st st b st b s a b st s b bt s b b seebe st s b e st s b e st st ek e neebebeebestsbebeseebentebenens 31
2.9, BUIK CAP@CITOIS..uiiiieiieeirietereeie sttt ettt et sttt beb bbbt s bbbt st e b et bt st b bt neeb e sb s eaeeb et b e et e ne et et es 31
B CPU ettt bbbt b e A h e Rt Rt SR b e bR e e bt e e b sE bbbtk e eh bt s b eb et sbebesbebenbebenee 32
3.1, ArChiteCtUral OVEIVIEW.....oiiiiiieiiciricicrit et s r e st er ettt et s sn et 32
3.2, CPU ReZiSter DESCIIPLIONS. ...utiuierriiteiieeiteite sttt sttt sttt ettt sre s aaesbe s e ss b b e s ness e b saesat e bt ssneseesreenis 34
3.3, CPU OPEIAtION..c.eiiiiiiiieitittetete et ettt b et st st s be et e sbesh e eaeesaeess e bt b s e b et eae saesatesbesanesesrnennesseas 56
3.4, Prefetch BUFfEr UNIT (PBU). ... ittt ettt tete s st esatestessaessasesnstesassensessseesasesssesssesssesnnsenses 82
3.5. Performance MoNIitor UNIT (PIMU)......oouiiiiiiiiiieceieeeiee et ceiestee st teate st e saveesseesneesaveessesssesssssssssessssssesssessnsesan 93
3.6. Floating-PoiNt UNit (FPU) COPIrOCESSON .c.iiiiirieiririerierieiereetstestesbesbeatssesbebessestesesseesessessensensesessessessessenses 103
4. MeEMOIY OrZaANIZATION...ciiieieeiiiterte ittt e sttt et et sb e st e b s bt e b bt e s b e sbe st e bt e st e s e er s enseseeeneensesreetebesaeens 160
4.1, Device-SPeCific INTOrMATION.cccoeirieirieeete ettt sttt et ebe e b se e e e beseseene s 160
4.2, ArchiteCtural OVEIVIEW....c.ccc ittt ettt ettt st en et en st 163
4.3, REZISTEI SUMIMIAIY ...ctiiiiiitiiteiieie sttt sttt ettt she e s b b st e bt ebe s saesr s esseseeest s s s e b e e teabesaeennesaeesee s sne 166
44, BMX OPEIAtION ...ttt sttt ettt ettt b e e bt et b e bbb bt e se et she bbb e ne e bt eae e s resaeens 181
5. DATA MEIMOIY .ttt e sttt sttt st a e ebe bt e bt sh b st et b b et e bt e st et s st b e she b ennereeneere sre e 186
5.1 Device-SPecific INfOrMAtioN.......ceiciieeireree sttt s et b et neenes 186
5.2, ArChITECTUIal OVEIVIEW.....cuiuiieieeiicie sttt sttt ettt et sttt be s bt sa bt bese e b ebeseebenbeb e e bebenaene 186
5.3, REEISTEI SUIMIMAIY ..ciiioiiiiieieiritcrirte ettt sttt sttt st b sttt bbbt eb e sbesa b es e aesane s enne 188
5. OPEIALION. ittt e e bbb sh e e bbb a et e r e e b eas 208
6. FlaSh Program IMEMIOIY...ccociieuieeeierireritetste ettt sttt sttt sttt b s beb e se et st s b b ebe s s beben b et et sbebesbesesbebeaeebenenseneas 215
6.1. Device-SPecific INfOrMAtION.......cciviiiireereetec ettt et st se e e et e e s beenee 215
6.2, REZISTON SUIMIMIAIY ..iittiiiiiiiiietiit ettt ettt sttt e b ettt st s b be s b e se e sbeebe e sbees b e b et eabesreennesae st enne snne 217
(S T O o =1 =1 1 (o] OSSP PP SRRSO TRTPPOP 245
6.4. APPlICAtiON EXAMPI...ciiiiiiiitiietererestee ettt eb et et es bt sttt s be et s b b st et et e s shesbesbensenneresnens 250
7. CONTIGUIATION BiLS....cuiiieiiieirietesieiieteietsteteetetesteteseete e e s eee st sesbes e esesesesessesenessasessesesseseseesensesensesensrsesesesenssesessenesns 251
7.7, Configuration REGISTEI SUMMAIY.....ccccveiriririeirinieririestsieieeeteseste e ste e ssstesaesesessesestesessesassesenessesensensnsssesenses 253

@ MICROCHIP

21

10.

11.

12.

13.

7.2. Device Calibration and [dentifiCation. ... s et sr e e aaeeaes 270

SECUILY MOAUIE ...ttt sttt stk st b se b se bbb et e seebeseeb e e s b b e bt embebebeebesenbeneanenens 273
8.1, ArcChiteCtUral OVEIVIEW.....c.cuieiiiiiiiiiriictrtet sttt st st s ebe s r et s saens 273
8.2. Security Module RegiSter SUMMIAIY.......ccoeiviriiniririrereiteteetst ettt se e st st e e sse s s s eeebeesessesaesbeees 276
8.3, Flash MEMIOIY MaP....cciieuiteierireirteresiet ettt sttt et b st bbb bbbt sa bbbt ebe e b b et beaeebeae et sensenes 287
B4, DOVICE LOCKING . cutiteuieueiiteerteteest sttt sttt ettt sttt b st be bbb bt s b ebesa b b e s b e st s bebeseeb et ebeneebesebenin 290
8.5. Flash ProteCtion REZIONS. ...c.coviiiieiirieiirieie sttt ettt et et et st bes st e bt se et es e se bbb 294
8.6. Peripheral ACCESS CONTIOIEN (PAC).....ccirieiieiirieinieit sttt er et sttt aeae s b e ene e b beneebe e sbenenaens 296
RESEES...i e e e bbb b s s e b e 304
9.1, ArchiteCtural OVEIVIEW.....c.cuiuiieiiiiiririctic sttt sttt st s ebe s r et s saens 304
0.2, REGISTOE SUIMIMIAIY .ciiitiitiiiiiietiittet et ettt sttt st eb e bbbttt s bt s it e be s bt e saesbeeb e ebess s e b e seasesreennesaeeseenn snne 305
1 T O o =1 =1 1 [0 OO PO P TSRS PT O SOTRTPTOO 307
9.4, APPIICAtiON EXAMPIES...ctiiiiiriiierieteitete ettt ettt s ettt s sttt s ae bbb e st enteb e sbesbesbensentesens 309
0.5, EffECLS Of RESEL. .ttt ettt st sttt bbbt b et st b st 310
INEEITUPT CONTIOIIEI ...ttt sttt e st b e sttt b e bt st e st et en b e st b e b easenbeneaseenesuentesaene 312
10.1. Device-SPecific INFOrMAatioN ..ottt sttt bbb st eb s 312
10.2. ArChit@CTUrAl OVEIVIEW. ...c.eiviiieiirieieiteirte ettt st ettt sttt bbb bbbt bbb et e et et seeb e bberesbenis 317
10.3. INTEITUPT VECEON TADIE..c ittt sttt sbe e bbbt eb et b e st b et b e b s 318
10.4. REZISTET SUMIMIAIY.c.eiiiiiiirieierieieiieitrt ettt r b ettt sh e s bt st r e eb e sae s be b bt b e besae sae e et snennens 321
T0.5. OPBIATION..cceetieiirie ettt ettt sttt et ettt s b et s h e e b e s b b et R bRt ea e eh e st e be e e e b e b e n e re e ees 460
10.6. Interrupt Control and StatuS REGISTEIS.....c..cueieireriiereieeet ettt et b s s ee 461
T0.7. PrIOTIEY ettt et e st bbbt eb e eb e se e sh e st et e R e Rt b e b e a e e e bt et s b e b e nrne 462
T0.8. INTEITUPT SEQUENCE....uiiiitietiiiete ettt sttt sttt et b st b e sttt bbb e e st e bt e besb e besaesnesaeneeneenes 463
10.9. NON-MASKADIE Traps...c.coveuieiirierieterteerertet ettt sttt eb et sttt st sbe st e st e e s e besbesensesessens 465
10.70. INEEITUPE OPEIATIONS. .. eiiuiiiiiierierieet ettt sttt st ebe e st see bt e s bt saeesbe s bt esaesbeebbessesabebesnseanesreens 467
[/0 POrtS WIith EAZE DETECL.....ecuiiieiietiriet ettt ettt st st eb st sttt stk se b b et bt s b seseebenebenens 471
11.7. Device-SPecific INFOrMatioNottt sttt bbb et s ebeeans 471
17.2. ArChit@CTUrAl OVEIVIEW. ...c.ertiiririiieieiteirte ettt sttt ettt sttt st b bbbt b ea bbb bene et e et e eeeb e sbeeesbenis 478
11.3. REZISTET SUMIMIAIY.c.iiiiriiiiieierierteiert ettt e et et b st s e eb e sa e sb et e bt e st b e s besse s et et sneanens 482
T4, OPEIATION..ceeitiieieiecerie ettt et sttt ettt s b et b e b e s bt s bttt e s bbbt sa e st bt e e b e b ne b e e es 543
105, APPIICALIONS. ..ttt ettt ettt b et e b e st st ea e bttt h bt s h e bbb a et b b eaee 553
T8, INEEITUPDTES .. ettt sttt bt s et e h st et b b e e b e e bt s bt eaesa e b s b e st s esbenseanesenesseenes 554
11.7. Operation in POWEr-SaVING MOGES.......cceerierrierireeie ettt st re st ebe et ebesteb et b e s b ense e s b seessesesbenens 554
17.8. EffeCts Of VarioUS RESEES....c.coiiiirieirieiiisie ettt sttt et s bbb bbb b bt e bt be e sbe et ebenee 555
Oscillator and ClOCKING MOQUIE........c..ouiriieiiciireeetee ettt sttt b et s bbbt b se s s asaebe sanes 556
12.1. Device-SPeCific INFOrMAatiON......coeri ittt st sttt et essesens 556
12.2. Archite@CtUral OVEIVIEW.coviivieiiiiiiiiciecct ettt sttt eb e st 557
12.3. REGISTEI SUMIMAIY ..ttt sttt st s e sttt e seesa e eb e b e bt s b e b e sa e besbe s b she st e s e eneebesaeennenseas 560
T2.4. OPEIATION. ..ttt ettt e s bt e sae st e et e b e e b s e s et e b e s st s b she s s e bt et e se e eb e ebbe b e b e b aeat et ene e neeen 604
Direct Memory ACCeSS (DIMA) CONLIOIIEI......coieuiiiieiet ettt ettt st et ess e eneene 629
13.1. Device-SPeCific INFOrMAatioN ..ottt sttt bttt st ebaeans 629
13.2. Archit@CtUral OVEIVIEW......cviuiiiiiiiiiicitcr et sttt er e st 631
13.3. DMA REEZISTEN SUMMIAIY ..ciutiiiirieitiriieieitires et este st et e sbess e b bt e e st shesst et e s b e ebeesbesre e s e s seasesesne e sesseesnesaeen 633
T304, OPEIATION. ittt sttt e e bt sbe st e e sae e b s e b e et e b e s st e b e she e s b e bt et e se e er e eb b e eb e e b ebe st e n e eanesrees 655

@ MICROCHIP

22

14.

15.

16.

17.

18.

19.

13.5. APPIICAtION EXAMPIES....iuiitiiiieiirietiriei ettt ettt sttt b et b sttt b bttt b bt e b e e s bebes e bese b ebeneens 677

13.6. DIMA INEEITUDES ..cctiteierteeeieierte ettt ettt ettt e sa et et s s bbb et eseebesresas snenenssennens 679
13.7. Operation DUring Sleep and 1d1€ MOAES.........coeereerieiiireneree ettt e eb e st ene s sene 682
PWWIML ettt ettt sttt b st b et b et bbb e e bbb e e b bt s b b e be s e b e Rt E ek b et e b e e eb e e e st e bt s et b bt et eb e e ee 683
14.1. Device-SPecific INFOrMAtiON.......ccoi ittt sttt st s bese s e es 6383
14.2. ArChit@CTUral OVEIVIEW. ...c.eitiiririiieieit ettt sttt sttt sttt s b b bbbt be bbb s e bene et e et et b ebessebeeesbenis 685
T4.3. REZISTET SUMIMIAIY .c.ciiiriiiriiierieiiieitrt ettt ettt r e s st et bt bt b st eb e sae s be st b e e b e besae sa et st snesnens 689
TA. A, OPEIATION..c.eetieiiite ettt et sttt ettt s b et b e bt s bt s bttt e R bRt eh e eae st bt e e b b n e re e e es 751
14.5. APPIICAtION EXAMPIES....iiiitiieieiirieiiriett ettt sttt sttt ettt eb sttt b s bbb bbb et e e s b ben e bese st ebeseene 799
T8, INTEITUPDTES .ottt ettt ettt et bbbt b b st s et e bbb e b e bt sb e eb e be b e b e st b eabennesn et enesnesnes 817
14.7. Operation in POWEIr-SaVING MOGES.......coeereerrieririeie ettt st tere st ebe et ebe st b et b e s b esse e s e essesesbenens 818
High-Speed, 12-Bit LOW Lat@NCY ADC.....oouiciirieiiriinie ettt sttt b bt e st et est s bebes e sensenseneenesnesuens 819
15.1. Device-SPeCifiCc INFOrMatiON....c.coir ittt st sttt bbb et e e st eb s enens 819
15.2. Archite@CtUral OVEIVIEW......cviiiiiiiiiiiicitcct ettt sttt eb et 823
15,3, REZISTEI SUMIMAIY ..ttt ettt st st b e e seesr e eb e bbbt e b e b e sa e besbe s b sre st esbeenee b e sreennesenas 825
15,4, ADC OPEIATION. ...ttt sttt sttt r bbbt e bt e s e s b e b e b st e e s ebe e saeeb e e s eanaentebe st e be b eas 864
15.5. APPHCALION EXGMIPIES....iiiiiiiiiieiritee ettt ettt eae ettt bbbt et b e bt sbe e e st eaesaessesbensensenessens 872
15.6. EffECES Of RESET ...ttt et et st sttt b et bbb st eben e 879
High-Speed Analog Comparator with Slope Compensation DAC.........cccevvirinenenientneneniesieeeneeeeressesesseseene 880
16.1. Device-SPeCific INFOrMAtiON ..ottt sttt e st eb e eaens 880
16.2. ArChitECTUrAl OVEIVIEW. ...c.eitiiieiirteieitetrte ettt sttt ettt ettt et st bbbt bbbt bbb e se bt seeb e s abeeesbenis 882
16.3. DAC REGISTEI SUIMIMAIY..ciiiiiriiiiiirierieieietrie et sttt ettt s et s et b e sa e st et e st st s b e b ess et eseeresnesbennesnes 884
164, OPEIATION..c.eiuieiiitieesietete e sttt ettt s bbbt ee e et e bt st s bbb R bbbt ea et e a et e b b e b s ne e ere s 894
16.5. APPICALION EXGMIPIES ...ttt ettt ettt et ettt st bbbt et b e bt sbe e e st eaesaesbesbensensenessens 900
Quadrature Encoder INterface (QEID).....cii ittt ettt et ere et e e sre e erbessbeesassesbesebeesabsenseennas 906
17.1. Device-SPecific INFOrMAtION.......ccoiiiirrceret ettt et s st s es 906
17.2. ArChit@CTUrAl OVEIVIEW. ...c.ertiiiiiieeiecitrte sttt sttt sttt st eb bbb bbb s e bene et e e bt b ebensebebesbenis 906
17.3. QEI REZISTEI SUMMIAIY..ciiiiiiiiiieiiiesteeeit ettt s sttt et bbb st sbesresae sbe e b se b esae b eneesees 910
174, OPEIATION..c.eitieiirie ettt ettt sttt ettt st b e s b e e bt s bt s b ss et e s b e bt eb e sh e st et et e e b e b s re e e es 928
17.5. APPlICAtION EXAMPIE...tiiiieiiieeteictetee ettt ettt et b st b bbb st et se bbb et ebe b et e e sbebeenes 936
176, INEEITUPDTES .ottt ettt et bbbt b b s et s bt b e bt sb e eb e be b b e st b eabennesn et esesbesues 937
17.7. QEI Operation in POWEr-SaViNg MOGES........cccceirieiinirieiinieiinieite et et sesesb et st se e st ses e ssesesaeresessenens 937
Universal Asynchronous Receiver TranSmMitter (UART)....c.cceveireirernereneneneeitese sttt saene e 938
18.1. Device-SPeCifiCc INFOrMAtION......coiriieerieetee ettt st st ea e sttt e essenene 938
18.2. ArchiteCtUral OVEIVIEW......cviuiiiiiiiiiiiciecct ettt st et er et 939
18.3. UART REGISTEI SUMIMIAIY.cutiiiiiriiiiiriiiieiiees ettt sttt ettt st st s sst et e s bt ebe e sreere e s e snseasessesssesbesseesnesreen 941
T84, OPEIATION. ...ttt ettt e sb e sbe st e sae e b e bt et e b e s st e b s he e s b e bt et e se e eb e eb b e ehe e bt be st n e sanenre s 962
18.5. APPICALION EXGMIPIES....iiiiiiiiieieitest ettt sttt ettt et eat bbb bbb bt sbe e e st e aesaesbesbenensenessens 990
186, INTEITUPES ittt sttt st s e be e st et e e b s ae e seesae e e e bt s s tab et et sae et e eaesabe e sreensen st ersebesanen 992
18.7. POWEI-SAVING MOTES. ..ottt et ettt s b e s bbb et e st ebesbe st esbenbenaeseebensesbeneseen 993
Serial Peripheral INTEITACE (SPI)....icuveieei ettt sttt eae st sttt et ass e sesbe e besesesse e ebenessensrsans 994
19.1. Device-SPeCifiCc INFOrMATION.......cccivvirieieiriet ettt st sttt st sa e e s seneseene s 994
19.2. Archite@CtUral OVEIVIEW.....c.cviiiiiiiiiiicitc ettt s st et er et s snens 994
19.3. REZISTEI SUMIMAIY ..iiiiiieieieetet ettt st st seesb e see s bt et e bt s e b e s e esbe st st e seeebae b srnenesasesnns 1000

@ MICROCHIP

23

20.

21.

22.

23.

24.

1.4, OPEIATION..c.eitiitiie ittt sttt ettt st b e b e s bt b et R bbbt ea e st et a b e b n e re s 1014

195, INEEITUPDTES .. ettt ettt et et sttt e h e s sh et s b b e bt et s bt e b e sbesbe b esaes s seabennesbenesnees 1048
19.6. Operation in Power-Saving and Debug MOAES........c.ccoeereeieinieeinieiniiceeeiet et seereee e 1049
INter-INtegrated CIrCUIT (I20) .. ieieueieiiereeeesesesesessesssssssessssesss s s sesse b st bes s st s st s bsssebsb s ssb s s s bensebesbessstensesans 1051
20.7. DeVvice-SPeCific INfOrMAtioN......ccoiiiirieerer ettt sttt et s st bbb s ben b eee 1051
20.2. ArChItECTUIAl OVEIVIEW...cueu ittt ettt sttt et sttt sttt se bbbt st e bt st s eneesebe e senesesbene 1051
20.3. 12C SYSTEIM OVEIVIEW....ecutiiiiriiiiteiieeer sttt ettt et e bt st eht e see sttt b e sbe e e e et et ebesbesnenne 1054
20.4. REGISTEI SUIMIMAIY ..ciiiiiiiiiieteiiiteriste ettt st sttt er s bt s s bt s bbb et e st st s b bt e s b eneebesaesaeasenbesassessennen 1056
20.5. OPOIALION. ittt e et b e s b et bbb r et e b e sa e 1085
20.6. APPlICAtION EXAMIPIES. ettt ettt ettt b ettt et s e bbbt b e st b et e st b et es e st s be e sbebenbbene 1133
20,7, INEEITUPES .ttt ettt e b et bbb bbb b et se et et be st s bt b ess et e bt sreenesbebenenens 1142
20.8. Operation in POWEr-SaViNg MOES.........ccurueiree ittt sttt es et ebe st s ss e s seneenen 1144
Single-Edge Nibble TransmisSion (SENT).....cccireireeireriniecteierest st sttt ettt st asse s b ses e e besesbenesbene s 1145
21.1. DeVvice-SPecific INfOrMAtiON......ccccivuiirieerieererccre sttt se st ettt s bbb s b senseseneees 1145
21.2. ArchiteCtural OVEIVIEW...c.cuiuciiiiiiiiectriietc ettt r et s e sttt s a et nen e st sbe 1145
27.3. REGISTON SUIMMIAIY .ciitiiiiiiiiieitetirt ettt ettt sr ettt e bbb b st eab e st s saesaesmte s e eneesbeasestessesabennesneans 1148
B R S @ o= =1 4 [0 o TSSO PP P SO SO PP PPOPRPPRON 1156
271.5. APPlICationN EXAMPIES...c.coiiiiiiiiitetetete et sttt sttt et b sttt st et s b b e s et eb s ebeesesbe s e nbenees 1167
276, INEEITUPDES. ettt ettt et sttt e b e bbb st b e s ae s e b e se e s b st e e e ehees b bab e eb e en s e ea e s e st s ane b saneanes 1170
21.7. Operation iN POWEr-SaVING MOGES........ccceirierierieiininieeesieseite sttt sttt st sttt st sbesrestesbessesessessensenee 1170
21.8. EffECtS Of @ RESEL...uiiciiririciciei ettt st b st st st 1170
Bidirectional Serial Synchronous (BiSS) MOAUIE.........ccevviiiiiiriiicee sttt ere s 1171
22.1. DeVvice-SPecific INfOrMAtioN......ccivieirieerr ettt st ettt bbb e s ben b e 1171
22.2. ArchiteCtural OVEIVIEW.....cuiuciiiiiriinictieiitct ettt sttt st et s st ettt sttt en e st sbe 1171
22.3. REGISTON SUIMIMIAIY .ciitiiiiiiiiiieiteitt ettt e sttt sttt sr et sr e et e bt s s b e b e b eabe st e sae saesae b e enees b easessessaeasensesntans 1178
B @ T o= =1 4 (0] 1T OO TSP O PSPPI 1202
22.5. APPlICationN EXAMPIES...c.coiiiiiiiierieieteeeeee ettt ettt st ettt st sbe st st et sb bbb eb e ebe e b e b et e nbenees 1210
22,6, INTEITUPES. ettt sttt ettt ettt s st b e e bbb e st e b s he s e b e se e s b st e e e s hees b bab e ebeensesbees e saesane b saneanes 1214
22.7. POWET SAQVING MOUES.....ccueiiririerieierieitsttete ettt sb et ettt ebe st bt et be s bbb est et e st e st sbesbetssbeneesessesteneenseserns 1214
22.8. TEIMUNOIOGY . ..cceeueeuirtirtiierieteitete s st sttt st sttt ettt ee et eb e bt st s be st e st es b ebeas e sae st et eseeuesbesbenseneeneeresteseensens 1215
LI L 1= o TSSOSO PP S PP 1216
23.1. DeVvice-SPecific INfOrMAtioN......ccoiiiireereeee ettt sttt s st bbb s ben b eee 1216
23.2. ArChITECTUIAl OVEIVIEW...cuiuiiiiieresictreeitetet ettt et st ebe ettt sttt st e be st beb e st e e bt se s eneese e e e sen e st sbene 1216
23.3. REGISTEI SUIMIMAIY..ciiiiciiiiiteiteiriirie sttt et sttt ebeebesr e sh et st bt se et st s b b e e e b en e e bt saesbenesneassassennes 1218
234, OPIALION. ittt et b e et h e s e b bbb a et e r e sa e 1222
23,5, INEEITUPES .ttt ettt et h et s bbb b e et et b e s bt b en st besreer e sre b nene e 1232
23.6. Operation in POWEr-SaViNg MOES.........cccoeueuiree ittt sttt bbb s et ebe e s ss et saesensenen 1233
23.7. EffectS Of VArioUS RESETS.....c.c ittt ettt et stk st sttt et s etk sbe bbb eaenes 1233
Single-Output Capture/Compare/PWM/Timer Modules (SCCP)........ceeceeerrierereneninienesesesiereseeeesiseeseevesniene e 1235
24.1. DeVvice-SPecific INfOrMAtioN.......ccvvuiirieerieererecrt sttt sttt sttt ettt s bese b sbesensesene ees 1235
24.2. ArchiteCtural OVEIVIEW...c.cuiuciiiiiiiiinieiriite ettt st et r e st tn et ne s st sbae 1235
24.3. REGISTEN SUIMIMIAIY .ciitiiitiiiiieiteitirit ettt e sttt sr et e st st e bbb e b saeease st e saesaesmse s e enees s easesteseesasennessens 1238
244, OPEIAION. ittt ettt st et b e et h e b e sh e bbb bbb e et et be b e e 1254
24.5. Operation During Sleep and 1d1@ MOGES........coccerreeretrieiieree ettt ettt er e 1291
24.6. EffECS OF @ RESEE.ciiiiiiiieeetee sttt ettt eb sttt st et sttt s be e nb et se e b nenee 1292

@ MICROCHIP

24

25. Configurable LOZIC COIl (CLO)..uuiuirieiririeirieirinie sttt it st sreteaee ettt et b et se s bbb e besesbe e b sen e e e b et ssementsbenas 1293

25.1. DeVvice-SPeCific INfOrMAtioN......ccvvieirieerer ettt sttt ettt b e s bbb e 1293
25,2, ATCNITECIUN ..ttt ettt ee sttt b et et st b et b st be e na b e ea b s bt e e s bebenbebesesbenee 1294
25.3. CLC CONLIOl REGISTEIS. ...ecuiireieteresietreet ettt sttt et s eb bbbttt et ebe e s b e st e e besesbe e ese e et srsenesnene 1298
25,4, OPIALION. ittt ettt b et e bbb e bbb b a e n et et n e e s 1305
25.5. CLC APPlICation EXAMIPIE......cirieueiieiiriciiieierinestrtest sttt sttt et se sttt bt se bt e b s besenseneseebenee 1309
25.6. CLC INTEITUPES ..ottt sttt sttt es bttt be et b b e b e st et b e s b as et eb e esesbe she st e bennennesessannenn 1310
25.7. Operation in POWEr-SaViNg MOGES.........ccurueireie ittt st es et ebesesese s et sseseneenen 1311
26. Peripheral Trigger GENErator (PTG).....cccv e ereerieieireiriereststesessese st seseesesesbe e seesesess e ss e st sse e saesesabenesaesesaesesessenens 1312
26.1. Device-Specific INfOrMAtioN........ccviirieererieeriece sttt st sttt bt s bes e bese st sansesene ees 1312
26.2. ArchiteCtural OVEIVIEW.....ccuoueiiiiiiiniciriictce ettt r et et s st st n et nen e st sbe 1313
26.3. PTG REGISTEN SUMIMIAIY...uiiiiiiiiiiiiiiriteite sttt sttt ettt st st e seesaee s e ebees s sas e ste st saneanessesanensens 1321
LR @ o= =1 4 (o] o TSP TSP OO UT OO PPSOPOPRRPPION 1336
26.5. APPlICAtioN EXAMPIES...c.iiiiiieieiirietctete et sttt sttt s ettt st sbe st st et sb b e bt eb e ebe e b e be b e nbenees 1349
26.6. INEEITUPDTES. ..ttt sttt st e e bbb st e b s a e bt ee e s b st et e sbees bbb e eb e et e sb e s e e ne s ane b s e eanes 1360
26.7. POWEI-SAVING IMOAES....ccuiitiriirieieieiieiet ettt ettt sttt bt es st et st st e st et s b s bt e st e st ene e e saesbesbensentebesbestestennenes 1360
27. 32-Bit Programmable Cyclic Redundancy Check (CRC) GENEIatOr.......ccceeviririerrerieiieineinienieseesieisveeesiesre e s 1362
27.1. ArchiteCtural OVEIVIEW...c.cvuciiiiiiireciniiete ettt r st et r sttt st aen e st sne 1362
27.2. REGISTON SUIMIMIAIY .ciittiitiitiiieiteitirit ettt e sttt sit et sr e st eas st e bt s s e b sasease s st e saesaesmtenseentes b eanesbeseesasennesseans 1364
27.3. CRC OPratiON...c.ueeirceerrieieierieii et ste sttt et e st sre st e sresb e e s ea b e besesess e be e eatesatenn e saesreennesreenseasenns 1369
27.4. APPlICAtiON EXAMPIES...cciiiiiiiiierieteteteeeee ettt st et st sbe st st et sb e b e b et eb e ebe b e bebenbenees 1376
27.5. CRC Operation in POWer SAViNG MOUES.......c.coererieienineniirieieiniestestestete sttt ste et eseeressessesaessessssessessens 1380
28. CUrreNnt Bias GENEIATON (CBG).uiiiiiciiieiiiieeie ettt ettt e e e ettt e e e e eaae e e e e e s batessesssaabasesesaasbaaesesesbbsaesessssnsessessnnnes 1381
28.1. DeVvice-SPecific INfOrMAtioN......cciiiirieerireer ettt sttt s st bbb s bes b e 1381
28.2. ArChiITECTUIAl OVEIVIEW...cuiiieeiieiicitreeitetet ettt st sttt sttt st bbbt bt e b st s ensesebe e sen e st sbene 1381
28.3. Current Bias Generator CONrol REGISTON......c.coveieeirieereiesieteeeeereete et ebes e ber e s 1383
284, OPOIALION. ittt st et b et b et b sh e bbb bbb et e r e sa s 1384
28.5. APPlICAtION EXAMIPIES. ettt ettt ettt b ettt s e bbbt b e st s b et b et eb e st bt snebenbbene 1386
28,6, INEEITUPES .ttt sttt et b b b bbbt b bt se et et be s e s b s b ems et e st ereeresaenennenens 1388
28.7. Operating in POWEr-SaVING MOOES.......couvueirieuirieeireee ettt ettt sttt saebe s beseebe e e se st e e nenes 1388
28.8. EffECS Of @ RESEL. ittt ettt bbbttt e e ettt se bt neee 1388
29. OPEratioNal AMPIIfIEI ettt st sttt bbbt b ea bt e et b e et b e e b nens 1389
29.1. DeVvice-Specific INfOrMAtiON......ccccveirieerirererece sttt sttt sttt bbb s bes et s b sensesene eee 1389
29.2. ArchiteCtural OVEIVIEW...c.ccuiuciiiiiiiiieciitctee ettt st r et st st st a et aen e st sbe 1389
29.3. Op AMP REGISTEI SUMIMAIY...iiiiiiiiriiiiesiieieesiee e sttt sttt st es e sae st st st et e srees s ease st e s essnenbessesanenness 1390
20,4, OPEIAtIONS...cuiiiirteciiie sttt ettt ettt et R e e bbbt Rt bt b st st e e e b e s b s n bt en 1394
29.5. Op AMP AppPlication EXAMIPIES.....cceeuirieiiieeieieereet ettt sttt st b st be b s eebebebenee 1396
30. WatCNAOZ TiMEr (WDT)...ccueeuieeeietentetesiesiesteste sttt ste st st et s bt st bbbt et st et e st e te b e s eas e bentente st saesbesbesenseseebesbesteseenes 1397
30.1. DeVvice-SPecific INfOrMAtiON.......ccuvueirieerieiererect ettt sttt sttt ettt besesbe e s b sensesene eee 1397
30.2. ArchiteCtural OVEIVIEW...c.cuuciiiiiiiiricitrit ettt et s sttt st s n et en e st sbe 1397
30.3. REGISTON SUIMMIAIY .ciitiiiiiiiiiieiiett ettt e sttt et sr et e bbb e bt e b e b e st s saesaesaesbeenees b easesbessaeasennesseans 1399
30.4. WatchdOg TImMer OPEratiON.....c.ccceruerieieertirieniesieieietteiest et st e st et ebe st bt eaeebesbesaesee st e tesessessessenseneenesnessenes 1401
30.5. WatChAOZ TIMEI RESEL...cceiuiruitiiitiieieeieee sttt ettt sttt st et b s bbb st e et b e b e s et ense st enassensenbenean 1404
30.6. Operation of Watchdog Timer in Sleep/Idle MOAES..........ceeveereinneirieie e ere e eneenes 1404
30.7. WDT GENEIIC TP e ttteeeerireertesitestesiteseesesreestesaste s st st e sesbeesaesreesessess s es st s esaesateaeeshesaesesreesesseesaesseensennes 1405

@ MICROCHIP

25

30.8. WDT Sample CONfIGUIatioN....coiuerertiririeiireeiiet ettt ettt sttt sttt st st eb e beb e bbb bene et senbebenes 1405

371, DeAAMAN TIMEE (DIMT)uuutiiietriieiieeieriee ittt eeireeessteessiaeesebressistesstaesessesesstssesssssesssssesssssessssesssssssssssessssssessnresssssesssnns 1408
31,1, ArchiteCtural OVEIVIEW...c.cvuciiiiiiinietit ettt et st st s et n e st sb 1408
31.2. Deadman Timer RegiSter SUMMAIY.......ccoveviriereririrrtrietitereeeste st iestese s esse st e st e e ssessessensensesessessesnessens 1410
3T.3. DIMT OPEIALION....iciitirtetciriteteteteitei et sttt sttt et st b e st sa b e e bbbt b e b ess e st et saeabessesbennenees 1419

32, POWEI-SAVING IMOUES....ceiiiitisieieitete sttt ettt ettt sb s b st st ebe bt et b et st et e st bt s be b et ene et e s sbessesaentestebessessensen 1423
32,1, ArchiteCtural OVEIVIEW...c.cuuciiiiiriiiecteittet ettt et r sttt st s sts et n e st sbe 1423
32.2. Power-Saving Control REgiSter SUMMAIY......cocvirirerierierenestete ettt ettt s seesbeneas 1424
32.3. POWEI-SaVING OPEIatiONS.....ccceiiiirieirerrieieitete sttt sttt er et ettt see st et e shesaesaneseennesresneesnesas 1433

3 T N N 1] (=] = ol TR T SO USSR 1438

34, IN-CilCUIT DEDUGEEN ...c.eiteiteeereeerist ettt ettt sttt st ettt etttk et b bbbt b b ta b ebe st esese b e et ebeaesbeseseeeenentaseneas 1439

35, INSTrUCLION ST SUMIMIAIY...ciiiiiiiriiiiieiirierete ettt sttt st bbbt sa e sb et sa et s b e b e s eas et et sbesbesaene 1440

36. DEVEIOPMENT SUPPOIT. ettt sttt sttt st ettt ettt se bt b bt s b eseebese s e seae et e et e bt st st ebese e st sebesesnenensenens 1451

37. EleCtriCal CharaCteriStiCS....coiveriiiiiriiiericieiieresrceree sttt sttt st et st st s 1452
37.1. DC CharaCteriStiCS....cooiinriirieiriiireceirctrt ettt st se bbbttt er et st s b s seneene 1452
37.2. AC Characteristics and TimMiNG ParameEterS.......ccouevirvireierirerinieneeseesteseeressessesseeesesressessessessssessessesseseens 1463

38. PACKAZING INfOIMIATION...ciiitiiit ittt sttt s b et b et bt s et b e b et e sbe st et aeseseenenen 1489
38.1. Package Marking INfOrmation......co.coeerieiree ettt e b et ebese st een s 1489
38.2. PACKAEE DELAIIS.....ccirieeieieeerieie ettt sttt sttt sttt bbb b bbb b st bbb e 1491

39, REVISION HISTOIY ..uiiiriiiiiiiesettte sttt sttt bt et b b st sttt s bbb e b e st et ene s aesbesbenae e esesbesresrens 1512

MICrOCHIP INFOIMIATION. .. c.iitiiitiirie ettt et s b e st st e e s st e sesbe e sbesesbesaneesenesseneees 1518
The MICTrOCHID WEDSITE.....cuiiiieetee ettt ettt st et s be st see st st s e b sb e bensesaebessessennens 1518
Product Change NOtIfiCatioN SEIVICE.......civiiirieiiieieiiect ettt sttt ettt sttt bbb seeseseebe e sbes e sesensenan 1518
CUSTOMIBE SUPPOI . etiiieeiiriteirieitete ettt st et sttt e b et e b s bt st s be s bt e saesheebeebesh b eas et e see ebesbneshe st etesheenessreereensenns 1518
Product IdentifiCation SYSTEM......c.ccivirueririiirireietee ettt sttt sttt e et be st b bbb e st esesbesensesanessenenes 1519
Microchip Devices Code ProteCtion FEATUIE.......coiviiirieirenerterteee ettt ettt sb et st e s be et 1520
LEEAI INOTICE...cuititietirtee ettt sttt st stttk b st bbb bttt e s et e bt s be st e ben e e st ebeeb e st e sbe e e e enessenseseeneens 1520
TrAARIMAIKS. ..ottt bbb st st bbbt e r st a ettt en e 1520
QUAIILY MaNagemMENT SYSTEIM . .cciiiriiieieiieitet ettt ettt st et st s be bt b see st st esesse b enbentessesesseesesbenseneen 1521
WOrldwide SaleS @nd SEIVICE......c.ooiuiiieiiiiie ettt st s ene e ne 1522

@ MICROCHIP

26

1. Device Overview

This document contains device-specific information for the dsPIC33AK128MC106 Digital Signal
Controller (DSC) family of devices.

The dsPIC33AK128MC106 devices support a high-performance architecture with the Digital
Signal Processor (DSP) and a Single and Double Precision Floating Point Unit (FPU). The
dsPIC33AK128MC106 family of devices operate with an internal core supplied with a 1.1V using
a low-voltage regulator.

Figure 1-1 shows a general block diagram of the core and peripheral modules of the
dsPIC33AK128MC106 family.

Figure 1-1. dsPIC33AK128MC106 Family Block Diagram

CPU

CPU CPU CPU DMA ICD
FPU <« | Instruction X Data Y Data Data Data DB%S‘P;AM
Bus Bus Bus Bus Bus Bus

3 y y

A4 v A A

Bus Fabric (BMX)

A A

32 32
Pre-fetch
i v
Branch Unit , v
128 X RAM YRAM Bus Splitter
Flash| Wrapper | ECC | | EcC |
v 2 4
Row
ECC Program RAM Panels N‘ RAM Panels —‘
Flash Panels ' F
|
CFG Data NVM | DMA | CPU
CFG Intg CLK Cfg PWM INT
CFG Test WDT UART1-3 GPIO Data
PTG SPI1-3 CRC
Slow Peripheral Bus (1:4) SEC
PPS 12C-2
JTAG SIB [ePI0 cfg SENT1-2 ADC
CHIP TAP CLC1-4 SCCP1-4 BMX
ALT TAP ECC TMR1 PBU
Fast Peripheral Bus (1:1
DFX TAP RAMBIST QEI PSVRSIB D
BISS
DAC/CMP1-3
USER MBIST [PwR] | — |
Slow Peripheral Bus (1:4)

Std. Peripheral Bus (1:2)

Notes:

1. Not all I/0 pins or features are implemented on all device pinout configurations. See Pinout I/0
Descriptions for specific implementations by pin count.

2. Some peripheral I/Os are only accessible through Peripheral Pin Select (PPS).

27

c\ MICROCHIP

2. Guidelines for Geg,ng Started with Digital Signal Controllers

2.1 Basic ConnecBon Requirements

Getting started with the dsPIC33AK128MC106 family devices requires attention to a minimal set of
device pin connections before proceeding with development. The following pins must always be
connected:

« All Vpp and Vss power supply pins must be properly biased with required voltages (see
37. Electrical Characteristics)

+ Al AVpp and AVss analog supply pins must be properly biased regardless of which analog
modules or components of the dsPIC33A device are used (see 37. Electrical Characteristics)

* MCLR pin is connected with Vpp and Vss based on circuit or application needs

+ PGCx/PGDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see
2.4. ICSP Pins)

+ OSCl and OSCO pins when an external oscillator source is used (see 2.5. External Oscillator Pins)

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as Vpp, Vss, AVpp and
AVsg, is required.

Consider the following criteria when using decoupling capacitors:

+ Value and type of capacitor: Recommendation of 0.1 pF (100 nF), in parallel with a 1000 pF (1
nF), 10-20V. These capacitors should be low-ESR and have a resonance frequency in the range of
20 MHz and higher. Ceramic capacitors are recommended.

+ Placement on the Printed Circuit Board: The decoupling capacitors should be placed as close
to the pins as possible. It is recommended to place the capacitors on the same side of the
board as the device. If space is constricted, the capacitor can be placed on another layer on the
PCB using a via; however, ensure that the trace length from the pin to the capacitor is within
one-quarter inch (6 mm) in length.

+ Handling high-frequency noise: If the board is experiencing high-frequency noise above tens of
MHz, add an additional ceramic-type capacitor in parallel to the decoupling capacitors. The value
can be in the range of 0.01 pF to 0.001 pF. Place this capacitor next to the primary decoupling
capacitors. In high-speed circuit designs, consider implementing a decade set of capacitances as
close to the power and ground pins as possible. For example, 0.1 pF in parallel with 0.01 pF and
0.001 pF.

+ Maximizing performance: On the board layout from the power supply circuit, run the power
and return traces to the decoupling capacitors first and then to the device pins. This ensures
that the decoupling capacitors are first in the power chain. Equally important is to keep the trace
length between the capacitor and the power pins to a minimum, thereby reducing PCB track
inductance.

28

@ MICROCHIP

2.3

Figure 2-1. Recommended Minimum Connecon

0.1pF
VDD
0.001pF
i R1 8 8
_ >
MCLR >
IC
N dsPIC33
0.1uF 0.001yF 0.001uF 0.1pF
Vss VDD
1 1 1o vesl—+ 1
a
S
<

0.001 uF

L
H

0.1uF

T aves
Tt v
S W W

Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:
+ Device Reset

+ Device Programming and Debugging

During device programming and debugging, the resistance and capacitance that can be added to
the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently,
specific voltage levels (V| and V,) and fast signal transitions must not be adversely affected. Ensure
that the MCLR pin V|4 and V,_ voltage specifications are met.

For example, Figure 2-2 shows the MCLR pin connections with general circuit components used,
such as resistor R, series resistor R1 and capacitor C, and their placement. It is recommended to
place these passive components with one-quarter inch (6mm) from the MCLR pin.

Figure 2-2. Example of MCLR Pin Connecbons

VDD
R
R12
MCLR
JP
T dsPIC33
IC

@ MICROCHIP

29

24

2.5

2.6

Notes:

1. R<10kQ is recommended. A suggested starting value is 10 kQ. Ensure that the MCLR pin V|4
and V,_specifications are met.

2. R1<470Q will limit any current flowing into MCLR from the external capacitor, C, in the event of
MCLR pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure
that the MCLR pin V| and V,_specifications are met.

3. C< 1 pF may be recommended. However, values of C should be based on reset timings
required for any application. Make sure to isolate C from the MCLR pin during programming
and debugging operations.

ICSP Pins

The PGCx and PGDx pins are used for programming and debugging purposes. It is recommended
to keep the trace length between the ICSP connector and the ICSP pins on the device as short

as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is
recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGCx and PGDx pins are not recommended
as they will interfere with the programmer/debugger communications to the device. If such
discrete components are an application requirement, they should be removed from the circuit
during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing
requirements information in the respective device Flash programming specification for information
on capacitive loading limits and pin Voltage Input High (V|y) and Voltage Input Low (V)
requirements.

External Oscillator Pins

When the Primary Oscillator (POSC) circuit is used to connect a crystal oscillator, special care and
consideration is needed to ensure proper operation. The POSC circuit should be tested across the
environmental conditions in which the end product is intended to be used. The load capacitors
specified in the crystal oscillator data sheet can be used as a starting point, however, the parasitic
capacitance from the PCB traces can affect the circuit, and the values may need to be altered

to ensure proper start-up and operation. Excessive trace length and other physical interaction
can lead to poor signal quality. Poorly tuned oscillator circuits can have reduced amplitude,
incorrect frequency (runt pulses), distorted waveforms and long start-up times that may result

in unpredictable application behavior, such as instruction misexecution, illegal opcode fetch, etc.
Ensure that the crystal oscillator circuit is at full amplitude and the correct frequency before the
system begins to execute code. In planning the application’s routing and 1/0 assignments, ensure
that adjacent port pins, and other signals in close proximity to the oscillator, do not have high
frequencies, short rise and fall times, and other similar noise. For further information on the
Primary Oscillator, see 12.4.3. Primary Oscillator (POSC).

External Oscillator Layout Guidance

Use best practices during PCB layout to ensure robust start-up and operation. The oscillator circuit
should be placed on the same side of the board as the device. Also, place the oscillator circuit close
to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The
load capacitors should be placed next to the oscillator itself, on the same side of the board. Use

a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits.
The grounded copper pour should be routed directly to the MCU ground. Do not run any signal
traces or power traces inside the ground pour. If using a two-sided board, avoid any traces on the
other side of the board where the crystal is placed. Suggested layouts are shown in Figure 2-3. With
fine-pitch packages, it is not always possible to completely surround the pins and components. A
suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the
guard trace(s) must be returned to ground.

For additional information and design guidance on oscillator circuits, please refer to these Microchip
Application Notes, available at the Microchip website (www.microchip.com):

@ MICROCHIP

30

2.7

2.8

2.9

« AN943, “Practical PICmicro” Oscillator Analysis and Desjgn”
« AN949, “Making Your Oscillator Work”
« AN1798 “Crystal Selection for Low-Power Secondary Oscillator”

Figure 2-3. Suggested Placement of the Oscillator Circuit

Single-Sided and In-Line Layouts: Fine-Pitch (Dual-Sided) Layouts:

Top Layer Copper Pour
(tied to ground)

Copper Pour Primary Oscillator
(tied to ground) Crystal

DEVICE PINS Bottom Layer

Copper Pour
(tied to ground) — %

Prima
Oscilla%r

C1

OsClI 0SCO

0Osco

Cc2

Oscillator
Crystal

GND

GND

C1

OSCl

DEVICE PINS

Oscillator Value CondiGons on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the
maximum oscillator source frequency must be limited to a certain frequency (see 12.4.2. Phase-
Locked Loop (PLL)) to comply with device PLL Start-up conditions. This means that if the external
oscillator frequency is outside this range, the application must start up in the FRC mode first. The
default PLL settings after a POR with an oscillator frequency outside this range will violate the device
operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD,
to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that
clock switching must be enabled in the device Configuration Word.

Unused 1/0Os

Unused I/0 pins should be configured as outputs and driven to a Logic Low state. Alternatively,
connect a resistor (1k-10k ohm) between Vss and unused pins, and drive the output to a logic low.

Bulk Capacitors

On boards with power traces running longer than six inches in length, it is suggested to use a bulk
capacitor for integrated circuits, including DSCs, to supply a local power source. The value of the
bulk capacitor should be determined based on the trace resistance that connects the power supply
source to the device and the maximum current drawn by the device in the application. In other
words, select the bulk capacitor so that it meets the acceptable voltage sag at the device. Typical
values range from 4.7 pF to 47 pF.

@ MICROCHIP

31

3. CPU

The dsPIC33AK128MC106 family has a Fixed-Point fractional DSP engine supporting the Central
Processing Unit (CPU). The CPU processes instructions out of program memory and utilizes

system RAM to perform tasks and calculations. The CPU is interfaced to memory and peripherals
through the bus matrix. The CPU supports coprocessors, including the Floating Point Unit (FPU) for
mathematical computation.

CPU key features:

« 32-bit working registers

+ Unified memory map

+ 5-stage instruction pipeline

+ Conditional branching with speculative execution
+ Instruction pre-fetch cache

+ Mathematical support

+ Low overhead loop support

3.1 Architectural Overview

The dsPIC33A CPU has 32-bit (data) modified, Harvard architecture with a 5-stage instruction
pipeline, single phase clock design, with 32-bit instructions.

The CPU has a 32-bit instruction word with a variable length opcode field. The CPU also supports
some instructions that are only available in 16-bit format. The Program Counter (PC) is 24 bits wide
to access a 16MB (24-bit address) unified linear address map.

The CPU supports up to eight addressing modes. A 5-stage fully interlocked instruction pipeline with
reduced branch latency and hardware mitigated pipeline hazard stalls helps maintain throughput
and provides predictable execution. Most instructions execute in a single-cycle effective execution
rate, with the exception of instructions that change the program flow. A hardware program loop
construct is supported by the overhead free REPEAT instruction, which is interruptible at any point.
For loops greater than one instruction, the DBT (Decrement Test and Branch) instruction may be
used to reduce loop overhead.

The CPU supports High Performance Math Support with a tightly coupled 16/32-bit Integer and a
Fixed-Point fractional DSP engine with a 72-bit shifter, saturation and rounding support. There is an
optional common issue Single and Double Precision Floating Point Unit (FPU) coprocessor with an
independent load-store execution pipeline.

CPU Supports closely coupled coprocessor macros with the following features:

+ Decode and issue from the CPU pipeline into independent coprocessor pipeline(s)
+ Pipeline hazards detected and mitigated in both the CPU and coprocessor(s)

+ Dedicated data move and conditional coprocessor status branch instructions

+ Coprocessor interrupt support

Figure 3-1 illustrates the dsPIC33A CPU block diagram.

32

@ MICROCHIP

Figure 3-1. dsPIC33A Core Conceptual Block Diagram with FPU Coprocessor

Y Address |
Y Address
X Address =
e
_ Y Data 8 32 XData X-bus
32 YData Y-bus
& X Address
2 >
o
3
§ Instruction Pipeline
O
o
Igl DSP Engine o @ |_| |§| m @I
o
2 s 1= (8] (3], lbus
Q@ e o - 3 1
32 D g ? m i
- 5 g 'g > %
3 = > Y 8
33 x 33 Multiplier &) o 5 =
Operand Pre-proc| T
A A
FPU Coprocessor
I . V' 1 I
S P Divide Shifter
(5;') - & Incrementer|
S W-reg Array = A @ Sequencer
©®| 16 x 32-bit regs | 2
< ; 1 >]
- with Contexts (&,) 2
< <
<
W15 / Stack Ptr. Y
1 — -
| 1 Divide Quotient
D \—/—:’l_:' Eval. and Control §
32 32 A 32 F-reg Array =
<_>D < < »| 32X 32-bit regs | >
with Contexts? o
ALU[8/16/32] Status (SR x
=
Single Bit [
Shifter '
]
> 5 g
-~ (e2]) %)) »
= Program Counter % % _‘é % £
o2 o < c= L c o
al 1 q oo o % m
A So | | PC | =P za P2 %a
o 432 £ o= s S E
o | oL > o
:E_v 2 [PCTRAP ¢ 2 > % o o k=)
c =S =
53 . R a5 | A | 8%
[PCHOLD (emulation) |« R c 2
FPU Control? ﬂ
Y \
To/From

Peripherals/SFRs

Macro Buses (to BMX)

c\ MICROCHIP

3.2 CPU Register Descripbons
[offsec | Neme [BitPos| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
4

3122
23:16 PC[23:16]
P
0x00 ¢ 15:8 PC[15:8]
7:0 PC[7:0]
31:24
23:16 SPLIM[23:16]
PLIM
0x04 > 15:8 SPLIM[15:8]
7:0 SPLIM[7:0]
31:24 RCOUNT[31:24]
0308 RCOUNT 23:16 RCOUNT[23:16]
15:8 RCOUNT[15:8]
7.0 RCOUNT[7:0]
31:24
0x0C DISIIPL 23116
15:8
7.0 DISIIPL[2:0]
31:24
23:16
0x10 CORCON
15:8 us
7.0 SATA SATB SATDW ACCSAT RND IF
31:24
ox14 MODCON 23116
15:8 XMODEN = YMODEN
7:0 YWM[3:0] XWM[3:0]
31:24
oxts CMODSKT 23:16 XMODSRT[23:16]
15:8 XMODSRT[15:8]
7:0 XMODSRT[7:0]
31:24
23:16 XMODEND[23:16]
0x1C XMODEND
15:8 XMODEND[15:8]
7:0 XMODEND[7:0]
31:24
020 MODSRT 23:16 YMODSRT[23:16]
15:8 YMODSRT[15:8]
7.0 YMODSRT[7:0]
31:24
23:16 YMODEND[23:16]
0x24 YMODEND
15:8 YMODENDI15:8]
7.0 YMODEND[7:0]
31:24
23:16
0x28 XBREV
15:8 XBREV[14:8]
7.0 XBREV[7:0]
31:24
23:16 PCTRAP[22:16]
0x2C PCTRAP
15:8 PCTRAP[15:8]
7:0 PCTRAP[7:0]
31:24 FEX[31:24]
030 e 23:16 FEX[23:16]
15:8 FEX[15:8]
7:0 FEX[7:0]
31:24 FEX2[31:24]
23:16 FEX2[23:16]
FEX2
0x34 15:8 FEX2[15:8]
7:0 FEX2[7:0]

@ MICROCHIP

34

; continued

Comser | Name lmpos| 7 | 6 | s | 4 | 3 | 2 | 1 | o

31:24
0x38 PCHOLD 23:16 PCHOLD[23:16]
15:8 PCHOLDI[15:8]
7:0 PCHOLD[7:0]
31:24
0x3C VEA 23:16 VFA[23:16]
15:8 VFA[15:8]
7:0 VFA[7:0]
0x40
Reserved
Ox1EOF
31:24
Ox1E10 HPCCON 23116
15:8 ON CLR
7:0
31:24 SELECT[3][4:0]
23:16 SELECT[2][4:0]
Ox1E10 HPCSELO
15:8 SELECT[1][4:0]
7:0 SELECT[0][4:0]
31:24 SELECT[7][4:0]
Ox1E14 HPCSELT 23:16 SELECT[6][4:0]
15:8 SELECT[5][4:0]
7:0 SELECT[4][4:0]
Ox1E18
Reserved
OX1E1F
31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
Ox1E20 HPCCNTLO
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]
31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
Ox1E24 HPCCNTHO
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
Ox1E28 HPCCNTL 23:16 HPCCNT[23:16]
15:8 HPCCNTI[15:8]
7:0 HPCCNT[7:0]
31:24 HPCCNT[63:56]
OX1E2C HPCCNTHA 23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
HPCCNTL2
Ox1E30 ¢ 15:8 HPCCNTI[15:8]
7:0 HPCCNT[7:0]
31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
Ox1E34 HPCCNTH2
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
0x1E38 HPCCNTL3 23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]
31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
Ox1E3C HPCCNTH3
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

@ MICROCHIP

; continued

Comser | Name lmpos| 7 | 6 | s | 4 | 3 | 2 | 1 | o

31:24 HPCCNT[31:24]
o140 PCCNTLA 23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT(7:0]
31:24 HPCCNT[63:56]
ox1E44 HPCCNTHA 23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
oxtE4 HPCONTLS 23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT(7:0]
31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
0Ox1E4C HPCCNTH5
15:8 HPCCNT[47:40]
7.0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
0Ox1E50 HPCCNTL6
15:8 HPCCNTI15:8]
7.0 HPCCNT(7:0]
31:24 HPCCNTI63:56]
23:16 HPCCNT[55:48]
0x1E54 HPCCNTHS6
15:8 HPCCNT[47:40]
7.0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
0x1E58 HPCCNTL?
15:8 HPCCNT[15:8]
7:0 HPCCNT(7:0]
31:24 HPCCNT[63:56]
ox1ESC S 23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]
31:24
0x1E60 CHECON 23116 ISBBUF
15:8 ON CHEINV | CHECOH
7:0 FLTINJ
31:24
23:16
HESTAT
0x1E64 CHES -
7.0 TPE RD PAR
31:24
23:16
Ox1E68 CHEFLTIN]J
15:8
7.0 FLTPTR[7:0]

@ MICROCHIP

3.2.1 CPU Program Counter Register

Name: PC
Offset: 0x000
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
PC[23:16]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| PC[15:8]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| PC[7:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 23:0 - PC[23:0] Program Counter bits

@ MICROCHIP

37

3.2.2 Stack Pointer Limit Value Register

Name: SPLIM
Offset: 0x004

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
SPLIM[23:16]
Access RIW RIW RIW R/W R/W R/W RIW R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| SPLIM[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| SPLIM[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 23:0 - SPLIM[23:0] Stack Limit Address bits

@ MICROCHIP

38

3.2.3 REPEAT Loop Counter Register

Name: RCOUNT

Offset: 0x008

Bit 31 30 29 28 27 26 25 24
| RCOUNT[31:24]
Access R/W RIW RIW R/W R/W R/W RIW R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| RCOUNT[23:16]
Access R/W R/W R/W R/W R/W R/W RIW R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| RCOUNT[15:8]
Access R/W R/W RIW RIW R/W R/W RIW R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| RCOUNT[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - RCOUNT[31:0] Current Loop Counter Value for REPEAT Instruction

@ MICROCHIP

39

3.2.4 DISIIPL(W) InstrucBon Current IPL Threshold

Name: DISIIPL
Offset: 0x00C
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
Access
Reset
Bit 7 6 5 4 3 2 1 0
DISIIPL[2:0]
Access R R R
Reset 0 0 0

Bits 2:0 - DISIIPL[2:0] DISIIPL(W) current IPL threshold value

@ MICROCHIP

40

3.2.5 Core Mode Control Register(!)

Name: CORCON
Offset: 0x010

1. The Core Control register (CORCON) has bits that control the operation of the DSP multiplier
hardware. The IPL3 bit is concatenated with the IPL[2:0] bits (SR[7:5]) to form the CPU Interrupt
Priority Level.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | us | | | | |
Access R/W
Reset 0
Bit 7 6 5 4 3 2 1 0
| SATA | SATB | SATDW | ACCSAT | | | RND | IF |
Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 12 - US Unsigned or Signed Multiplier Mode Select bit

Unsigned mode enabled for DSP ops
0 Signed mode enabled for DSP ops

Bit 7 - SATA AccA Saturation Enable bit

Accumulator A saturation enabled
0 Accumulator A saturation disabled

Bit 6 - SATB AccB Saturation Enable bit

Accumulator B saturation enabled
0 Accumulator B saturation disabled

Bit 5 - SATDW Data Space Write from DSP Engine Saturation Enable bit

Data Space write saturation enabled
0 Data Space write saturation disabled

Bit 4 - ACCSAT Accumulator Saturation Mode Select bit

@ MICROCHIP

Value Description

1 9.63 saturation (super saturation)
0 1.63 saturation (normal saturation)

Bit 1 - RND Rounding Mode Select bit

1 Biased (conventional) rounding enabled
0 Unbiased (convergent) rounding enabled

Bit 0 - IF Integer or Fractional Multiplier Mode Select bit

Value Description

1 Integer mode is enabled for DSP multiply
0 Fractional mode is enabled for DSP multiply

@ MICROCHIP

42

3.2.6 Modulo Addressing Control Register(1)
Name: MODCON
Offset: 0x0014
Note:
1. The MODCON register enables and configures Modulo Addressing (circular buffers).
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
[XMODEN | YMODEN |
Access R/W R/W
Reset 0 0
Bit 7 6 5 4 3 2 1 0
YWM[3:0] | XWM[3:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 1 0 0 0 1
Bit 15 - XMODEN X RAGU & X WAGU Modulus Addressing Enable bit
1 X AGU Modulus Addressing enabled
0 X AGU Modulus Addressing disabled
Bit 14 - YMODEN Y AGU Modulus Addressing Enable bit
1 Y AGU Modulus Addressing enabled
0 Y AGU Modulus Addressing disabled
Bits 7:4 - YWM[3:0] Y AGU W Register Select for Modulo Addressing bit
Value Description
1111 Modulo Addressing disabled (W15 does not support Modulo Addressing)
1110 W14 selected for Modulo Addressing
0000 WO selected for Modulo Addressing
Bits 3:0 - XWM[3:0] X RAGU & X WAGU W Register Select for Modulo Addressing bit
1111 Modulo Addressing disabled (W15 does not support Modulo Addressing)
1110 W14 selected for Modulo Addressing
0000 WO selected for Modulo Addressing

@ MICROCHIP

43

3.2.7 X AGU Modulo Addressing Start Register

Name: XMODSRT
Offset: 0x0018

Note:

1. The XMODSRT and XMODEND registers hold the start and end addresses for modulo (circular)
buffers implemented in the X data memory address space.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| XMODSRT[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| XMODSRT[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| XMODSRTI[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 23:0 - XMODSRT[23:0] X RAGU & X WAGU Modulo Addressing Start Address bits(")

@ MICROCHIP

3.2.8 X AGU Modulo Addressing End Register(!

Name: XMODEND
Offset: 0x001C

Note:

1. The XMODSRT and XMODEND registers hold the start and end addresses for modulo (circular)
buffers implemented in the X data memory address space.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| XMODEND[23:16]
Access R/W RIW R/W RIW RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
XMODENDI15:8]
Access RIW RIW R/W RIW RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
XMODEND[7:0]
Access RIW RIW R/W RIW R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 23:0 - XMODEND[23:0] X RAGU & X WAGU Modulo Addressing End Address bits

@ MICROCHIP

3.2.9 Y AGU Modulo Addressing Start Address Register(1)

Name: YMODSRT
Offset: 0x0020

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| YMODSRT[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
YMODSRTI[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
YMODSRTI[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 23:0 - YMODSRT[23:0] Y RAGU Modulo Addressing Start Address bits

@ MICROCHIP

3.2.10 Y AGU Modulo Addressing End Register()

Name: YMODEND
Offset: 0x0024

Note:

1. The YMODSRT and YMODEND registers hold the start and end addresses for modulo (circular)
buffers implemented in the Y data memory address space.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| YMODEND[23:16]
Access R/W RIW R/W RIW RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
YMODEND[15:8]
Access RIW RIW R/W RIW RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
YMODEND[7:0]
Access RIW RIW R/W RIW R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 23:0 - YMODENDI[23:0] Y RAGU Modulo Addressing End Address bits

@ MICROCHIP

3.2.11 X AGU Bit Reversal Addressing Control Register(!)

Name: XBREV
Offset: 0x0028

Note:

1. The XBREV register sets the buffer size used for Bit-Reversed Addressing.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
XBREV[14:8]
Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
XBREV[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 14:0 - XBREV[14:0] X AGU Bit Reversed Modifier bits

@ MICROCHIP

48

3.2.12 Captured PC Address at Time of Trap Register

Name: PCTRAP
Offset: 0x002C

Notes:
1. PCTRAP[0] always reads as 0.
2. Ifthe current IPL is greater or equal to 8, the PC address will not be captured.

3. Hardware update is blocked after the first PCTRAP update occurs, preventing newer traps from
overwriting the source address of older ones. Update can be re-enabled by user attempting to
write 24'h000000 to PCTRAP (write will not occur, preserving PCTRAP contents).

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | PCTRAP[22:16]
Access R R R R R R R
Reset 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
PCTRAP[15:8]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
PCTRAP[7:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 22:0 - PCTRAP[22:0] Captured PC Address at time of trap exception(1:2.3)

@ MICROCHIP

49

3.2.13 Force Execudon InstrucOon Register 1(1)

Name: FEX
Offset: 0x0030

Bit 31 30 29 28 27 26 25 24
| FEX[31:24] |
Access R/W R/W R/W R/W R/W R/W RIW R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| FEX[23:16] |
Access R/W R/W R/W RIW R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
FEX[15:8] |
Access R/W R/W R/W R/W R/W R/W RIW R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
FEX[7:0] |
Access R/W R/W RIW RIW R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 1

Bits 31:0 - FEX[31:0] For 2 word operations, FEX contains the first instruction to be executed using the UFEX
instruction.
FEX is only visible as a R/W register in Debug mode. In all other operating modes, it is read-only of all
O's.

@ MICROCHIP

50

3.2.14 Force Execudon InstrucOon Register 2(1)

Name: FEX2
Offset: 0x0034

Bit 31 30 29 28 27 26 25 24
| FEX2[31:24] |
Access R/W R/W R/W R/W R/W R/W RIW R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| FEX2[23:16] |
Access R/W R/W R/W RIW R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
FEX2[15:8] |
Access R/W R/W R/W R/W R/W R/W RIW R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
FEX2[7:0] |
Access R/W R/W RIW RIW R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 1

Bits 31:0 - FEX2[31:0] For 2 word operations, FEX contains the second instruction to be executed using the
UFEX instruction.
FEX is only visible as a R/W register in Debug mode. In all other operating modes, it is read-only of all
O's.

@ MICROCHIP

51

3.2.15 Debug Hold PC Register

Name: PCHOLD
Offset: 0x0038
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
PCHOLD[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 1 10 9 8
| PCHOLD[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| PCHOLD[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 1

Bits 23:0 - PCHOLD[23:0] Debug Hold PC register bits

PCHOLD is only visible as a R/W register in Debug mode. In all other operating modes, it is read-only

of all O's.

@ MICROCHIP

52

3.2.16 Vector Fail Address Register

Name: VFA
Offset: 0x003C
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
VFA[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| VFA[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| VFA[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 1

Bits 23:0 - VFA[23:0] Vector Fail Address Register bits

@ MICROCHIP

53

3.2.17 CPU STATUS Register(1)
Name: SR

Note:
1. The CPU STATUS register is not memory mapped.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
VF CTX[2:0]
Access R R R R
Reset 0 0 0 0
Bit 15 14 13 12 11 10 9 8
[oA | oB | SA | SB | oAB | sAaB | | P3|
Access R/W R/W R/W RIW R R/C R/C
Reset 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| IPL[2:0] | RA | N | ov | z | C |
Access R/W R/W R/W R R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 - VF Vector (Fetch) Fail Status bit

1 Indicates to the Bus Error handler that the source of the bus error is a vector fetch. The vector data read will be
substituted with the contents of the Vector Fail Address (VFA) SFR.
0 Indicates to the Bus Error handler that the source of the bus error is not a vector fetch.

Bits 18:16 - CTX[2:0] Current (W register) Context ldentifier bits

111 Context 7 is currently in use
110 Context 6 is currently in use
101 Context 5 is currently in use
100 Context 4 is currently in use
011 Context 3 is currently in use
010 Context 2 is currently in use
001 Context 1 is currently in use
000 Context 0 is currently in use

Bit 15 - OA Accumulator A Fractional Overflow Status bit

1 Accumulator A fractional overflow has occurred (its contents can no longer be represented as a 1.31 fractional
value)
0 Accumulator A not overflowed

Bit 14 - OB Accumulator B Fractional Overflow Status bit

@ MICROCHIP

54

1 Accumulator B fractional overflow has occurred (its contents can no longer be represented as a 1.31 fractional
value)
0 Accumulator B not overflowed

Bit 13 - SA Accumulator A Saturation/Sign Overflow ‘Sticky’ Status bit

1 Accumulator A is saturated, or has been saturated at some time, or has overflowed into bit 71 (if saturation is
disabled)
0 Accumulator A is not saturated or has not overflowed into bit 71 (if saturation is disabled)

Bit 12 - SB Accumulator B Saturation/Sign Overflow ‘Sticky' Status bit

1 Accumulator B is saturated, or has been saturated at some time, or has overflowed into bit 71 (if saturation is
disabled)
0 Accumulator B is not saturated or has not overflowed into bit 71 (if saturation is disabled)

Bit 11 - OAB OA || OB Combined Accumulator Fractional Overflow Status bit

Description
Accumulators A or B fractional overflow has occurred (one or both of their contents can no longer be
represented as a 1.31 fractional value)

0 Neither Accumulators A nor B have overflowed

<
v
c
®

i

Bit 10 - SAB SA | | SB Combined Accumulator ‘Sticky’ Status bit

1 Accumulators A or B are saturated, or have been saturated at some time, or have overflowed into bit 71 (if
saturation is disabled)
0 Neither Accumulator A nor B are saturated or have overflowed into bit 71 (if saturation is disabled)

Bit 8 - IPL3 MS-bit of CPU Priority Level Nibble bit

Value Description
1 CPU Priority > 8 (trap exception underway)
0 CPU Priority < 8 (no trap exception underway)

Bits 7:5 - IPL[2:0] CPU Interrupt Priority Level status bits
User Mode: This bit is R/C-0 (read only if Supervisor Mode supported) and will reset to 1'b0.
Supervisor Mode: This bit is R/C-0 (CPU will reset into Supervisor Mode).

111 All interrupts disabled

110 Level 7 interrupts enabled

101 Level 6 and 7 interrupts enabled
100 Level 5 through 7 interrupts enabled
011 Level 4 through 7 interrupts enabled
010 Level 3 through 7 interrupts enabled
001 Level 2 through 7 interrupts enabled
000 Level 1 through 7 interrupts enabled

Bit 4 - RA REPEAT Loop Active bit

Description
REPEAT loop in progress
REPEAT loop not in progress

<
o
c
®

o

@ MICROCHIP

55

Bit3-N

ALU Negative bit

Bit 2 - OV ALU Overflow bit

Bit 1 - Z ALU ‘Sticky’ Zero bit

Bit0-C

3.3

3.3.1

3.3.2

3.3.3

Value Description

1 An operation which effects the Z bit has set it at some time in the past
0 The most recent operation which effects the Z bit has cleared it (i.e. a non-zero result)

ALU Carry/Borrow bit
SR[31:0] is stacked during exception processing, preserving context.

CPU OperaBon

InstrucOon Set

The dsPIC33A instruction set has two classes of instructions: MCU instructions and DSP instructions.
These two classes are seamlessly integrated into the architecture and execute from a single
execution unit. The instruction supports integer, fixed point and floating-point math operation.

Data Space Addressing

The Data Space is split into two blocks as X and Y data memory. Each memory block has its own
independent Address Generation Unit (AGU). The MCU class of instructions operates solely through
the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP
instructions operate through the X and Y AGUs to support dual operand reads, which splits the data
address space into two parts.

In dsPIC33A devices, overhead-free circular buffers (Modulo Addressing mode) are supported in
both X and Y address spaces. The Modulo Addressing removes the software boundary checking
overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class
of instructions. The X AGU also supports the Bit-Reversed Addressing mode to greatly simplify input
or output data reordering for radix-2 FFT algorithms.

Addressing Modes
The CPU supports up to eight addressing modes as shown in Table 3-1

Table 3-1. MCU Instrucon Addressing Mode De} nidons

Function (Source, ppp) Function (Destination, qqq) Description

EA = [Ws + Wb] EA = [Wd + WDb] Indirect with (signed) Register Offset
EA=SR EA =SR Status Register direct

EA = [Ws+=1] EA = [Wd+=1] Register indirect pre-incremented
EA = [Ws-=1] EA = [Wd-=1] Register indirect pre-decremented
EA = [Ws]+=1 EA = [Wd]+=1 Register indirect post-incremented
EA = [Ws]-=1 EA = [Wd]-=1 Register indirect post-decremented
EA = [Ws] EA = [Wd] Register indirect

EA=Ws EA =Wd Register direct

Each instruction is associated with a predefined addressing mode group, depending upon its
functional requirements. For most instructions, the dsPIC33A CPU can execute all of the following
functions in a single instruction cycle:

« Data memory read
+ Working register (data) read
+ Data memory write

@ MICROCHIP

56

3.3.4

+ Program (instruction) memory read

As a result, three-operand instructions can be supported, allowing A + B = C operations to be
executed in a single cycle.

Programmer’s Model

The programmer’s model for the dsPIC33A CPU is shown in Figure 3-2. All registers in the
programmer’'s model are memory-mapped and can be manipulated directly by instructions. Table
3-2 provides a description of each register in the programmer’s model.

In addition to the registers contained in the programmer’s model, the dsPIC33A devices contain
control registers for Modulo Addressing, Bit-Reversed Addressing and Interrupts. These registers are
described in subsequent sections of this document.

All registers associated with the programmer’s model are shown in Figure 3-2.

Table 3-2. Programmer's Model Register Descripons

Register(s) Name Description

WO through W15(" Working Register Array (Default Context)

WO through w7(1.2) Working Register Array (Alternate Context 1-7)
ACCA,ACCBM 72-bit DSP Accumulators (Context 0-7)

PC 24-bit Program Counter

SR(M ALU and DSP Engine Status Register

SPLIM Stack Pointer Limit Value Register

RCOUNT 32-bit REPEAT Loop Count Register (Context 0-7)
CORCON DSP Engine Configuration

Notes:

1. WO through W15, ACCx and SR are not mapped to memory.
2. WO through W7 are part of Alternate W register sets.

@ MICROCHIP

57

3.3.5

3.3.6

Figure 3-2. dsPIC33A CPU Programmer’s Model

Contexts 1-7

I'_l"_______________l-l
e WO/WREG || Note 1: W15[1:0] and SPLIM[1:0] always = 2’b00
willil Note 2: PC[0] always =1'b0
) || Note 3: CORCON register is also a part of all contexts
W2 |
w3 ||
w4 ||
ws| ||
wé _lﬁ
DSP/INTEGER wr L
OPERAND/ADDRESS <
REGISTERS ws
(CONTEXT 0) wo
w10
w11
w12
w13
FRAME POINTER / W14
_ 8b0 | STACK PTR /w151 00
31
| 8'b0 | SPLIM! | 00| STACK POINTER LIMIT
Contexts 1-7
Il.l.J':::::::::::::::::::.T\
AccA ||
DSP ACCUMULATORS
(CONTEXT 0) AccB
7 63 31 0
Contexts 1-7
,_r'_—_—_—_—_—::_l'l
| RCOUNT REPEAT LOOP COUNTER (CONTEXT 0)
31 0
23 0
PC2 o PROGRAM COUNTER
23 18 0
| vFA] | cmxz0) [oa|os][sa] sB|oaB[saB | IPL[3:0] [Ra[NJov]| z| c| sTATUSREGISTER (SR

DSP Engine and Instrucons

The DSP engine features:

+ Ahigh-speed, 33-bit by 33-bit multiplier

« A72-bitALU

+ Two 72-bit saturating accumulators

+ A 72-bit bidirectional barrel shifter, capable of shifting a 40-bit value up to 32 bits right, or up to
32 bits left, in a single cycle

The DSP instructions operate seamlessly with all other instructions and are designed for optimal
real-time performance. The MAC instruction, and other associated instructions, can concurrently
fetch two data operands from memory while multiplying two W registers. This requires that the data
space be split for these instructions and linear for all others.

ExcepOon Processing

The dsPIC33A devices have a vectored exception scheme, with up to eight possible sources of
non-maskable traps and up to 246 possible interrupt sources. Each interrupt source can be assigned
to one of seven priority levels.

In addition, each of the Alternate W register contexts can be associated with its own Interrupt
Priority Level (IPL) for exception handling. See 3.3.9. Alternate Working Register Arrays for more
information.

@ MICROCHIP

58

3.3.7
3.3.7.1

3.3.7.2

3.3.8

3.3.8.1

3.3.8.2

CPU Register Descripoons

SR: CPU STATUS Register

The dsPIC33A CPU has a 32-bit STATUS Register (SR). A detailed description of the CPU SR is shown
in3.2.17. SR.

SR contains:

« All ALU Operation Status flags
+ The CPU Interrupt Priority Level Status bits, IPL[3:0]
+ The REPEAT Loop Active Status bit, RA (SR[4])

+ The DSP Adder/Subtracter Status bits
The SR bits are readable/writable with the following exceptions:
+ The RA bit (SR[4]) is read-only

+ The OA, OB (SR[15:14]), OAB (SR[11]), SA, SB (SR[13:12]) and SAB (SR[10]) bits are readable and
writable; however, once set, they remain set until cleared by the user application, regardless of
the results from any subsequent DSP operations.

Note: Clearing the SAB bit also clears both the SA and SB bits. Similarly, clearing the OAB bit
also clears both the OA and OB bits. A description of the STATUS Register bits affected by each
instruction is provided in the “dsP/C33A Programmer’s Reference Manual”.

+ The CTX bit (SR[18:16]) is read-only; it reflects which W register context is currently in use by the
CPU

* The VF bit (SR[23]) is read-only

CORCON: Core Control Register
The Core Control register (CORCON) has bits that control the operation of the DSP multiplier.

Working Register Array

The Working (W) registers can function as data, address or address offset registers. The function of a
W register is determined by the addressing mode of the instruction that accesses it.

The dsPIC33A instruction set can be divided into two instruction types: Register instructions and File
register instructions.

Register InstrucOons

Register instructions can use each W register as a data value or an address offset value. Example 3-1
shows register instructions.

Example 3-1. Register Instrucbons

MOV.w WO, Wl ; move contents of WO to W1l
MOV.w WO, [W1] ; move WO to address contained in W1
ADD.w W0, [W4], W5 ; add contents of WO to contents pointed

; to by W4. Place result in W5.

File Register Instrucons
File register instructions operate on a specific memory address contained in the instruction opcode
and register, WO. WO is a special Working register used in File register instructions.

The File register address space is determined by the maximum address range of the file
instructions, which is either 64 KB (if a W-reg operand is required) or 1 MB (if no W-reg operand
is required), and encompasses the user RAM area and Special Function Registers (SFRs) within DS.

Example 3-2 shows File register instructions.

@ MICROCHIP

59

3.3.8.3

3.3.84

3.3.9

Example 3-2. File Register Instrucoons

ADD.w 0x4500, Wn ; (0x4500)+w0 -> 0x4500
ADD.w 0x4500, w0, Wn ; (0x4500)+w0 -> 0x4500
ADD.w 0x4500, w4, Wn ; (0x4500)+wd4 -> 0x4500

W Register Memory Mapping

The W registers are not memory-mapped, and thus, it is not possible to access a W register in a File
register instruction. This helps in eliminating data hazards.

W Registers and Byte Mode Instrucons

Byte instructions that target the W register array affect only the Least Significant Byte (LSB) of the
target register. Since the Working registers are memory-mapped, the LSB and the Most Significant
Byte (MSB) can be manipulated through byte-wide data memory space accesses.

Alternate Working Register Arrays

Alternate Working register arrays are a subset of the Working registers (W0 through W7). Depending
on the specific device, up to seven Alternate Working register arrays may be implemented. Each set
implements registers WO through W7, AccA, AccB, RCOUNT, and DSP related CORCON control bits
(US, SATA, SATB, SATDW, ACCSAT, RND, IF).

The Alternate W registers are not memory-mapped to data memory space just like the default W
array.

All W register arrays are persistent; that is to say, the contents of the default and Alternate W
registers do not change whenever the CPU switches to another set. This saves time by reducing
the amount of saving and restoring of register contents, making this very useful for time-critical
applications.

Each Alternate W array is inherently assigned to a respective IPL (e.g., IPL4 is assigned to Context 4)
and Interrupt Service Routine (ISR) in the application code. The Current Context Identifier (CTX[2:0])
status field is located within the Status Register (SR). Each context is associated with a specific
Interrupt Priority Level (IPLV). The context is exited during execution of RETFIE instruction of the
interrupt ISR.

During an exception processing, the (CTX[2:0]) status field located within the Status Register (SR)

is stacked. The stacked SR.CTX[2:0] represents the CPU register context in use at the time of the
exception. The value is updated whenever the register context is changed, either through automatic
interrupt-based hardware switching, or as the result of a context change brought about by the
execution of a CTXTSWP{W} instruction.

Depending on the device, different context Working register behavior can be observed with nested
interrupts.

Consider the example, as shown in Figure 3-3, where there are nested interrupts. In this case, the
system is configured as follows:

+ Timer1 interrupt with an Interrupt Priority Level (IPL) of 1. The Alternate Working Register Set 1
(CTX1) has an IPL of 1.

+ ADCANT1 interrupt with an IPL of 4. The Alternate Working Register Set 4 (CTX4) has an IPL of 4.
+ PWM1 interrupt with an IPL of 5, The Alternate Working Register Set 5 (CTX5) has an IPL of 5.

The application begins in the main function. At some point in time, the Timer1 interrupt flag is

set and the program jumps to the Timer1 ISR. The register set switches from the default Working
register set 0 to the Alternate Working register set 1, CTX1. At some point during the Timer1 ISR, the
ADCAN1 conversion completes, and its interrupt flag is set. Because it has a higher IPL, the program
jumps to the ADCANT1 ISR. The register set switches from the set 1, CTX1 Alternate Working register
set to the Alternate Working register set 4, CTX4. At some point during the ADCAN1 ISR, the PWM1

@ MICROCHIP

60

interrupt flag is set. Because the PWM1 IPL is higher than the ADCAN1 IPL, the program jumps to the
PWM?1 ISR and remains in the Alternate Working register set 5 CTX5.

Once the PWM ISR execution is completed, the program jumps back to the ADCAN1 ISR using CTX4.
Similarly, after the execution of the ADCAN1 ISR, the program jumps back to the Timer1 ISR using
CTX1. Exceptions above IPL7 (i.e., traps) will execute in whatever register context the CPU was in
prior to the trap event.

Figure 3-3. Nested Interrupt Context Flow for dsPIC33A Devices

Main
DEFAULT
v
IPL=1
IPL=1 Timer1 Interrupt IPL=1
T1IF (IFSO[BN)=1; | Timer1 Interrupt SET1 Timer1 Interrupt
SET1 SET1
IPL=4
IPL=4 IPL=4 ADCANT1 Interrupt
ADCAN1 Interrupt| ADCAN1IF (IFS6[15]) = 1; |ADCAN1 Interrupt SET4
SET4 SET4
IPL=5
IPL=5 IPL=5 PWM?1 Interrupt
PWM1 Interrupt PWM1 Interrupt | PWM1IF (IFS5[14]) = 1; SET5
SET5 SET5

Active Register Set1: SR.CTX=CTX1 Active Register Setd: SR.CTX=CTX4 Active Register Set5: SR.CTX=CTX5

3.3.9.1 Alternate Working Register Set

Alternatively, before enabling interrupts associated with a particular context, the application may
manually switch to it by executing the CTXTSWP instruction. CTXTSwWP does not affect the CPU IPL;
it is used to support software context switching for either context initialization, run-time usage of
contexts within procedure calls or the like, thus operating independently from the interrupt system.

3.3.10 SoOware Stack Pointer

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified
by exception processing, subroutine calls and returns; however, W15 can be referenced by any
instruction in the same manner as all other W registers. This simplifies reading, writing and
manipulating the Stack Pointer (for example, creating stack frames).

Note: To protect against misaligned stack accesses, W15[1:0] is fixed to ‘00" by the hardware.

W15 is initialized to 0x4000 during all Resets. This address ensures that the Software Stack Pointer
points to valid RAM in all dsPIC33A devices and permits stack availability for non- maskable trap
exceptions. These can occur before the SSP is initialized by the user software. Reprogramming the
SSP to any location within data space is possible during initialization.

The Software Stack Pointer always points to the first available free word in the data space (RAM) and
fills the software stack, working from lower toward higher addresses. Figure 3-4 illustrates how it
pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC[23:0] are pushed onto the first available stack word, as
shown in Figure 3-4.

61

@ MICROCHIP

Figure 3-4. Stack Opera®on for a CALL Instrucdon

31 0

8’h00, PC[23:1], 1’b0 |-« W15 (before CALL)
(Free Word) <& W15 (after CALL)

Stack Grows Towards
Higher Address

-
-

POP: [W15 - =4]
PUSH: [W15]+=4

3.3.10.1 SoOware Stack Examples

The software stack is manipulated using the PUSH and POP instructions. The PUSH and POP
instructions are the equivalent of a MOV instruction with W15 as the Destination Pointer. For
example, the contents of WO can be pushed onto the stack by:

PUSH WO

This syntax is equivalent to:

MOV.L WO, [W15++]

The contents of the Top-of-Stack (TOS) can be returned to WO by:
POP WO

This syntax is equivalent to:

MOV.L [--W15],WO0

Figure 3-5 through Figure 3-8 illustrate examples of how the software stack is used. Figure 3-5
illustrates the software stack at device initialization. W15 has been initialized to 0x00004000. This
example assumes the values, OXAAAAAAAA and 0xBBBBBBBB, have been written to WO and W1,
respectively. In Figure 3-6, the stack is pushed for the first time and the value contained in WO

is copied to the stack. W15 is automatically updated to point to the next available stack location
(0x00004004). In Figure 3-7, the contents of W1 are pushed onto the stack. Figure 3-8 illustrates how
the stack is popped and the Top-of-Stack value (previously pushed from W1) is written to W3.

Figure 3-5. Stack Pointer at Device Reset

0x00000000
W15

0x00004000

End of RAM

W15 = 0x00004000
WO = OxAAAAAAAA
W1 = 0xBBBBBBBB

62

@ MICROCHIP

Figure 3-6. Stack Pointer AQer the First PUSH Instrucéon

W15

0x000000

OxAAAAAAAA 0x004000
0x004004

End of RAM

W15 = 0x00004004
WO = OXAAAAAAAA
W1 = BBBBBBBB

Figure 3-7. Stack Pointer AQer the Second PUSH Instrucon

W15

0x000000
OxAAAAAAAA 0x004000

0xBBBBBBBB 0x004004
0x004008

End of RAM

W15 =0x00004008
WO = OXxAAAAAAAA
W1 = 0xBBBBBBBB

Figure 3-8. Stack Pointer AOer a POP InstrucBon

3.3.10.2 W14 SoOware Stack Frame Pointer

W15

0x000000

|OXAAAAAAAA 0x004000
0xBBBBBBBB' 0x004004

End of RAM

W15 = 0x00004004
0xBBBBBBBB—-W3

PUSH WO

PUSH W1

POP W3

A frame is a user-defined section of memory in the stack that is used by a single function. The
Working register, W14, can be used as a Stack Frame Pointer with the LNK (link) and ULNK (unlink)
instructions. W14 can be used in a normal Working register by instructions when it is not used as a

Frame Pointer.

3.3.10.3 Stack Pointer OverNow
The Stack Pointer Limit (SPLIM) register specifies the size of the stack buffer. SPLIM is a 32-bit
register, but SPLIM[1:0] is fixed to ‘00" because all stack operations must be long word-aligned.

The stack overflow check is not enabled until a Long word write to SPLIM occurs. After this, it can
only be disabled by a device Reset. All Effective Addresses (EAs), generated using W15 as a source
or destination, are compared against the value in SPLIM. If Effective Addresses (EAs) exceed the
contents of the SPLIM register, and a PUSH operation is performed, a stack error trap occurs on a
subsequent PUSH operation. For example, if it is desirable to cause a stack error trap when the stack
grows beyond address 0x5000 in RAM, initialize the SPLIM with the value Ox4FFC.

@ MICROCHIP

63

Note: A stack error trap can be caused by any instruction that uses the contents of the W15
register to generate an Effective Address (EA). Therefore, if the contents of W15 are greater than
the contents of the SPLIM register by a value of four, and a CALL instruction is executed or if an
interrupt occurs, a stack error trap is generated.

If stack overflow checking is enabled, a stack error trap also occurs if the W15 Effective Address
calculation wraps over the end of data space.

A pre/post inc/dec operation is performed on W15 that results in EA[1:0] != 2'b00 (i.e., not long word
aligned). This will detect byte and word pre/post inc/dec operations that are otherwise considered
aligned but would result in a misaligned Stack Pointer.

Note: A write to the SPLIM should not be followed by an indirect read operation using W15.

3.3.10.4 Stack Pointer UnderNow

3.3.11

The stack is initialized to 0x4000 during a Reset. A stack error trap is initiated if the Stack Pointer
address is less than 0x4000.

Note: Locations in data space between 0x0000 and Ox3FFF are, in general, reserved for core and
peripheral Special Function Registers (SFRs).

Arithme6c Logic Unit (ALU)

The dsPIC33A ALU is 32 bits wide and is capable of addition, subtraction, single bit shifts and

logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature.
Depending on the operation, the ALU can affect the values of the following bits in the STATUS
Register:

+ Carry (Q)

« Zero (2)

* Negative (N)

« Overflow (QV)

The ALU can perform 8/16-bit or 32-bit operations, depending on the mode of the instruction that is
used. Data for the ALU operation can come from the W register array or data memory depending on
the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W
register array or a data memory location.

Note:

1. Byte operations use the 16-bit ALU and can produce results in excess of eight bits. However, to
maintain backward compatibility with PIC" MCU devices, the ALU result from all byte operations
is written back as a byte (i.e., the MSB is not modified) and the STATUS Register is updated based
only upon the state of the LSB of the result.

3.3.11.1 Byte to Word Conversion

3.3.12

The dsPIC33A CPU has two instructions that are helpful when mixing 8-bit and 16-bit ALU
operations.

The Sign-Extend (SE) instruction takes a byte value in a W register or data memory and creates a
sign-extended word value that is stored in a W register.

The Zero-Extend (zE) instruction clears the 8 MSbs of a word value in a W register or data memory
and places the result in a destination W register.

DSP Engine

The DSP engine is a block of hardware that is fed data from the W register array, but contains its
own specialized result registers. The DSP engine is driven from the same instruction decoder that
directs the MCU ALU. In addition, all operand Extended Addresses (EAs) are generated in the W
register array. Concurrent operation with MCU instruction flow is not possible, though both the MCU
ALU and DSP engine resources can be shared by all instructions in the instruction set.

@ MICROCHIP

64

The DSP engine consists of the following components:

+ High-speed, 33-bit by 33-bit multiplier

+ Barrel shifter

+ 72-bit adder/subtractor

« Two target Accumulator registers

* Rounding logic with selectable modes

+ Saturation logic with selectable modes

Data input to the DSP engine is derived from one of the following sources:

+ Directly from the W array for dual source operand DSP instructions. Data values fetched via the X
and Y memory data buses.

« From the X memory data bus for all other DSP instructions.
Data output from the DSP engine is written to one of the following destinations:

+ The target accumulator, as defined by the DSP instruction being executed.
+ The X memory data bus to any location in the data memory address space.

The DSP engine can perform inherent accumulator-to-accumulator operations that require no
additional data.

The MCU shift and multiply instructions use the DSP engine hardware to obtain their results. The X
memory data bus is used for data reads and writes in these operations.

Figure 3-9 illustrates a block diagram of the DSP engine.

@ MICROCHIP

65

Figure 3-9. DSP Engine Block Diagram

72-bit Accumulator A
72-bit Accumulator B

Y
Round
Logic
ajeinjeg

Saturated 32-bit

Shifter
X Data Bus

Sign/Zero Extend

A

Zero
Backfill

—

33-bit
Multiplier/Scaler

R

To/From W Array (clocked on core_clk)

3.3.12.1 Data Accumulators
Two 72-bit data accumulators, ACCA and ACCB, are the Result registers for the DSP instructions
listed in 3.3.12.2.1. DSP Multiply Instructions. Each accumulator is not memory-mapped and is
referred as these three registers, where ‘x’ denotes the particular accumulator:

+ ACCxL: ACCx[31:0]
*+ ACCxH: ACCx[63:32]
*+ ACCxU: ACCx[71:64]

For fractional operations that use the accumulators, the radix point is located to the right of bit 31.
The range of fractional values that can be stored in each accumulator is -256 to +(256 - 2**-63).

@ MICROCHIP

For integer operations that use the accumulators, the radix point is located to the right of bit 0.
The range of integer values that can be stored in each accumulator is -0x80_00000000_00000000 to
Ox7F_FFFF_FFFF_FFFF_FFFF.

3.3.12.2 Muleplier
The dsPIC33A devices feature a 33-bit-by-33-bit multiplier shared by both the MCU ALU and the DSP
engine. The multiplier is capable of signed, unsigned or mixed-sign operation and supports either
9.31 fractional (Q.31) or 64-bit integer results.

The multiplier takes in 32-bit input data and converts the data to 33 bits. Signed operands to

the multiplier are sign-extended. Unsigned input operands are zero-extended. The internal 33-bit
representation of data in the multiplier allows correct execution of mixed-sign and unsigned 32-bit
by 32-bit multiplication operations.

The representation of data in hardware for Integer and Fractional Multiplier modes is as follows:

+ Integer data is inherently represented as a signed two's complement value, where the Most
Significant bit (MSb) is defined as a Sign bit. Generally speaking, the range of an N-bit two's
complement integer is -2(N-1) to 2(N-1)-1,

+ Fractional data is represented as a two's complement fraction, where the MSb is defined as a
Sign bit and the radix point is implied to lie just after the Sign bit (Q.X format). The range of an
N-bit two's complement fraction with this implied radix point is -1.0 to (1 - 20-N),

The range of data in both Integer and Fractional modes is listed in Table 3-3. Figure 3-10 and Figure
3-11 illustrate how the multiplier hardware interprets data in Integer and Fractional modes.

The Integer or Fractional Multiplier Mode Select (IF) bit (CORCON[O0]) determines integer/ fractional
operation for the instructions listed in Table 3-4. The IF bit does not affect MCU multiply instructions
listed in Table 3-5, which are always integer operations. The multiplier scales the result one bit to
the left for fractional operation. The LSb of the result is always cleared. The multiplier defaults to
Fractional mode for DSP operations at a device Reset.

Table 3-3. dsPIC33A Data Ranges

Register Size Integer Range Fraction Range Fraction Resolution

16-Bit -32768 to -1.0to (1.0 - 2715 (Q1.15 3.052x10°
32767 Format)

32-Bit -2,147,483,648t0 -1.0to (1.0 - 2-31) (Q1.31 4.657x10710
2,147,483,647 Format)

64-Bit -9.223372037e18 to -1.0to (1.0 - 2%3) (Q.1.63 1.08420x101°
9.223372037e18 Format)

72-Bit -2.361183241e21 to -256.0 to (256.0 - 2°%3) (Q.9.63 1.08420x107°
2.361183241e21 Format with 8 Guard bits)

@ MICROCHIP

Figure 3-10. Integer and FracOonal Representadon of 0x40000001

Different Representations of 0x40000001

Integer:

[olifofojofofofoJofojoJofoJojofs]
-2°31 230 2°29

20
0x40000001 = 2430+270 = 1073741825
1.31 Fractional:
(o] 1]o]o]o]o]o]o o o o]o]o]o]o s
'20 - 21 2-2 2_3.... 2—15

0x40000001 = 27-1+27-31 = 0.5000000005
0x4001 =2 + 2% = 0.500030518
Figure 3-11. Integer and FracBonal Representadon of 0xC0000002

Different Representations of 0xC0000002

Integer:

L2 sfofofofofofofofofofofofofa]o]

243120302429 20
0xC0000002 = 2A31+2/29+2"1=49154

1.15 Fractional:

2-15

0xC0000002 = -270+2"-1+2"-30 = 1-0.5-9.313225746e-10 = 0.4999999991

3.3.12.2.1 DSP Mul®ply Instrucons
The DSP instructions that use the multiplier are summarized in Table 3-4.

Table 3-4. DSP Instrucoons that Use the MulBplier

MAC Multiply and Add to Accumulator or Square and Add to a=a+b*ca=a+b2
Accumulator

MSC Multiply and Subtract from Accumulator a=a-b*c
MPY Multiply a=b*c
Note:

1. DSPinstructions using the multiplier can operate in signed or unsigned Fractional (1.15/1.31) or Integer modes.

- 68
@ MICROCHIP

........... continued

MPYN Multiply and Negate Result a=-b*c
SOR Square to Accumulator a=br2
SQRAC Square and Accumulate a=a+br2)
ED Partial Euclidean Distance a=(b-cp
EDAC Add Partial Euclidean Distance to the Accumulator a=a+(b-cp
Note:

1. DSP instructions using the multiplier can operate in signed or unsigned Fractional (1.15/1.31) or Integer modes.

The DSP Multiplier Unsigned/Signed Control (US) bits (CORCONI[12]) determine whether the DSP
multiply instructions are signed (default) or unsigned. The US bits do not influence the MCU multiply
instructions, which have specific instructions for signed or unsigned operation. If the USx bits are set
to ‘01’, the input operands for instructions shown in Table 3-4 are considered as unsigned values,
which are always zero-extended into the 33rd bit of the multiplier value. If the USx bits are set to
‘00’, the operands are sign-extended.

If the USx bits (CORCON[13:12]) are set to ‘10, the operands for the instructions listed above
are considered as unsigned values. The result is zero-extended prior to any operation with the
accumulator (which will always effectively be signed).

3.3.12.2.2 MCU Mul©ply Instrucons
The same multiplier supports the MCU multiply instructions, which include integer, 32-bit signed,
unsigned and mixed-sign multiplies, as shown below. All multiplications performed by the MUL
instruction produce integer results. The MUL instruction can be directed to use byte or word- sized
operands. Byte input operands produce a 16-bit result and word input operands produce either a
16-bit result or a 32-bit result, either to the specified register(s) in the W array or to an accumulator.
Word input operands produce a 32-bit result and word input operands produce either a 32-bit
result or a 64-bit result, either to the specified register(s) in the W array or to an accumulator.

Table 3-5. MCU InstrucBons that UBlize the MulBplier

MCU Instruction™ Description

MUL/MUL . UU Multiply two unsigned integers and generate 64-bit results.

MUL.SS Multiply two signed integers and generate 64-bit results.

MUL.SU/MUL.US Multiply a signed integer with an unsigned integer and
generate 64-bit results.

MULD. UU Multiply two unsigned integers and generate 72-bit results.

MULD. SS Multiply two signed integers and generate 72-bit results.

MULD.SU/ MULD.US Multiply a signed integer with an unsigned integer and
generate a 72-bit result.

MULW. UU Multiply two unsigned integers and generate 32-bit results.

MULW.SS Multiply two signed integers and generate 32-bit results.

MULW.SU/MULW. US Multiply a signed integer with an unsigned integer and
generate a 32-bit result.

MULB Multiply two unsigned 8-bit integers and generate 16-bit
results.

MULW Multiply two unsigned 16-bit integers and generate 32-bit
results.

MULL Multiply two unsigned 32-bit integers and generate 32-bit
results.

Note:

1. MCU instructions using the multiplier operate only in Integer mode.

69

@ MICROCHIP

3.3.12.3 Data Accumulator Adder/Subtractor

The data accumulators have a 72-bit adder/subtractor with automatic sign extension or zero
extension logic for the multiplier result. It can select one of two accumulators (A or B) as its
pre-accumulation source and post-accumulation destination. For the ADD (accumulator) and LAC
instructions, the data to be accumulated or loaded can optionally be scaled via the barrel shifter
prior to accumulation.

The 72-bit adder/subtractor can optionally negate one of its operand inputs to change the sign of
the result (without changing the operands). The negate is used during multiply and subtract (Msc) or
multiply and negate (MPYN) operations.

The 72-bit adder/subtractor has an additional saturation block that controls accumulator data
saturation, if enabled.

3.3.12.3.1 Accumulator Status Bits

Six STATUS Register bits that support saturation and overflow are located in the CPU STATUS
Register (SR) and are listed in Table 3-6.

Table 3-6. Accumulator OverNow and SaturaBon Status Bits

OA ([15]) Accumulator A overflowed into guard bits (ACCA[71:63])
OB ([14]) Accumulator B overflowed into guard bits (ACCB[71:63])
SA ([13]) ACCA saturated (bit 63 overflow and saturation) or

ACCA overflowed into guard bits and saturated (bit 71 overflow and saturation)
SB ([12]) ACCB saturated (bit 63 overflow and saturation) or

ACCB overflowed into guard bits and saturated (bit 71 overflow and saturation)
OAB ([11]) OA logically ORed with OB, clearing OAB clears both OA and OB
SAB ([10]) SA logically ORed with SB, clearing SAB clears both SA and SB

The OA and OB bits are modified each time data passes through the accumulator add/subtract logic.
When set, they indicate that the most recent operation has overflowed into the accumulator guard
bits (ACCx[71:64]). This type of overflow is not catastrophic; the guard bits preserve the accumulator
data. The OAB Status bit is the logically OR value of OA and OB.

The OA and OB bits, when set, can optionally generate an arithmetic error trap. The trap is enabled
by setting the corresponding Overflow Trap Flag Enable bit (OVATE or OVBTE) in Interrupt Control
Register 4 (INTCON4[10:9]) in the interrupt controller. The trap event allows the user to take
immediate corrective action, if desired.

The SA and SB bits can be set each time data passes through the accumulator saturation logic.
Once set, these bits remain set until cleared by the user application. The SAB Status bit indicates the
logical OR value of SA and SB. When set, these bits indicate that the accumulator has overflowed

its maximum range (bit 63 for 64-bit saturation or bit 71 for 72-bit saturation) and are saturated (if
saturation is enabled).

When saturation is not enabled, the SA and SB bits indicate that a catastrophic overflow has
occurred (the sign of the accumulator has been destroyed). If the Catastrophic Overflow Trap Enable
(COVTE) bit (INTCON4[8]) is set, SA and SB bits will generate an arithmetic error trap when saturation
is disabled. The SA and SB bits can be set in software, enabling efficient context state switching.

3.3.12.3.2 Satura®on And OverNow Modes
The dsPIC33A CPU supports three Saturation and Overflow modes.

+ Accumulator 71-Bit Saturation

In this mode, the saturation logic loads the maximally positive 9.63 value
(OX7F_FFFF_FFFF_FFFF_FFFF) or maximally negative 9.63 value (0x80_0000_0000_0000_0000) into

70

@ MICROCHIP

the target accumulator. The SA or SB bit is set and remains set until cleared by the user
application. This Saturation mode is useful for extending the dynamic range of the accumulator.

To configure for this mode of saturation, set the Accumulator Saturation Mode Select (ACCSAT)
bit (CORCONT[4]). Additionally, set the ACCA Saturation Enable (SATA) bit (CORCON[7] and/or the
ACCB Saturation Enable (SATB) bit (CORCON[6]) to enable accumulator saturation.

+ Accumulator 63-Bit Saturation
In this mode, the saturation logic loads the maximally positive 1.63 value
(Ox00_7FFF_FFFF_FFFF_FFFF) or maximally negative 1.63 value (OxFF_8000_0000_0000_0000) into
the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When
this Saturation mode is in effect, the guard bits, 64 through 71, are not used except for sign
extension of the accumulator value. Consequently, the OA, OB or OAB bits in SR are never set.

To configure for this mode of overflow and saturation, the ACCSAT (CORCONT[4]) bit must be
cleared. Additionally, the SATA (CORCON[7]) and/or SATB (CORCON][6]) bits must be set to enable
accumulator saturation.

« Accumulator Catastrophic Overflow
If the SATA (CORCONT[7]) and/or SATB (CORCON[6]) bits are not set, then no saturation operation
is performed on the accumulator, and the accumulator is allowed to overflow all the way up to
bit 71 (destroying its sign). If the Catastrophic Overflow Trap Enable (COVTE) bit (INTCON4[8] in
the interrupt controller) is set, a catastrophic overflow initiates an arithmetic error trap.

Accumulator saturation and overflow detection can only result from the execution of a DSP
instruction that modifies one of the two accumulators via the 72-bit DSP ALU. Saturation and
overflow detection do not take place when the accumulators are accessed via the MCU class

of instructions. Furthermore, the Accumulator Status bits shown in Table 3-6 are not modified.
However, the MCU Status bits (Z, N, C, OV, DC) will be modified, depending on the MCU instruction
that accesses the accumulator.

3.3.12.3.3 Data Space Write Saturadon
In addition to adder/subtractor saturation, writes to data space can be saturated without affecting
the contents of the source accumulator. This feature allows data to be limited, while not sacrificing
the dynamic range of the accumulator during intermediate calculation stages. Data space write
saturation is enabled by setting the data space write from the DSP Engine Saturation Enable
(SATDW) Control bit (CORCON[5]). Data space write saturation is enabled by default at a device
Reset.

The data space write saturation feature works with the sAC and SACR instructions. The value held
in the accumulator is never modified when these instructions are executed. The hardware takes the
following steps to obtain the saturated write result:

1. Theread data is scaled based upon the arithmetic shift value specified in the instruction.
2. The scaled data is rounded (SACR only).

3. For Word mode instruction, scaled/rounded value is saturated to a 16-bit result based on the
value of the guard bits. For data values greater than 0x007FFF, the data written to memory is
saturated to the maximum positive 1.15 value, Ox7FFF. For input data less than OxFF8000, data
written to memory is saturated to the maximum negative 1.15 value, 0x8000. Similarly, the data
written to memory is saturated to maximum positive/negative 1.31 value for Long Word mode
operation.

3.3.12.3.4 Accumulator Write Back
The MAC and MSC instructions can optionally write a rounded version of the accumulator that is
not the target of the current operation into data space memory. The write is performed across the
X-bus into the combined X and Y address space. This accumulator write-back feature is beneficial in
certain algorithms, such as FFT and LMS filters.

Two addressing modes are supported by the accumulator write-back hardware:

@ MICROCHIP

+ WO, W1, W2, W3 or W13, Register Direct: The rounded contents of the non-target accumulator
are written into the destination register as a 1.15 (Word mode) or 1.31 (Long Word mode)
fractional result.

« [W13++] or [W15++], Register Indirect with Post-Increment: The rounded contents of the non-
target accumulator are written into the address pointed to by W13 or W15 as a 1.15 (Word
mode) or 1.31 (Long Word mode) fraction. W13 or W15 is then incremented by 2/4 depending on
selected Word/Long Word mode. [W15++] is equivalent to a push onto the system stack.

3.3.12.4 Round Logic
The round logic can perform a conventional (biased) or convergent (unbiased) round function during
an accumulator write (store). The Round mode is determined by the state of the Rounding Mode
Select (RND) bit (CORCON[1]). It generates a 16-bit 1.15 or 32-bit 1.31 data value, which is passed to
the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15
or 1.31 data value is stored.

The two Rounding modes are shown in Figure 3-12. Conventional rounding takes bit 31 of the
accumulator, zero-extends it and adds it to the most significant word (msw), excluding the guard or
overflow bits (bits 32 through 63). If the least significant word (Isw) of the accumulator is between
0x80000000 and OxFFFFFFFF (0x80000000 included), the msw is incremented. If the Isw of the accu-
mulator is between 0x0000 and 0x7FFFFFFF, the msw remains unchanged. A consequence of this
algorithm is that over a succession of random rounding operations, the value tends to be biased
slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding except
when the Isw equals 0x80000000. If this is the case, the LSb of the msw (bit 16 of the accumulator) is
examined. If it is ‘1’, the msw is incremented. If it is ‘0’, the msw is not modified. Assuming that bit 16
is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The saC and SACR instructions store either a truncated (SAC) or rounded (SACR) version of the
contents of the target accumulator to data memory via the X-bus (subject to data saturation).

For the MAC class of instructions, the accumulator write-back data path is always subject to

rounding. An overflow that occurs as a consequence of a rounding operation will also be subject
to saturation.

Figure 3-12. ConvenBonal and Convergent Rounding Modes

Conventional (Biased) Convergent (Unbiased)
16 15 0 32 31 0
msw 1XXX XXXX XXXX XXXX msw 1 1000 0000 0000 0000
Round Up (add 1 to msw) when: Round Up (add 1 to msw) when:
Isw =0x80000000 1. Isw = 0x80000000 and bit 32
=1
16 15 0 32 31 0
msw |Oxxx XXXX XXXX XXXX msw O| | 1000 0000 0000 0000
Round Down (add nothing) when: Round Down (add nothing) when:
Isw < 0x80000000 1. Isw = 0x80000000 and bit 32 =
0

3.3.12.5 Barrel ShiOer

The barrel shifter can perform up to a 32-bit arithmetic right shift, or up to a 32-bit left shift, in a
single cycle. DSP or MCU instructions can use the barrel shifter for multibit shifts.

@ MICROCHIP

The shifter requires a signed binary value to determine both the magnitude (humber of bits) and
direction of the shift operation:

+ A positive value shifts the operand right
« A negative value shifts the operand left
+ Avalue of ‘0’ does not modify the operand

The barrel shifter is 72 bits wide to accommodate the width of the accumulators. A 72-bit output
result is provided for DSP shift operations, and a 32-bit result is provided for MCU shift operations.

Table 3-7 provides a summary of instructions that use the barrel shifter.

Table 3-7. InstrucOons that Use the DSP Engine Barrel ShiQer

ASR Arithmetic multibit right shift of data memory location
LSR Logical multibit right shift of data memory location

SL Multibit shift left of data memory location

SAC Store DSP accumulator with optional shift

SFTAC Shift DSP accumulator

3.3.12.6 DSP Engine Mode SelecOon

These operational characteristics of the DSP engine, discussed in previous sections, can be selected
through the CPU Core Configuration register (CORCON):

« Fractional or integer multiply operation

+ Conventional or convergent rounding

+ Automatic saturation on/off for ACCA

+ Automatic saturation on/off for ACCB

+ Automatic saturation on/off for writes to data memory
« Accumulator Saturation mode selection

3.3.12.7 DSP Engine Trap Events

Arithmetic error traps that can be generated for handling exceptions in the DSP engine are selected
through the Interrupt Control Register 4 (INTCON4). These are:

« Trap on ACCA overflow enable using OVATE (INTCON4[21])
+ Trap on ACCB overflow enable using OVBTE (INTCON4[20])

« Trap on catastrophic ACCA and/or ACCB overflow enable using COVTE (INTCON4[19]).
Occurrence of the traps is indicated by these error status bits:

- OVAERR (INTCONA4[5])
- OVBERR (INTCON4[4])
- COVAERR (INTCON4[3])
- COVBERR (INTCON4[2])

An arithmetic error trap is also generated when the user application attempts to shift a value
beyond the maximum allowable range (+32 bits) using the SFTAC instruction. This trap source
cannot be disabled and is indicated by the Shift Accumulator Error Status (SFTACERR) bit
(INTCON4[1] in the interrupt controller). The instruction will execute, but the results of the shift
are not written to the target accumulator.

3.3.13 Divide Support
The dsPIC33A CPU supports the following types of division operations:

73

@ MICROCHIP

3.3.14

3.3.15

+ DIVE: 16/16 signed fractional divide

* DIVF:32/16 signed fractional divide

* DIVF.L:32/32 signed fractional divide
* DIV.SL:32/32 signed divide

+ DIV.UL:32/32 unsigned divide

* DIV.S:32/16 signed divide

* DIV.U:32/16 unsigned divide

+ DIV.S:16/16 signed divide

+ DIV.U:16/16 unsigned divide

The quotient for all divide instructions can placed in any Working register, Wm. The remainder is
placed in W(m+1). The 32/16-bit divisor can be located in any W register. A 32/16-bit dividend can
be located in any W register. The integer 16/16 divide instructions will either zero or sign extend the
least significant dividend word into the most significant dividend word during the first iteration to
create a 32-bit dividend.

All 16-bit/16-bit and 32-bit/16-bit divide instructions are iterative operations and must be executed
six times within a REPEAT loop. All 32-bit/32-bit divide instructions are iterative operations and must
be executed ten times within a REPEAT loop.

The developer is responsible for programming the REPEAT instruction. A complete divide operation
takes seven or eleven instruction cycles to execute.

The divide flow is interruptible, just like any other REPEAT loop. All data is restored into the
respective data registers after each iteration of the loop, so the user application is responsible for
saving the appropriate W registers in the ISR. Although they are important to the divide hardware,
the intermediate values in the W registers have no meaning to the user application. The divide
instructions must be executed seven or eleven times in a REPEAT loop to produce a meaningful
result.

A divide-by-zero error generates a math error trap. This condition is indicated by the Arithmetic
Error Status (DIVOERR) bit (INTCON4[0] in the interrupt controller).

InstrucOon Flow Types

Most instructions in the dsPIC33A architecture occupy a single word of program memory and
execute in a single cycle. However, some instructions take two or more instruction cycles to execute.
Consequently, there are seven different types of instruction flow in the dsPIC DSC architecture.

Loop Constructs

The dsPIC33A CPU supports two REPEAT constructs to provide unconditional automatic program
loop control. The REPEAT instruction implements a single instruction program loop. REPEAT
instructions use control bits within the CPU STATUS Register (SR) to temporarily modify CPU
operation.

3.3.15.1 REPEAT Loop Construct

The REPEAT instruction causes the instruction that follows it to be repeated a specified number of
times. A literal value contained in the instruction, or a value in one of the W registers, can be used
to specify the REPEAT count value. The W register option enables the loop count to be a software

variable.

An instruction in a REPEAT loop is executed at least once. The number of iterations for a
REPEAT loop is the 20-bit literal value + 1 or Wn + 1. The syntax for the two forms is shown in
3.3.15.1. REPEAT Loop Construct.

@ MICROCHIP

74

Example 3-3. REPEAT Loop Construct

; Using a literal value as a counter
REPEAT #1it20 ; RCOUNT <-- 1it20
(Valid target Instruction)

; Using a W register as a counter
REPEAT Wn ; RCOUNT <-- Wn
(Valid target Instruction)

3.3.15.1.1 REPEAT Operabon
The loop count for REPEAT operations is held in the 32-bit Repeat Loop Counter register (RCOUNT),

which is memory-mapped. RCOUNT is initialized by the REPEAT instruction. The REPEAT instruction
sets the REPEAT Loop Active (RA) Status bit (SR[4]) to ‘1" if the RCOUNT is a non-zero value.

RA is a read-only bit and cannot be modified through software. For REPEAT loop count values
greater than ‘0’, the Program Counter is not incremented. Furthermore, Program Counter
increments are inhibited until RCOUNT = 0.

For a loop count value equal to ‘0, REPEAT has the effect of a NOP and the RA (SR[4]) bit is not set.
The REPEAT loop is essentially disabled before it begins, allowing the target instruction to execute
only once while pre-fetching the subsequent instruction (i.e., normal execution flow).

Note: The instruction immediately following the REPEAT instruction (i.e., the target instruction) is
always executed at least one time and it is always executed one time more than the value specified
in the 20-bit literal or the W register operand.

3.3.15.1.2 Interrup©ng a REPEAT Loop
A REPEAT instruction loop can be interrupted at any time.
The state of the RA bit is preserved on the stack during exception processing to enable the user

application to execute further REPEAT loops from within any number of nested interrupts. After SR
is stacked, the RA Status bit is cleared to restore normal execution flow within the ISR.

Note: If a REPEAT loop has been interrupted, and an ISR is being processed, the user application
must stack the Repeat Count register (RCOUNT) before it executes another REPEAT instruction
within an ISR.

If a REPEAT instruction is used within an ISR, the user application must unstack the RCOUNT register
before it executes the RETFIE instruction.

Returning into a REPEAT loop from an ISR using the RETFIE instruction requires no special handling.
RETFIE pops the PC and that becomes the address of the next instruction to be fetched in its F-stage.
The RETFIE instruction is "padded" with FNOPs (2) so the target instruction of the RETFIE PFC can
execute as normal.
Early TerminaBon of a REPEAT Loop
An interrupted REPEAT loop can be terminated earlier than normal in the ISR by clearing the
RCOUNT register in software.

3.3.15.1.3 RestricGons on the REPEAT Instrucon
Any instruction can immediately follow a REPEAT except for the following:

+ Program Flow Control instructions (any branch, compare and skip, subroutine calls, returns, etc.)
* Another REPEAT or DTB instruction

* DISICTL, ULNK, LNK, PNRSAV Or RESET instruction

- MOV.D instruction

Note: Some instructions and/or Instruction Addressing modes can be executed within a
REPEAT loop, but it might not make sense to repeat all instructions.

@ MICROCHIP

3.3.16 Data Space Address Generabon Units (AGUs)

dsPIC33AK128MC106 family devices contain three independent address generator units. The X
RAGU and X WAGU support byte (.b), word (.w) and long (.I) word sized data space reads and writes,
respectively, for MCU instructions, and word or long word reads and writes for DSP instructions. The
Y AGU supports word and long word sized data reads for the DSP MAC-class of instructions only.
The AGUs are each capable of supporting two types of data addressing:

+ Linear Addressing
« Modulo (circular) Addressing

In addition, the X WAGU can support Bit-Reversed Addressing.

Linear and Modulo Data Addressing modes can be applied to any address within the unified address
space. Although Bit- Reversed Addressing will work with any EA calculation, by definition it is only
applicable to data space.

Data space memory is organized as 32-bit words; all Effective Addresses (EAs) point to bytes.
Instructions can thus access any byte or aligned word (data words at an even byte address) or
aligned long word (data words at an even 32-bit word address).

Misaligned accesses are not supported, and if attempted they will initiate an address error trap. The
least significant 2 bits of the EA is used to determine the byte or upper/lower 16-bit word access.
EA[O] will always be 1'b0 for word accesses, and EA[1:0] will always be 2'b00 for long word accesses.

SFRs and RAM support byte, word, and double word read or write operations.

When executing instructions that require just one source operand to be fetched from (and one
result to be written back to) data space, the X RAGU and X WAGU are used to calculate the EAs of the
source and destination, respectively. The AGUs can generate an address to point to anywhere in the
16 Mbyte address space. They support all MCU addressing modes and Modulo Addressing for low
overhead circular buffers. The X WAGU also supports Bit-Reversed Addressing to facilitate FFT data
reorganization.

When executing instructions which require two source operands to be concurrently fetched (i.e. the
MAC class of DSP instructions), both the X RAGU and Y AGU are used simultaneously.

The dsPIC33AK128MC106 device family contains an X AGU and a Y AGU for generating data memory
addresses. Both X and Y AGUs can generate any EA within the available data memory range.
However, EAs that are outside of the physical memory provided return all zeros for data reads and
writes to those locations and therefore have no effect. Furthermore, an address error trap will be
generated. For more information on address error traps, refer to 10. Interrupt Controller.

3.3.16.1 Address GeneraGon Units and DSP Class InstrucGons
The Y AGU and Y memory data path are used in concert with the X RAGU by the DSP class of
instructions to provide two concurrent data read paths. For example, the MAC instruction can
simultaneously fetch two operands to be used in the next multiplication.

DSP class of instructions may use any W-reg (except W15) for either X or Y address space accesses,
unlike previous dsPIC devices. Any data write performed by a DSP class instruction takes place in the
combined X and Y data space and the write occurs across the X-bus. Consequently, the write can be
to any address regardless of where the EA is directed.

The Y AGU only supports Post-Modification Addressing modes associated with the DSP class of
instructions. The Y AGU also supports Modulo Addressing for automated circular buffers. All other
(MCU) class instructions can access the Y data address space through the X AGU when it is regarded
as part of the composite linear space.

3.3.16.2 Data Alighment
The ISA supports long word (32-bit), word (16-bit) and byte (8-bit) sized operations. Data is aligned
in data memory and registers as long words, but all data space EAs resolve to bytes. Data word and
byte reads will read the complete 32-bit word that contains the word or byte, using the LSbs of any

@ MICROCHIP

3.3.17

EA to determine which word or byte to select within the CPU. The selected word or byte is placed
onto the Isw or byte of the X data path (no byte accesses are possible from the Y data path as the
MAC-class of instruction can only fetch words or long words). That is, data memory and registers are
organized as four parallel byte-wide entities with a shared (long word) address decode but separate
write lines. Data byte writes will only write to the corresponding side of the array or register which
matches the byte address.

Note: Byte reads will always read the entire word, so mechanisms to clear or set peripheral status
bits when read (e.g. quick flag clearing mechanisms) are not allowed.

As a consequence of this byte addressability, all EA calculations must be scaled to step through
long word aligned memory. For example, the core must recognize that post modified register
indirect addressing mode, [Ws]+=1, will result in a value of Ws+1 for byte operations, Ws+2 for word
operations, and Ws+4 for long word operations.

Misaligned word or long word accesses are not supported. For word accesses, the LSb of the EA
must be 1'b0. For long word accesses, the least significant 2 bits of the EA must be 2'b00. Therefore,
care must be taken when mixing operations of different data widths or translating from 16-bit
dsPIC code. Should a misaligned read or write be attempted, an address error trap will be forced.
If the fault occurs during a read access, the read will be allowed to complete. If the fault occurs
during a write access, the write will also be allowed to complete (inhibiting the write would have
been possible but inconsistent with other situations where an errant write could not be inhibited).
In both cases, the address error trap will be asserted. The next instruction (already pre-fetched
and underway) will be executed while the exception is arbitrated and acknowledged. When this
instruction completes, the trap will then be taken, allowing the system and/or user to examine the
machine state subsequent to execution of the address fault.

Note: Byte and word ALU operations can produce results in excess of a byte or a word. However,
to maintain 16-bit dsPIC backwards code compatibility, the ALU result destination write from all
operations maintains the same width as that of the source operands (i.e. MSbs of the destination
are not modified) and the SR is updated based only upon the state of the result data.

A sign extend (SE) instruction is provided to allow users to translate 8-bit to16-bit, and 16-bit to
32-bit signed values. Alternatively, for unsigned data, users can clear the MS portion of any W
register through executing a byte or word zero extend (ZE).

Note: Care must be taken when mixing byte and word size instructions/operands.

Although most instructions are capable of operating on long word, word or byte data sizes, it should
be noted that the DSP and some other instructions operate on long word or word sized data only.

Figure 3-13. Data Alignment

31 23 15 7 o Address
Byte 3 | Byte2 |Byte1 |Byte0 | 24’h00_0000

Byte 7 | Byte6 | Byte5 | Byte 4 24’h00_0004

Byte 11) Byte10| Byte9 | Byte 8 24’h00_0008

MAC Instrucons

The dual source operand DSP instructions (ED, EDAC, MAC, MPY, MPYN, SQR, SQRAC, MSC, SQRSC and
SQRN), also referred to as MAC instructions, use a simplified set of addressing modes to allow the
user application to effectively manipulate the Data Pointers through register indirect tables.

These instructions support various addressing modes for X and Y data bus, where W-registers
accessing these data buses may be any W-reg (except W15) for either X or Y address space accesses.
Pre or post modification values are scaled based upon instruction operand width. The MAC-class
instruction also supports the ability to write the contents of the accumulator that is not being used

@ MICROCHIP

77

3.3.18

as the instruction result destination to a memory or W-register as defined by the instruction with a
restricted set of addressing modes. This is referred to as the Accumulator Write Back (AWB).

Note:
AWB is only intended for use when the DSP engine is operating in fractional data mode. It can only
write the MS portion of the target accumulator fractional value.

MAC-class instructions are no longer tied to operand reads of X and Y address space. Operands
may both be sourced from X-space, resulting in reading the operand data sequentially rather than
concurrently. This will add an additional RAM data fetch delay (typically one cycle) to all such
instructions.

Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data
buffers using hardware. The objective is to remove the need for software to perform data address
boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism
is essentially the same for both). One circular buffer can be supported in each of the X (which also
provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on
any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since
these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there
are certain restrictions on the buffer start address (for incrementing buffers) or end address (for
decrementing buffers) based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these
buffers satisfy the start and end address criteria, they can operate in a Bidirectional mode (that is,
address boundary checks are performed on both the lower and upper address boundaries).

3.3.18.1 Start and End Address

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded
into the 24-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND.

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is
always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between
the corresponding start and end addresses. The maximum possible length of the circular buffer is
32K words (64 Kbytes).

3.3.18.2 W Address Register Selecoon

The Modulo and Bit-Reversed Addressing Control register, MODCON[15:0], contains enable flags, as
well as a W register field to specify the W Address registers. The XWM and YWM fields select the
registers that operate with Modulo Addressing:

« IfXWM=1111, X RAGU and X WAGU Modulo Addressing is disabled
« IfYWM=1111,Y AGU Modulo Addressing is disabled

The X Address Space Pointer W (XWM) register, to which Modulo Addressing is to be applied, is
stored in MODCON[3:0]. Modulo Addressing is enabled for X Data Space when XWM is set to any
value other than ‘1111" and the XMODEN bit is set (MODCONI[15]).

The Y Address Space Pointer W (YWM) register, to which Modulo Addressing is to be applied, is
stored in MODCON[7:4]. Modulo Addressing is enabled for Y Data Space when YWM is set to any
value other than ‘1111" and the YMODEN bit is set (MODCON[14]).

@ MICROCHIP

78

Figure 3-14. Modulo Addressing OperaBon Example

Byte ; Set XMODEN bit and XWM = w7
Address ; w7 selected for X-AGU modulo addressing
MOV.1 0x8007, w6
MOV.1l w6, MODCON

0x4000

; set modulo start address
MOV.1 #0x4000, w6
MOV.1l w6, XMODSRT
; set modulo end address
0x4063 MOV.1l #0x4063, w7
MOV.1 w7, XMODSRT

Start Addr = 0x4000 MPY.1l [w7]+=4, w5, A; w7 = 0x4004

End Addr = 0x4063 REPEAT #10
Length = 0x0032 words MAC.1 [w7]+=4, w5, A
;Content of W7 rolled back to 0x4000

3.3.18.3 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It
is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order
reversed. The address source and destination are kept in normal order. Thus, the only operand
requiring reversal is the modifier.

3.3.18.3.1 Bit-Reversed Addressing Implementadon

Bit-Reversed Addressing can only be enabled through the use of the movr.(w/l) instruction. This type
of addressing is effective when used with pre-modified or post-modified destination addressing. The
destination Bit-Reversed Addressing modifier is sourced from XBREV.XB[14:0].

If the length of a bit-reversed buffer is M = 2N bytes, the last ‘N’ bits of the data buffer start address
must be zeros.

The XB[14:0] bits are the Bit-Reversed Addressing modifier, or ‘pivot point’, which is typically a
constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note: All bit-reversed EA calculations assume either word-size (where the least significant bit of
every Effective Address is always clear) or long word-size (where the two least significant bits of the
Effective Address are always clear), based on the operation data width selected. The XB value is
scaled accordingly to generate compatible (byte) addresses.

Bit-Reversed Addressing is only possible when using the MOVR instruction, and it can target a
16-bit or 32-bit sized data. MOVR instruction supports Register Indirect with Pre-Increment or Post-
Increment Addressing and 16/32 bit-sized data writes. When Bit-Reversed Addressing is active, the
W Address Pointer is always added to the address modifier (XB) and the offset associated with the
Register Indirect Addressing mode is ignored. In addition, the LSb of each 16-bit address and the LS
2-bits of each 32-bit address, will always be zero for both source and destination EAs. The MOVR
instruction also supports “in-place” data re-ordering (where only one data buffer is used for both
source and destination), source and destination indirect addressing may use the same register

Note: Modulo Addressing and Bit-Reversed Addressing can be enabled simultaneously using the
same W register, but the Bit-Reversed Addressing operation will always take precedence for data
writes when enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV[15]) bit, a write to
the XBREV register should not be immediately followed by an indirect read operation using the W
register that has been designated as the Bit-Reversed Pointer.

@ MICROCHIP

Figure 3-15. Bit-Reversed Addressing Example
Sequential Address

b15|b14|b13{b12|b11|b10(b9 b8 | b7 | b6 | bS | b4 [b3 | b2 | b1| O

Bit Locations Swapped Left-to-Right
Around the Center of Binary Value

b15|b14|b13|b12|b11|b10| b9 | b8 | b7 | b6 | b5 | b1 | b2 | b3 |b4 | O
Bit-Reversed Address

Pivot Point XB = 0x0008 for a 16-Word Bit-Reversed Buffer

Table 3-8. Bit-Reversed Addressing Sequence (16-Entry)

Normal Address Bit-Reversed Address

A3 A2 A1 A0 Decimal A3 A2 A1 A0 Decimal
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 8
0 0 1 0 2 0 1 0 0 4
0 0 1 1 3 1 1 0 0 12
0 1 0 0 4 0 0 1 0 2
0 1 0 1 5 1 0 1 0 10
0 1 1 0 6 0 1 1 0 6
0 1 1 1 7 1 1 1 0 14
1 0 0 0 8 0 0 0 1 1
1 0 0 1 9 1 0 0 1

1 0 1 0 10 0 1 0 1

1 0 1 1 11 1 1 0 1 13
1 1 0 0 12 0 0 1 1 3
1 1 0 1 13 1 0 1 1 11
1 1 1 0 14 0 1 1 1 7
1 1 1 1 15 1 1 1 1 15

Example 3-4. 32-Bit Data, Two BuTer Bit-Reversed Data Reordering Example

; Two buffer (input and output) bit reversed data re-order subroutine for 32-
bit (real)
; data values

; WO: Temp

; Wl: Data table size N (long words)

; W8: Input data table pointer (natural order) initialized to start of table
; W9: Output data table pointer (bit reversed) initialized to start of table

push.l w0
mov.sl # XBREV, w0
1sr.l wl, #1, [wO] ; XBREV = N/2

sub.1l #1, wl

repeat wl

movr.l [w8++], [wI9++] ; Move data from input to output buffer, then
; bump natural order and bit reversed pointers

pop.l w0

return

@ MICROCHIP

3.3.19 Address Register Dependencies

The dsPIC33A architecture supports a data space read (source) and a data space write (destination)
for most MCU class instructions. The EA calculation by the AGU, and subsequent data space read or
write, each take one instruction cycle to complete. This timing causes the data space read and write
operations for each instruction to overlap.

@ MICROCHIP

81

3.3.20

34

MulGplier

Using the high-speed, 33-bit x 33-bit multiplier, the ALU supports an unsigned, signed or mixed-sign
operation in several MCU Multiplication modes:

+ 32-bit x 32-bit signed

+ 32-bit x 32-bit unsigned

+ 32-bit signed x 5-bit (literal) unsigned

+ 32-bit signed x 32-bit unsigned

+ 32-bit unsigned x 5-bit (literal) unsigned
+ 32-bit unsigned x 32-bit signed

+ 16-bit unsigned x 16-bit unsigned

Prefetch BuTer Unit (PBU)

The Prefetch Buffer Unit (PBU) in the dsPIC33A core devices accelerates the interface between the
dsPIC33A program Flash memory and the CPU instruction bus. The PBU can predictively prefetch
the next sequential address and cache fetched program data that are the target of a CPU instruction
fetch.

PBU in dsPIC33A core devices supports the following functions:

1. PBU accelerates the execution of linear program code flow.

2. As cache accelerates the execution of non-linear program flow changes (branches).

The PBU in the dsPIC33A core devices have the following features:

+ Provides interface between Program Flash Memory (PFM) and CPU instruction bus

+ Instruction Stream Buffers for prefetching and caching of linear PFM instruction flows

+ Instruction Cache for caching of most frequently hit target instructions

+ Provides parity checks on program data stored in the Instruction Cache to ensure data integrity

The PBU block diagram in Figure 3-16 shows data paths to and from the PBU in the dsPIC33A
environment. The PBU provides data when the CPU fetches program data from Flash memory. It
may provide program data from an internal buffer, or it may fetch program data from Flash if the
requested program data is not available. Flash fetch operations are therefore accelerated when data
are sourced from internal PBU buffers.

Figure 3-16. PBU Block Diagram

Prefetch Branch Unit (PBU)

Tag & LRU

| 128 [S]D)|
[______[s[DJ

Pgm Addr Tag Memory 28 P

140-bit
Flash
Memory

128 P

c\ MICROCHIP

82

3.4.1 Architectural Overview

The PBU is a direct mapped 128-line cache that helps in providing faster program data fetches to the
CPU from Flash memory. The PBU provides program data from an internal instruction buffer (ISB),
but if it is not available in the internal buffer, the PBU may fetch program data from Flash. Flash
fetch operations are therefore accelerated when data are sourced from internal PBU buffers.

The PBU provides an interface between the Program Flash Memory (PFM) and the CPU instruction
bus and have the following components associated for operation:

* Instruction Stream Buffer (ISB) - Also termed as the Prefetch Unit (PFU), is available for
prefetching and caching of linear PFM instruction flows. ISB is the component that buffers
program data words from the program memory. The ISB consists of one or more buffers of
a fixed depth. Each buffer holds one or more lines of data fetches from Flash memory. The data
held in each buffer represents a linear code flow. These are termed as internal PBU buffers.

+ Instruction Cache (IC) - Also known as Branch Target Instruction Cache (BTIC), is used for the
caching of target instructions that are most frequently hit. The Instruction Cache refers to the
cache memory and associated control logic that form the cache. A cache consists of N lines,
directly mapped or through M-way associative. The PBU supports a direct mapped 128-line
cache. The required width for the cache is 129-bits. The PBU Cache has two operating modes: IC
mode and BTIC mode.

+ Integrity Checking Logic - Provides parity checks on program data stored in the Instruction Cache
to ensure data integrity. This logic provides parity checking and fault injection on the contents of
RAM associated with the Instruction Cache.

The PBU assumes Flash data width and Flash access speed are sufficient to allow linear program
execution at the desired speed using only the ISB. The ISB serves as the prefetch buffer and allows
the next line of Flash to be fetched as instructions from the current line are executed.

The Instruction Cache becomes useful when there are frequent program flow changes in the source
code. A program flow change will result in extra clock cycles because the current Flash fetch must
be allowed to complete and then a new fetch must be initiated at the new location. If the desired
program data is available in the Instruction Cache, the data may be sourced immediately without
waiting for the ISB to complete a new fetch from Flash. However, PBU uses a larger, direct-mapped
Instruction Cache and has little control and status interface available to the user as its operations
are transparent.

The PBU does not provide data or caching for initiators other than the CPU instruction bus. Data
access by the CPU data bus and other bus initiators is accomplished via a dedicated read buffer in
the NVM wrapper.

The ISB has multiple buffers also called slices. The ISB Slices help increase performance with CALL/
RETURN and other flow changes in the code that return back to the previous code stream.

The ISB is two levels deep in the dsPIC33A PBU. For the first generation of dsPIC33A devices, Flash
access time is fast enough to support linear code execution with the given program data word
width. Therefore, only one level of prefetch buffer is required. The CPU can execute from the first
level, while the next fetch occurs into the second level.

In the case where the code to be executed has a linear flow, no further caching of data would be
necessary. However, program flow changes insert latency into the code flow. A prior Flash fetch
must be completed and discarded. Then, a new Flash fetch must be started in the new flow. This
process can add a variable amount of clock cycles to the execution time, depending on when the
flow change occurred relative to the prefetch that was in progress.

When Flash access time is fast enough to support continuous linear program flow, full instruction
caching is not required. The cache could be configured as a BTIC, for which only the targets of
program flow changes are cached. This mode of cache increases the effective cache size because
all program data words do not have to be cached. However, the BTIC operating mode places more

83

@ MICROCHIP

burden on the internal data buses of the PBU. Program data must be transferred from the cache
memory to the ISB when a flow change occurs so that a prefetch of the following data words can
take place.

@ MICROCHIP

84

3.4.2 Register Summary

Lot L Name BiPos L7 L e s L L3 L2 L0

0x1E60 CHECON
O0x1E64 CHESTAT

0x1E68 CHEFLTINJ

@ MICROCHIP

31:2
23:16 ISBBUF
15:8 ON CHEINV CHECOH

7:0 FLTINJ
31:24
23:16

15:8

7:0 TPE RD PAR
31:24
23:16

15:8

7:0 FLTPTR[7:0]

85

3.4.2.1 Cache Control Register

Name: CHECON
Offset: Ox1E60
Notes:

1. After being set, this bit will be cleared by hardware after the cache and ISB invalidations are
completed. Any automatic invalidation will also result in this bit being cleared.

2. This setting is useful when programming non-program data into Flash (emulated EEPROM).
Legend: R = Readable bit; S = Settable bit; Hardware Clearable bit

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| ISBBUF
Access R/W
Reset 1
Bit 15 14 13 12 11 10 9 8
| ON | CHEINV | CHECOH |
Access R/W R/S/HC R/W
Reset 1 1 1
Bit 7 6 5 4 3 2 1 0
| | | [Fig]
Access R/S/HC
Reset 1

Bit 16 - ISBBUF ISB Buffer Selection bit

1 When On =0, ISB buffer 1 will be used for prefetch
0 When On = 0, ISB buffer 0 will be used for prefetch

Bit 15 - ON Cache ON bit

1 Cache and all ISB slices are enabled

0 All cache lines and ISB buffers except for the first buffer slice are invalidated. ISB operates with one buffer
slice, two deep buffer (basic prefetch mode)

Bit 11 - CHEINV Manual Invalidate Control bit("

1 Force invalidation of all cache and ISB lines
0 Invalidation of Instruction Cache and ISBs occurs according to CHECOH bit

Bit 10 - CHECOH Cache Coherency Control bit(2

1 Invalidate cache upon a Flash programming event
0 Do not invalidate cache on a Flash programming event

@ MICROCHIP

86

Bit O - FLTINJ Fault Inject Control bit

1 Parity fault injection enabled for one-time event; cache line will be invalidated and flushed when access occurs
and upbs_event[1] will be asserted to indicate an integrity error to the system.
0 Parity fault injection disabled

@ MICROCHIP

87

3.4.2.2 Cache Status Register

Name: CHESTAT
Offset: Ox1E64

Legend: R = Readable bit; S = Settable bit; Hardware Clearable bit

Bit 31 30 29 28 27 26 25 24
| | | | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | | | |
Access
Reset
Bit 7 6 5 4 3 2 1 0
| | | | TPE | RD | PAR |
Access R/C/HAS R/W R/S/HC
Reset 0 1 1

Bit 2 - TPE Read Error Status bit

1 A read error event has occurred; the parity error is latched and a MISS is generated
0 No TAG memory read error event has occurred

Bit 1 - RD Read Error Status bit

1 Aread error event has occurred; the CPU has fetched a word from the ISB with a security error
0 No read error event has occurred

Bit 0 - PAR Cache Parity Error Status bit

1 A parity error event has occurred; the CPU has fetched a word from the cache with a parity error
0 No parity error event has occurred

@ MICROCHIP

88

3.4.2.3 Cache Fault InjecBon Register

Name: CHEFLTIN]J
Offset: Ox1E68

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
Access
Reset
Bit 7 6 5 4 3 2 1 0
FLTPTR[7:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 1

Bits 7:0 - FLTPTR[7:0] Fault Injection Pointer bits

255-129 No effect

128 Cache Data Line Parity bit
127 Bit 127 of cache data line
1 Bit 1 of cache data line
0 Bit 0 of cache data line

3.4.3 Operabon

The PBU registers only have control to enable or disable certain PBU functions. Parameters such as
ISB depth, ISB humber of buffers, cache associativity, etc., are all fixed.

The CHECON.ON bit is reset to ‘1’ by default. This provides the best CPU performance for both linear
code and program flow changes. The ON bit can be cleared in software to disable most caching
functions and make the PBU behave as a basic 2-deep prefetch buffer. This results in lower code
performance due to longer program flow changes but still gives deterministic execution behavior,
and thus the program flow changes to longer execution time but takes a constant number of cycles.

3.4.3.1 Cache/ISB Manual InvalidaBon

Manual invalidation of the Instruction Cache and ISBs is used to force cache coherency when
the user knows that the cache and Flash contents may not match. It occurs under the following
conditions:

+ CHECON.CHEINV Control bit: When set by software, this bit will invalidate both the Instruction
Cache and all ISBs. This bit will clear automatically by hardware after the cache and ISB memory
have been invalidated.

Note: CHECON.CHEINV is also cleared should an automatic invalidation occur after the bit has
been set.

@ MICROCHIP

89

3.4.3.2

+ CHECON.ON control bit: The Instruction Cache memory and ISB buffers are invalidated when the
CHECON.ON bit is cleared. This will be the case out of Reset. Execution continues using only a
single default ISB slice. Setting CHECON.ON has no effect with respect to cache/ISB invalidation
as it is already invalidated and the active ISB will contain valid data from the current instruction
flow.

Cache/ISB Automa8c Invalidabon

Automatic invalidation of the Instruction Cache and ISBs is used to ensure cache coherency when
the device knows that the cache and Flash contents may not match. It occurs under the following
conditions:

+ Flash write operation: Automatic invalidation only occurs if the Cache Coherency Control bit
(CHECON.CHECOH) is set (default) and Flash is programmed/erased. This is only applicable for
writing to the active panel in dual-panel devices.

+ Parity error: Refer to 3.4.3.3. PBU Data Error Handling for further details. Only the accessed
cache line of the ISB buffer is affected, and the remainder of the cache memory does not need to
be invalidated.

3.4.3.2.1 Cache Invalida®on when WriGng to Flash

3.433

Whenever the Flash is written, the user has the option to automatically invalidate the instruction
Cache and ISBs using the CHECON.CHEOH control bit. If instruction data are being written to Flash,
invalidation ensures Flash memory contents remain synchronized with the Cache and ISB contents.

Note: To fully ensure correct operation, it is recommended that the final instruction that initiates
Flash programming be followed by 4 NOP instructions to flush the instruction pipeline. This ensures
coherency since the remaining instructions in the CPU pipeline will take no action.

PBU Data Error Handling

The PBU handles error correction in two ways. First, any data errors that originate from the program
memory are tracked. Secondly, internal PBU data errors that may occur while program data are
stored in the PBU Cache RAM are monitored.

3.4.3.3.1 Program Memory Data Errors

Error status is captured from the program memory and buffered along with the fetched program
data word in the ISB. Consequently, each line in the ISB has 129 bits: 128 bits of data and 1

bit for error status. The error status bit indicates the data read from the program memory are
unusable and incorrect. The program memory data can be bad for multiple reasons, including an
uncorrectable ECC error and a security violation that would suppress the data. In any case, the data
are not a valid CPU instruction and should not be executed by the CPU.

The PBU does not generate any kind of event, trap or interrupt when bad data are fetched from
the program memory. This is because the ISB may speculatively fetch data that would never be
executed by the CPU. Secondly, the CPU may speculatively fetch instructions from the PBU during
conditional branches that may never get executed.

A bus error signal is passed with the program data to the CPU for instructions fetched from the
PBU. If the program data are invalid with the bus error signal asserted, then the CPU can suspend
execution in the pipeline and cause a trap event to occur.

3.4.3.3.2 Cached Data Error

The second method of PBU error handling occurs when the cache has detected a parity error on a
cached line of program word data. When valid program data is cached for later consumption, then
the error status bit is stripped, and the program data word is stored in the cache memory. A single
even parity bit is calculated and stored along with the data. This parity bit is used to protect the
system from data corruption that could occur in the cache RAM.

A maskable interrupt event is generated by the PBU when a parity error is detected on a cache line.
In this case, the cache will invalidate the line with the parity error and the program data must be
re-fetched from the program memory. Other than the interrupt event, the only other effect that can

@ MICROCHIP

90

be observed during a cache parity error is additional execution latency caused by Flash program
fetch. No address associated with the parity error is captured.

3.4.3.3.3 Corrected Program Memory Data Errors

3.434

3.4.3.5

3.4.3.6

The program memory error correction logic may correct a data error in the program data
supplied to the PBU. These corrections are not reported to the PBU which is usually done for the
uncorrectable errors. Specifically, a single-bit corrected error (SEC event) is not reported to the PBU.

The program memory is responsible for tracking and reporting the corrected event. These actions
serve as a warning to the system software that integrity of the NVM data may be failing.

Cache Fault InjecOon

A single bit error can be injected on any of the data bits of the cache line or the associated parity
bit. The error injection is performed by XORing the data read from the cache line with a ‘1". Since the
PBU can cache program data from a variety of address locations depending on the program flow, it
is impractical to perform error injection for a particular program memory fetch address.

The PBU error injection, when enabled with the FLTIN]J bit, will cause a one-time error injection the
next time the cache memory is accessed by the CPU. The CHESTAT.PAR bit will indicate when the
error injection has been performed. At this time, the PBU will also signal that an integrity error has
occurred by creating an interrupt event. The user will not be able to determine which line of the
cache buffer caused the event and fetch address.

A write to the FLTPTR register while FLTINJ = 1 will have the effect of re-arming the fault injection.
This will help facilitate a software test routine that cycles through an error injection on each bit.

Non-Cached Events
Certain fetches from the NVM are not cached. These include:

+ Interrupt Vector fetches
+ Fetches of debug executive code
+ Fetches of invalid program memory data

All these types of fetches are not cached to avoid cache thrashing. Thrashing occurs when other
useful data are evicted from the cache and replaced with less useful or invalid data. Inhibiting
caching during the above fetches is expected to improve the overall efficacy of the cache, resulting
in more cache hits at run-time.

Interrupt Vector fetches are a special type of non-cached event. Specifically, only one program word
is fetched from the NVM when the CPU indicates a vector fetch and the ISB is bypassed. When an
interrupt occurs, the interrupt vector address is fetched from the vector table, then the instruction
at the interrupt vector address is fetched. There is no need for an ISB to perform a prefetch and
fetch the program word after the one that contains the interrupt vector address. This would be
wasteful and produce extra latency in the servicing of the interrupt event.

The PBU monitors whether the CPU is executing user code or debug executive code. Instructions
fetched from the debug executive code are not cached. This avoids additional indeterministic
behavior when code execution transitions from the debug executive code back to user mission-
mode code.

In addition, the BMX supports execution from RAM, and a RAM based Interrupt Vector Table

(IVT). Program or vector fetches from RAM are also non-cached events. However, this capability
introduces the possibility of both a vector and its associated handler routine being in either NVM or
RAM. Whenever the IVT and/or an exception handler (interrupt or trap) is located within RAM, this is
treated as a special case by the PBU to maintain efficient operation.

PBU Performance Monitoring

Each word of data requested on the CPU instruction bus will be sourced either from the ISB or the
Instruction Cache and not the external NVM. This ensures that each fetch of program data can be
completed in minimal time, which maximizes application performance.

@ MICROCHIP

91

Program data that are not already present in the ISB or cache must be fetched from the NVM,

which takes additional cycles and decreases overall application performance. Once program data in
a particular NVM program word has been consumed by the CPU, it is stored in the Instruction Cache
for later use. The exceptions to this are program data with uncorrectable errors, security violations,
or debugger executive program data. Once stored, the program data will be available for later reuse
in the Instruction Cache until those contents are erased and replaced with another program data
word.

3.4.3.6.1 Cache Busy Cycles
The program word is cached on the cycle following the fetch from NVM. During this time, the IC will
be busy because of the write to cache memory. If the CPU requests program data during this cycle,
the PBU will check the contents of the ISB for an address tag match. In most cases, the data may
be sourced from the ISB while the IC is busy. This results in an ISB hit and no extra cycle penalty is
incurred. When the IC is busy and no ISB hit occurs, then an extra cycle of latency will be inserted
while the PBU waits for the IC write cycle to complete. Then, the IC address tags are checked for an
IC hit.

3.4.3.6.2 PBU Performance Event Outputs
The PBU has event outputs that can be connected to external performance counters at the device
level for characterization of the PBU performance. These events can be counted over a period of
application execution and compared with the total number of executed instructions and/or the total
number of elapsed clock cycles to get a measurement of the PBU efficacy. The performance event
signals available from the PBU include:

+ Instruction Cache “hit” event

» Instruction Stream Buffer “hit” event
+ PBU “hit" event

* Instruction Cache “busy” event

The IC hit event indicates when a particular instruction was fetched from the cache memory. The ISB
hit event indicates when a particular instruction was fetched from the ISB. This generally happens
on the second fetch from a program word while that word is written to the cache memory.

The PBU hit event is of most interest for PBU performance analysis. This event signal is the logical
OR of the IC hit and the ISB hit events and indicates that the PBU was able to source the requested
data without initiating a new NVM fetch.

The IC busy event is used to count the number of extra cycles that were inserted when the ISB
could not source the requested data and a Wait state was necessary to determine if the data were
available in the IC. An IC busy event is expected to be infrequent and would occur during program
flow changes.

3.4.3.6.3 Factors ATecong PBU Ekcacy
PBU efficacy is not a constant value. For a given code segment such as function call, the efficacy of
the PBU will be very much dependent on these factors:
+ The code that was executed prior to a given code segment
+ The size of the code
+ The specific location of this code in memory
+ Flow changes that occur during the execution of a specific code segment
Different performance results are possible when a specific segment of code is executed in one
context vs. another context. The prior code executed will determine what code data is present in
the cache memory. The prior code may have evicted all program data associated with the segment
of interest. However, if the segment of interest is repetitively executed, then there is a strong

possibility that program data associated with this segment will remain in the cache memory without
eviction.

@ MICROCHIP

In general, a small segment of code which is repetitively executed will produce the best PBU
performance results. This is because the code size is small enough to fit within the cache memory
and the repetitive nature of the code will maximize the reuse of the cache contents with a
minimum of evictions. The absolute location of a code segment within memory will impact the
PBU performance. This is closely related to how the code is compiled, optimized, and linked during
the software development process.

Two different program data words in a segment of code could have the same address tags. If these
program data words are executed often, then numerous cache evictions and NVM fetches will result
during code execution. A larger cache memory and/or increased cache associativity can both help
this issue. A larger cache memory increases the number of available address tags, while increased
associativity increases the number of location options where a specific program data word could be
stored. The more flow changes that occur in each segment of code, the higher the possibility that
PBU performance will be reduced.

3.4.3.6.4 ImplicaBons of Variable NVM Wait States

3.5

The NVM Wait states are currently fixed at three, supporting a 4-cycle NVM read access time, and
the nature of the PBU/NVM data access handshake is not sensitive to NVM access time. However,
variable access times could be advantageous:

1. Devices are designed to target maximum frequency, and the NVM read access time is based
upon this requirement. But not all applications will require full-speed operation and/or may
be willing to trade-off speed for lower power consumption. Consequently, it may be desirable
to allow the user to select fewer (or no) NVM read access Wait state when operating at lower
frequencies. This will improve the IC/ISB miss latency and decrease the effective CPI (clocks per
instruction) metric, improving overall device execution efficacy.

2. Slower Flash panels will consume less power so future devices may support different speed
NVM. Zero Wait state linear code execution directly from Flash would, of course, no longer be
possible but would rely on the ISB and IC implementations.

Performance Monitor Unit (PMU)

The performance monitor provides a method to analyze code efficiency, and allows software
routines that incur processor stalls to be identified and optimized. In the dsPIC33A family of devices,
the architecture does not have a fixed relationship between the CPU clock speed in MHz and the
throughput of the CPU in MIPS (Million Instructions per Second). The throughput of the CPU is
dependent on extra cycles incurred from the following:

+ CPU pipeline data dependency

+ Branches or program flow changes
+ Cache misses

+ Slow memory or SFR accesses

+ Arbitration between bus masters

* Abus thatis slower than the CPU

The performance monitor counts the events that cause extra cycles to be inserted into the program
flow and the number of elapsed clock cycles. Using this information, the cycles-per-instruction (CPI)
can be calculated and the reasons for poor code efficiency can be determined. The CPI value is the
number of elapsed clock cycles divided by the number of opcodes that were executed. The stall
cycle types listed above will increase the CPI.

The performance monitor uses a set of event signals from the CPU to determine stalls. The module
features eight independent 64-bit counters to capture the number of events.

@ MICROCHIP

93

3.5.1

Device-Speci) ¢ InformaBon

Table 3-9. Performance Monitor Summary

Peripheral Bus Speed Clock Source

Standard

8

Standard Speed Peripheral Clock

Table 3-10. Counter Event Source SelecBon

SELECT n Event source Note
[:X0)

18

17

16

15

14

13

12

11

10

Fetch stage PBU miss

Fetch stage PBU hit

Fetch stage cache busy

Fetch stage program
memory vector fetch

Fetch stage program
memory program flow
change

Fetch stage read stall

Fetch stage interrupt
latency count enable

Address stage stall
Address stage read stall

Address stage FPU read
stall

Address stage FPU
instruction stall

Address stage hazard

Read stage branch
mispredict

Read stage conditional
branch

Write stage stall

Write stage FPU stall

CPU instruction
completed

CPU cycle elapsed
(reference)

None

@ MICROCHIP

This event indicates that the requested program data could not be sourced from
either the cache memory or the ISB. Therefore, a new fetch from program memory
with additional execution cycles was required to obtain the data.

This event indicates that the requested program data was sourced from either the
cache memory or the ISB. Therefore, no additional execution cycles were required
to fetch the instruction.

Indicates a cycle during which time the cache was busy transferring data from the
instruction stream buffer (ISB) to the cache memory.

Indicates that the CPU is fetching an interrupt vector and is aligned with a Program
Flow Change event. This event can be used to count interrupt events.

Indicates that a change in program flow has occurred. This could be due to a CALL,
RETURN, RETFIE, conditional or unconditional branch, or interrupt event.

Indicates an extra cycle is needed to fetch a program word from memory. This
could be caused by a cache miss or an arbitration conflict when fetching program
words and data from the same memory.

Indicates the number of cycles due to interrupt latency.

Indicates that CPU pipeline was stalled in the Address stage for any reason, possibly
because the instruction is being discarded.

Indicates that an instruction could not continue because of extra latency reading a
RAM or SFR location.

Indicates that CPU execution is presently stalled because the CPU cannot read from
a FPU register. This has occurred because the FPU is currently busy updating the
register data.

Indicates that execution in the FPU coprocessor is currently stalled due to a register
data dependency.

Indicates an extra execution cycle caused by a data dependency upon an earlier
instruction in the CPU pipeline, which could not be forwarded.

Indicates an extra execution cycle caused by mispredicted program flow changes.

Indicates the occurrence of a conditional branch instruction. The count of
conditional branch instructions can be compared to the number of branch
mispredictions in order to determine the effectiveness of the CPU branch prediction
logic.

Indicates that an instruction could not continue because of extra latency writing to
RAM or SFRs.

Indicates that CPU execution is presently stalled because the CPU cannot write to
the FPU registers. This has occurred because the FPU is currently busy working on
the existing register data.

Indicates that an instruction in the CPU pipeline has completed.

This event count provides the total number of CPU clock cycles elapsed.

94

3.5.2 Register Summary

Lot L Name BiPos L7 L e s L L3 L2 L0

3122
0x1E10 HPCCON 23116
15:8 ON CLR
7:0
31:24 SELECT[3][4:0]
23:16 SELECT[2][4:0]
Ox1E10 HPCSELO 15:8 SELECT[1][4:0]
7:0 SELECTIO][4:0]
31:24 SELECT[7][4:0]
ox1ET4 HPCSELr 23:16 SELECTI6][4:0]
15:8 SELECT[5][4:0]
7.0 SELECTI4][4:0]
Ox1E18
Reserved
Ox1E1F
31:24 HPCCNT[31:24]
Ox1E20 HPCENTLO 23:16 HPCCNT[23:16]
15:8 HPCCNTI[15:8]
7:0 HPCCNT(7:0]
31:24 HPCCNT[63:56]
ox1E24 HPCENTHO 23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
Ox1E28 HPCCNTLA = HPCONTEI5:8]
7:0 HPCCNT(7:0]
31:24 HPCCNT[63:56]
oxtEac HPCONTH 23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7.0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
ox1E30 HPCCNTLS 23:16 HPCCNT[23:16]
15:8 HPCCNTI15:8]
7.0 HPCCNT(7:0]
31:24 HPCCNTI63:56]
23:16 HPCCNT[55:48]
0x1E34 HPCCNTH2
15:8 HPCCNT[47:40]
7.0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
0x1E38 HPCCNTL3
15:8 HPCCNTI15:8]
7:0 HPCCNT(7:0]
31:24 HPCCNT[63:56]
ox1EaC HPCONTHS 23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
ox1E40 HPCONTLA 23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT(7:0]
31:24 HPCCNT[63:56]
ox1E44 HPCONTHA 23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
Ox1E48 HPCCNTLS
15:8 HPCCNTI15:8]
7.0 HPCCNT(7:0]

@ MICROCHIP

; continued

Comser | Name lmpos| 7 | 6 | s | 4 | 3 | 2 | 1 | o

31:24 HPCCNT[63:56]
Ol E4C HPCNTHS 23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
OIESO HPCONTLE 23:16 HPCCNT[23:16]
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]
31:24 HPCCNT[63:56]
OXIES4 HPCCNTHE 23:16 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
Ox1E58 HPCCNTLY?
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]
31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
Ox1E5C HPCCNTH7
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

@ MICROCHIP

3.5.2.1 HPCCON Register

Name: HPCCON
Offset: Ox1E10

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
[__ON | | CRrR | | | | | |
Access R/W R
Reset 0 0
Bit 7 6 5 4 3 2 1 0
| | | | | | |
Access
Reset

Bit 15 - ON On Control bit

1 Module is enabled and counters increment on event signals
0 Module is disabled and counters do not event on event signals. Counter values may be read.

Bit 13 - CLR Clear Control bit
A write of a ‘1’ to this location will cause the event counters to clear. This bit may be set at any time
whether the PMU is in the Enabled state or the Disabled state. This bit location always reads as ‘0'.

@ MICROCHIP

97

3.5.2.2 HPCSELO Register

Name: HPCSELO
Offset: Ox1E10

Bit 31 30 29 28 27 26 25 24
| SELECT[3][4:0] |
Access R/W R/W R/W RIW R/W
Reset 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| SELECT[2][4:0] |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
SELECT[1][4:0]
Access R/W R/W R/W RIW R/W
Reset 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| | SELECT[0][4:0] |
Access R/W R/W R/W RIW R/W
Reset 0 0 0 0 0

Bits 28:24 - SELECT[3][4:0] Counter #3 Event Source Selection bits
These control bits determine which event is counted by the associated counter.
See Table 3-10 for assignments.

Value Description

11111-000 Selects the event to be monitored
01

00000 No event selected (1'b0), counter is disabled

Bits 20:16 - SELECT[2][4:0] Counter #2 Event Source Selection bits
These control bits determine which event is counted by the associated counter.
See Table 3-10 for assignments.

Value Description
11111-000 Selects the event to be monitored
01

00000 No event selected (1'b0), counter is disabled

Bits 12:8 - SELECT[1][4:0] Counter #1 Event Source Selection bits
These control bits determine which event is counted by the associated counter.
See Table 3-10 for assignments.

Value Description
11111-000 Selects the event to be monitored
01

00000 No event selected (1'b0), counter is disabled
Bits 4:0 - SELECT[0][4:0] Counter #0 Event Source Selection bits

These control bits determine which event is counted by the associated counter.
See Table 3-10 for assignments.

@ MICROCHIP

98

Value Description
11111-000 Selects the event to be monitored
01

00000 No event selected (1'b0), counter is disabled

@ MICROCHIP

99

3.5.2.3 HPCSEL1 Register

Name: HPCSEL1
Offset: Ox1E14

Bit 31 30 29 28 27 26 25 24
| SELECT[7][4:0] |
Access R/W R/W R/W RIW R/W
Reset 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| SELECT[6][4:0] |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
SELECT[5][4:0]
Access R/W R/W R/W RIW R/W
Reset 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| | SELECT[4][4:0] |
Access R/W R/W R/W RIW R/W
Reset 0 0 0 0 0

Bits 28:24 - SELECT[7][4:0] Counter #7 Event Source Selection bits
These control bits determine which event is counted by the associated counter.

Value Description

11111- Selects the event to be monitored

00001

00000 No event selected (1'b0), counter is disabled

Bits 20:16 - SELECT[6]1[4:0] Counter #6 Event Source Selection bits
These control bits determine which event is counted by the associated counter.

Value Description

11111- Selects the event to be monitored

00001

00000 No event selected (1'b0), counter is disabled

Bits 12:8 - SELECT[5][4:0] Counter #5 Event Source Selection bits
These control bits determine which event is counted by the associated counter.

Value Description

11111- Selects the event to be monitored

00001

00000 No event selected (1'b0), counter is disabled

Bits 4:0 - SELECT[4][4:0] Counter #4 Event Source Selection bits
These control bits determine which event is counted by the associated counter.

Value Description

11111- Selects the event to be monitored

00001

00000 No event selected (1'b0), counter is disabled

@ MICROCHIP

100

3.5.2.4 HPCCNTLx Register

Name: HPCCNTLx

Offset: O0x1E20, Ox1E28, Ox1E30, Ox1E38, 0x1E40, Ox1E48, 0x1E50, OX1E58

Bit 31 30 29 28 27 26 25 24
| HPCCNT[31:24]
Access R/W R/W R/W R/W R/W R/W RIW R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| HPCCNT[23:16]
Access R/W R/W R/W RIW R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
HPCCNT[15:8]
Access R/W R/W R/W RIW R/W R/W RIW R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
HPCCNT[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - HPCCNT[31:0] Event Counter bits

@ MICROCHIP

101

3.5.2.5 HPCCNTHXx Register

Name: HPCCNTHx
Offset: Ox1E24, Ox1E2C, Ox1E34, 0x1E3C, 0x1E44, Ox1E4C, Ox1E54, Ox1E5C

Bit 31 30 29 28 27 26 25 24
| HPCCNT[63:56] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| HPCCNT[55:48] |
Access R/W R/W R/W RIW R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
HPCCNT[47:40]
Access R/W R/W R/W RIW R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
HPCCNT[39:32] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - HPCCNT[63:32] Event Counter bits

3.5.3 OperaGon
The performance monitor operates on the basis of comparing the counter values to the number of
CPU cycles. To capture the number of CPU cycles as a reference, one of the available counters is
used.

For example, counter 0 can be used for the reference count, and the remaining counters can be
used to monitor the available events.

3.5.3.1 Event Selecon
Each counter has an associated control to select one of the event sources. The SELECTn[4:0] bits in
HPSELO and HPSEL1 select one of the signals that are listed in Table 3-10. The CPU cycle elapsed
event is the reference and is incremented on each CPU cycle. The CPU instruction completed event
indicates that the CPU pipeline has completed. Comparing instructions completed to cycles elapsed
yields the CIP value. The ideal value is one. The remaining stall, branch or hazard events can be used
to determine where stalls occur and what part of the code to optimize.

3.5.3.2 Counters
Each 64-bit counter is split across a pair of 32-bit registers, HPCCNTLx and HPCCNTHXx. The registers
are read- only and do not have provisions for saturation or roll over events. It is up to user
software to halt the module before saturation occurs. The counters can be reset with the CLR bit
(HPCCONI13]). The counters are started and stopped using the ON bit (HPCCONI[15]). The count
values should only be read when ON ="0".

3.5.3.3 Debugging
Provisions have been made to support the performance monitor in Debug mode. By default, the
module is halted in Debug mode to avoid counting cycles associated with the debug executive.

3.5.3.4 Operabon in power saving modes
The Performance Monitor module does not operate in Sleep or Idle modes.

102

@ MICROCHIP

3.6 FloaBng-Point Unit (FPU) Coprocessor

The dsPIC33A FPU Coprocessor includes hardware implementations of the most common floating-
point operations for both Single Precision (32-bit) and Double Precision (64-bit) data formats. It

is intended to significantly accelerate C compiler floating point operations when compared to
executing software library equivalents and is designed to be compliant with the IEEE 754-2008/2019
floating point standards. It also includes additional non-IEEE compliant features which may be
enabled to handle subnormal values and improve performance.

3.6.1 Features
+ Comprehensive |[EEE 754-2008/2019 compliant instruction set
- Supports both Single and Double Precision operations for most instructions
- Supports all required rounding modes
+ Closely coupled to dsPIC33A CPU core
- Instructions issued from CPU core as part of application instruction stream
- Independent instruction pipeline and hazard management
+ 32 x 32-bit data registers (F-regs)
- May be used to hold 32-bit Single Precision or 64-bit Double Precision values
- Base plus 7 partial FPU register contexts
+ Optional subnormal handling for improved performance
- Subnormal result “Flush-To-Zero" (FTZ) mode
- Subnormal operand “Subnormals-Are-Zero” (SAZ) mode
« Comprehensive exception implementation and reporting structure
- |EEE 754-2019 compliant exception implementation
- Additional exceptions supported for Huge Integer results and Subnormal operands
+ Debug features supported:
- Exception address capture register (FEAR)
- Exception break signaling
- NaN propagation

3.6.2 Architectural Overview

The FPU macro relies on the associated dsPIC33A CPU for all instruction fetches, most decoding,
and for all operand movement to and from the system memory. The FPU contains no local memory
other than its own register set. Being coupled to the CPU, data size nomenclature is common to
both CPU and FPU wherein a word is 16-bits wide, a long word is 32-bits wide and a double word is
64-bits wide.

FPU instructions are part of the CPU Instruction Set Architecture and are executed as part of the
CPU code image. FPU instructions are therefore executed as a part of the normal execution flow.
There are no restrictions with regards to when FPU instructions may appear within the instruction
flow.

The CPU can issue, and the FPU can accept, no more than one instruction per clock cycle. However,
once issued, the CPU and FPU use independent pipelines to execute the instruction. Consequently,
there can be multiple instructions in the process of being executed in both pipelines at any one
time. The FPU pipeline will stall the CPU when it is unable to accept any more instructions. The FPU
pipeline is also sensitive to speculative instruction control from the CPU (i.e., such that not all issued
FPU instructions will be committed). This allows FPU instructions to be located within speculative
execution slots that follow conditional branches.

103

@ MICROCHIP

After successful issue of an FPU instruction, the CPU continues as if executing a single cycle FNOP
instruction, and the FPU instruction execution continues within the FPU. Therefore, as some FPU
instructions require several cycles to complete, subsequent CPU (and/or FPU) instructions can be
fetched, issued and executed (dependencies aside) while the FPU operation progresses. Only when
the CPU encounters a hazard with the FPU will it be stalled until the hazard is resolved.

Data and structural hazards are detected and mitigated in both the CPU and FPU and can result
in operational stalls which will extend the execution time and increase the effective Cycles Per
Instruction of both CPU and FPU instructions.

Note: Refer to the dsPIC33A Programmer's Reference Manual for the syntax of all FAND, FIOR,
FMUL, etc, instructions.

3.6.2.1 InstrucOon Pipeline Overview

The pipeline stages consist of Read (RD), Execute (X[n]) and Write-Back (WB), differentiated from

the equivalent CPU pipeline stages through the use of different nomenclature. The RD-stage is a

single cycle operation (unless stalled). The WB-stage is always a single cycle operation. However,

the execute stage will consist of as many cycles as deemed necessary for the selected instruction
functional block. Most basic functions are single cycle execute operations, though more complex
functions (e.g., divide) can be many cycles.

Each instruction that is issued to the FPU must be completed (or killed if speculative) in the order
issued. That is, Out of Order (O00) execution is not supported. However, as the execution time of
the FPU instructions can vary considerably, in-order execution requires logic to tag each instruction
as it is committed for execution, then track its progress as it flows through the instruction pipeline.
Subsequent instructions will therefore be stalled until such time that earlier ones have progressed
to allow for sequential, in-order execution.

3.6.2.2 IntroducBon to Floabng Point
The IEEE standard for Floating-Point Arithmetic (IEEE 754-2008) specifies the floating-point data
formats which are comprised of a Sign bit, an exponent value and a (fractional) mantissa value. The
dsPIC33A Floating-Point Unit (FPU) supports both Single Precision (32-bit, SP) and Double Precision
(64-bit, DP) operations for most (though not all) instructions. To avoid the need for another Sign
bit in the exponent, the IEEE floating-point format exponent is biased by 127 (SP) or 1023 (DP).
Consequently, for any datum, the required IEEE exponent value = datum exponent + bias.

In addition, the ‘1’ to the left of the most significant bit of the mantissa is implied for all numbers
except subnormal numbers and is consequently referred to as the leading bit convention “hidden
bit.” The mantissa is therefore a fractional value with an implied integer value of [1].

104

@ MICROCHIP

Figure 3-17. IEEE FloaBng-Point Data Formats and Single Precision Example

Single Precision Floating-Point
31 30 23 22 0

S 8-bit exponent 23-bit mantissa

biased exponent

0=+127
31 30 23 22 0
-5.75= 1|1 10000001 01110000000000000000000
129 [1].4275

Double Precision Floating-Point
63 62 52 51 0

S 11-bit exponent 52-bit mantissa

biased exponent
0=+1023

An |EEE floating-point number can therefore be represented as:
(1P X [T1(m (pasez) X 20725

where:

« ‘Sindicates the sign of the number (same values as a signed integer value)
+ ‘e'represents the exponent value
* 'm’represents the fractional mantissa value
+ ‘bias’is 127 (SP) or 1023 (DP)
For example, -5.75 = -(1.4275 x 22). In |EEE SP format this would be represented as:
(-1)1 x[1].4275 x 2(129-127)
or (as shown in Figure 3-17):
S =1, exponent = 129,5, mantissa = [1].427510 or:
0xCOB8 0000
3.6.2.2.1 IEEE 754-2008 Compliance
This module is compliant with the IEEE 754-2008 Standard for Floating-Point Arithmetic for data

formats, supported signaling and quiet branch predicates, exception status flags, and exception
status behavior.

Note that the IEEE 754-2008 minNum(x,y) and maxNum(x,y) definitions are supported only through
the largely compatible IEEE 754-2019 minimumNum(x,y) and maximumNum(x,y) operations via the
FMINNUM and FMAXNUM instructions. The functional differences related to how +0 and -0 are
considered:

+ |IEEE 754-2008 minNum(x,y) / maxNum(x,y): Operand values +0 and -0 are regarded as equivalent.
The (implementation dependent) result could therefore be either +0 or -0.

« |EEE 754-2019 minimumNum(x,y) / maximumNum(x,y): Operand values +0 and -0 are not
regarded as equivalent such that -0 compares to less than +0. The result will therefore be the
correct sign of 0 based on the selected operation.

Features Beyond IEEE 754 Requirements

105

@ MICROCHIP

ExcepOon Address Capture Register

The Floating-Point Exception origination address capture register (FEAR) captures the address of the
instruction that generates a floating-point macro exception, provided the associated exception mask
bit is clear. If the exception is masked, nothing is captured.

This register is intended for use during system debug, though the FEAR register is read/write in both
Mission and Debug modes.

Huge Integer ExcepBon

This exception is signaled whenever a Float-to-Integer conversion operation (FF2DI and FF2LI) results
in an integer value that is larger than the destination register can represent. It is not defined within
any |IEEE 754 specification apart from a reference to setting the Invalid exception should an integer
value exceed the destination size unless this “cannot otherwise be indicated.”

3.6.2.2.2 IEEE 754-2019 Compliance

Minimum and Maximum Funcons

The FPU module supports all minimum and maximum operations defined in the IEEE 754-2019
standard. The IEEE 754-2008 minNum(x,y) and maxNum(x,y) operations are not directly supported.

* FMINNUM, FMAXNUM: IEEE 754-2019 minimumNumber(x,y)/maximumNumber(x,y) functions.
When one of the input operands is a NaN and the other input is a floating-point number (that is
not a NaN), the instructions will return the floating-point number. If both input operands are a
NaN, the instructions will return a gNaN.

« FMIN, FMAX: [EEE 754-2019 minimum(x,y)/maximum(x,y) functions. When one (or both) of the
input operands is a NaN, the instructions will return a gNaN.

Refer to the truth table shown in Table 3-11 for a definition of how NaN operands are handled.

For all minimum and maximum operations, any finite operand value will compare as less than
+infinity, or greater than -infinity. Operand value of -0 compares to less than +0.

Table 3-11. FMINNUM/FMAXNUM/FMIN/FMAX Operaeon

Source Operands Invalid Result Fd FSR.INVAL Invalid
F Exception Mask Exception
Taken?
No

FMINNUM FPN1 FPN2 Don't care FPN1 or
FMAXNUM FMIN FPN2(1:234)
FMAX gNaN1 gNaN2 Don't care gNaN1 or 0 No
gNaN2)
sNaN gNaN 1 gNaN (Fs) (6 1 No
0 Yes
gNaN sNaN 1 gNaN (Fb) © 1 No
0 Yes
sNaN1 sNaN2 1 Quieted sNaN1 1 No
0 or sNaN2 () Yes
FMINNUM FPN1 gNaN Don't care FPN1 0 No
FMAXNUM gNaN FPN2 Don't care FPN2 0 No
FPN1 sNaN 1 FPN1 1 No
0 Yes
sNaN FPN2 1 FPN2 1 No
0 Yes

106

@ MICROCHIP

........... conﬂnued

Source Operands Invalid Result Fd FSR.INVAL Invalid
Exceptlon Mask Exception
LELGUTS
No

FMIN FMAX FPN1 qNaN Don't care gNaN (Fs)
gNaN FPN2 Don't care gNaN (Fb) 0 No
FPN1 sNaN 1 Quieted sNaN 1 No
0 (Fs) Yes
sNaN FPN2 1 Quieted sNaN 1 No
0 (Fb) Yes
Notes:
1. FPN1 and FPN2 are floating-point numbers that are not a NaN (i.e., normal, zero, infinity or
sub-normal).
2. Result determined by FMINNUM/FMIN or FMAXNUM/FMAX operation.
3. Operand value of -0 compares to less than +0.
4. If Fb = Fs (and of the same sign, including infinities), result (Fd) will be loaded with Fb.
5. NaN with largest significand will be passed to result (Fd), quieted if an sNaN.
6. gNaN values have priority over sNaN values (see Table 3-13).

Clamping (Limit) FuncBons

Although not specified in any IEEE 754 standard, the ISA supports a clamping (or limit) instruction
(FFLIM) intended for use where an input operand needs to be constrained between an upper and
lower limit. It serves a similar purpose to the integer equivalent FLIM instruction and is essentially
a concurrent execution of FMIN and FMAX operations with a common operand. Refer to the truth
table shown in Table 3-12 for a definition of how NaN operands are handled.

Any finite operand value will compare as less than +infinity or greater than -infinity. Operand value
of -0 compares to less than +0.

For FFLIM operations, when both upper and lower limits are either both gNaN or both sNaN values,
a NaN significand comparison (to select result NaN source) is not required, and the Fb NaN will be
the default source for the result. This differs from how coincident NaN values are treated in general.

Furthermore, a NaN input value (Fd) will cause the limit values to be ignored and will become the
source for the result. That is, checks between input NaNs and limit values (NaNs or otherwise) are
also not required.

107

@ MICROCHIP

Table 3-12. FFLIM Opera6on

Fb® Fs® Invalid Fd FSR.INVAL Exception
(Lower Limit) (Upper Limit) (Input Value) Exception Mask | (Result) Taken?

FPNL FPNU Don't care FPNL or FPNU
or FPN@or
Distinguished
gNaN®®
FPNL gNaN_U FPN Don't care gNaN_U 0 No
FPNL sNaN_U FPN 1 Quieted sNaN_U 1 No
0 Yes
gNaN_L FPNU FPN Don't care gNaN_L 0 No
sNaN_L FPNU FPN 1 Quieted sNaN_L 1 No
0 Yes
sNaN_L sNaN_U FPN 1 Quieted 1 No
0 sNaN_L® Yes
sNaN_L gNaN_U FPN 1 gNaN_u(® 1 No
0 Yes
gNaN_L sNaN_U FPN 1 gNaN_L® 1 No
0 Yes
gNaN_L gNaN_U FPN Don't care gNaN_L® 0 No
Don't care Don't care sNaN 1 Quieted sNaN@ 1 No
0 Yes
Don't care Don't care gNaN Don't care gNaN 0 No
Notes:

1. FPNL and FPNU are floating-point numbers that are not a NaN.

2. Result determined by FFLIM operation.

3. IfFsis less than Fb (and neither Fs nor Fb are NaN values), the result will be the distinguished gNaN, and the Invalid
exception will be signaled.

4. FFLIM operation based on IEEE 754-2019 minimum(x,y) and maximum(x,y) operation definitions.

Unlike FMIN/FMAX operations, no magnitude comparison of limit NaN values is required. Default result will always be
sourced from Fb.

gNaN values have priority over sNaN values (see Table 3-13).

Unlike FMIN/FMAX operations, no comparison of limit and input (Fd) values is required. Default result will always be
sourced from Fd.

NaN PropagaGon

The FPU macro supports NaN (payload) propagation to facilitate code debugging. After the CPU
issues an instruction to the FPU, the source operands are examined and a NaN value detected,
compared, and then propagated. Two operand instructions propagate NaN values as shown in
Table 3-13.

The FMAC instruction is a special case with respect to NaN propagation as it consists of essentially
three operands consisting of the two source operands (for the multiply) and a prior FMAC result
value (i.e, the intermediate used for the accumulate function). The source operands are examined
as usual but in conjunction with the selected intermediate result, and any NaN values detected are
propagated as defined by Table 3-13.

FFLIM is also a three-operand instruction, though it is ultimately either a two-operand maximum or
minimum operation based on the value of the source operand. NaN values detected are propagated
as defined by Table 3-12.

108

@ MICROCHIP

Table 3-13. NaN Propaga®on Priority

sNaN Quieted sNaN INVAL signaled
FPN gNaN gNaN =
sNaN FPN Quieted sNaN — INVAL signaled
gNaN FPN gNaN =
gNaN1 gNaN2 gNaN1 gNaN1 =gNaN2
gNaN2 gNaN2 > gNaN1
sNaN gNaN gNaN — INVAL signaled
gNaN sNaN gNaN — INVAL signaled
sNaN1 sNaN2 Quieted sNaN1 sNaN1 = sNaN2 INVAL signaled
Quieted sNaN2 sNaN2 > sNaN1

NaN Propaga©on Rules

For instructions that generate a result, special propagation rules apply when one or both source
operands are NaN values, such that sNaNs can be successfully used as “tracer” values.

When both source operands are NaNs, gNaNs take priority over sNaNs. The appropriate NaN values
will be selected as the operation default result as shown in Table 3-13. In the absence of any

NaN source operands, any other floating-point numbers will be processed by the FPU module to
generate the result.

Note: Source sNaN values will always generate an Invalid exception, but the corresponding quieted
sNaN may not always be the operation result.

This magnitude comparison is based on the magnitude of the significand associated with each of
these values (the sign is ignored). It is straightforward to implement because:

+ The MSb of a sNaN significant is 0 (with any non-zero value in the remaining bits).
+ The MSb of a gNaN significant is 1 (with any value in the remaining bits).

An example tracer sNaN propagation is shown in Figure 3-18. When an FPU operation (Op1)
executes with a sNaN and a normal floating-point number, the sNaN will be quieted and propagate
as the result. In Figure 3-18, this is sSNaN1 (the initial tracer) being propagated as qNaN1. Should

a subsequent operation (Op2) execute with gNaN1 and, for example, a later sNaN tracer (sNaN2),
operand gNaN1 will have priority, thereby maintaining propagation of the original tracer payload.
However, should that qNaN1 value then be presented to another FPU operation (Op3) together
with another gNaN, the gNaN result could be either of the source gNaNs, depending upon the
magnitude of their respective significands.

However, if the significand of the initial SNaN1 tracer is large enough, it will ultimately be able to
continue to propagate past all subsequent NaNs and be available to view at the end of the code
block, thereby allowing it to be traced back to its source.

Figure 3-18. Tracker sNaN Operand Propaga®on Example

FPN Op1 sNaN2 ~ Op2 NaN2 _ Op3
v gNaN1 \\Fs qNaN1 ~al Resul
(tracer) ZS Fb
sNaN1

If gNaN1 >= gNaN2, Result = gNaN1
If gNaN2 > gNaN1, Result = gNaN2

109

@ MICROCHIP

Table 3-14. FMAC NaN Propaga®on Priority

Multiply Source Operands Add Source Operands FMAC Result

Result Source (Fd)
T
I - B

FPN FPN FPN FPN FPN

gNaN gNaN
sNaN Quieted sNaN ' INVAL
signaled
Distinguished FPN Distinguished INVAL
gNaN®) gNaN signaled
gNaN1 Distinguished ' INVAL
gNaN or signaled
gNaN1@
sNaN Distinguished INVAL
gNaN or signaled
Quieted
sNaN@
FPN sNaN1 Quieted FPN Quieted INVAL
sNaN1 sNaN1 signaled
gNaN Quieted INVAL
sNaN1 or signaled
gNaN@
sNaN2 Quieted INVAL
sNaN1(2 signaled
FPN gNaN1 gNaN1 FPN gNaN1
qNaN2 gNaN1 or
qNaN22
sNaN gNaN1 INVAL
signaled
gNaN1 gNaN2 gNaN1 or FPN gNaN1 or
gNaN2(@ gNaN2@
gNaN3 gNaN1 or
gNaN2 or
gNaN3@
sNaN gNaN1 or INVAL
gNaN2@ signaled
sNaN1 sNaN2 Quieted FPN Quieted INVAL
(sNaN1 or (sNaN1 or signaled
sNaN2)(@) sNaN2)@
gNaN Quieted INVAL
(sNaN1 or signaled
sNaN2)@ or
gNaN
sNaN3 Quieted INVAL
(sNaN1 or signaled
sNaN2)@

Notes:
1. FPNis afloating-point number that is not a NaN.

2. Using significand magnitude comparisons as defined in Table 3-13.

3. Distinguished gNaN intermediate result will arise when operands are 0 and Inf (any sign).

110

@ MICROCHIP

3.6.3 Zero, In]nity, Not a Number (NaN) and Subnormal Values

The IEEE 754-2008/2019 standards reserve data encoding to represent special values, as shown in
Figure 3-19.

Zero is conveyed when both exponent and mantissa are all 0's. Zero is a signed value (for some
operations) as determined by the Sign bit. Infinity is conveyed by an exponent value of all 1's with an
all 0's mantissa. Infinity is a signed value as determined by the Sign bit.

A Signaling NaN is conveyed by an exponent value of all 1's with the MSb of the mantissa set to 0
(remaining mantissa bits may be set to any value). The Quiet Nan (gQNaN, see 3.6.3.1. Not a Number
(NaN)) is conveyed by an exponent value of all 1's with the MSb of the mantissa set to 1 (remaining
mantissa bits may be set to any value). NaN values are not signed, so the Sign bit may be any state.

A Subnormal value (see 3.6.3.2. Subnormal Number) is conveyed by an exponent of all 0's and any
non-zero mantissa value. Subnormals are signed values as determined by the Sign bit.

3.6.3.1 Not a Number (NaN)

The Signaling NaN (sNaN) and Quiet NaN (gNaN) are specific data codes that indicate certain
situations. In all cases, an exponent value of all 1's with a non-zero mantissa signifies a NaN (an
exponent value of all 1's with an all 0's mantissa is used to convey Infinity).

gNaNs may be generated as the result of an invalid operation, such as taking the square root

of a negative floating-point number. A gNaN will propagate through subsequent floating-point
operations. Operations that will generate an Invalid exception for each instruction are documented
in Table 3-18.

sNaNs are reserved input operands which, under default exception handling, will signal an Invalid
exception when encountered. This may be used to indicate uninitialized variables, or as debug aids,
but they are never generated by arithmetic computations or comparisons. Whenever the source
operand of operation is an sNaN, the result will be a gNaN.

Both sNaNs and gNaNs can store “Payloads” in the mantissa bit field. The payload must not affect
the MSB of the mantissa. The payload can be used as a debugging aid in tracing through complex
arithmetic calculations.

3.6.3.1.1 gNaN and sNaN PropagaBon

The IEEE 754-2008/2019 standards indicates that source qNaNs should be propagated, including any
associated payload. The FPU module does not propagate any source gNaNs, but instead generates
fixed distinguished gNaN results.

In keeping with other device floating-point implementations, this module will propagate gNaN and
sNaN values where possible. Refer to NaN Propagation for further detail.

For instructions where a source operand gNaN is not available, a distinguished gNaN value as
shown below will be provided as the result whenever those instructions suffer a computational
error.

+ Single Precision: Distinguished gNaN = 0x7FC0_0001
+ Double Precision: Distinguished gNaN = 0x7FF8_0000_0000_0001

111

@ MICROCHIP

Figure 3-19. FloaBng-Point Encodings

Single Precision

31 30 23 22 0
Not all Ones -
S Not all Zeros Any Value = tNormal
31 30 23 22 0
S 00000000 00000000000000000000000 =+0
31 30 23 22 0
S 00000000 Not All Zeros = +Subnormal
31 30 23 22 0
S 11111111 00000000000000000000000 = ko0
31 30 23 22 0
X 11111111 0.. NotAll Zeros = sNaN
31 30 23 22 0
X 11111111 1.. AnyValue = gNaN
Note: sNaN and gNaN values may be of either sign.
Double Precision
63 62 52 51 0
Not all Ones
S | Not all Zeros Any Value = +Normal
63 62 52 51 0
S | 00000000000 00 | = +0
63 62 52 51 0
S | 00000000000 Not All Zeros = +Subnormal
63 62 52 51 0
S [11111111111 00 | = +oo
63 62 52 51 0
x [11111111111 0... Not All Zeros = sNaN
63 62 52 51 0
x| 11111111111 1. Any Value = qNaN

Note: sNaN and gNaN values may be of either sign.

3.6.3.1.2 NaN Operands with Float-to-Integer Conversion
The FF2DI and FF2LI are the float-to-integer instructions. These instructions can output Huge Integer
in lieu of Invalid when the source is a value that would convert to an integer outside the range
of the result format under the applicable rounding attribute. This output is implemented as a new
exception, Huge Integer (FSR.HUGI).

The IEEE 754-2008/2019 standard calls for Invalid to be signaled if this situation cannot otherwise
be indicated. The FSR.HUGI exception is considered an implementation of “otherwise indicated,”
making the FF2DI and FF2LI instructions compliant.

@ MICROCHIP

3.6.3.2

The module drives status output Invalid (and does not drive Huge Integer) when the source is +NaN,
or + per the IEEE 754-2008/2019 standards. Note that Invalid is also driven for a qNaN input

Subnormal Number

A subnormal number (historically also referred to as a denormal number) is a non-zero floating-
point number with a magnitude of less than that of the smallest normal number representable in
the given format. The benefit of subnormal numbers is that they allow for gradual underflow when
a result is very small (when compared to that without subnormal numbers). The IEEE 754 standard
represents subnormal numbers as a special case.

Using Single Precision data format as an example, the smallest normal numbers around 0 are
greater than +2-126 or less than -2-126, which occur when the floating-point number exponent is 1
(bearing in mind that the 8-bit exponent is defined with a bias of +127) and the mantissa is all 0's.

The exponent value of 0 is reserved for subnormal numbers. However, the IEEE 754 standard treats
subnormal numbers as a special case where the hidden mantissa bit becomes 0 and the exponent
bias is changed (by +1) to compensate, such that the datum exponent becomes -126. This allows the
subnormal range to surround 0 and be between a little greater than -2-126 to a little less than -2-12°,
That is:

-2126 < sybnormal < +2-126

The minimum exponent value is referred to as Emin, and is -126 for Single Precision and -1023 for
Double Precision formats. A subnormal number would therefore be represented as:

(-1} X [0].m pasez x 2EM7

where:

-'S indicates the sign of the number (same values as a signed integer value)
-'m represents the fractional mantissa value

For example, the largest SP positive subnormal number will be when all mantissa bits are all set
(Ox007F_FFFF), and the smallest number will be when all mantissa bits are all clear (0x0000_0000),
which is 0.0.

3.6.3.2.1 Subnormal Number Handling

Should any floating-point calculation generate a subnormal result, the FSR.UDF will be set; if it is not
already set, the sticky status FSR.UDFS will also be set. In addition, if any instruction is presented
with a subnormal operand value, FSR.SUBO will be set. If it is not already set, the sticky status
FSR.SUBOS will also be set.

Subnormal Override Funcons

Although not IEEE 754 compliant, subnormal operands and/or results may be overridden to improve
the performance of some applications that do not require subnormal number precision. Use of the
subnormal override function:

+ Avoids the consequences of processing or having to deal with subnormal datum.

+ Handles result underflows when a result is subnormal, negating the need to handle an underflow
exception.

The subnormal override functions consist of two parts, one to flush subnormal input operands
to zero (referred to as Subnormals-Are-Zeros, or SAZ mode), and the other to remove subnormal
results (referred to as Flush-To-Zero, or FTZ mode).

Note: Subnormal override modes are not applicable to FCPS/FCPQ (no result to override), FAND,
FIOR, FTST, FMOV, FMOVC or any CPU to/from FPU data move instruction.

Subnormals-Are-Zero (SAZ)
Subnormals-Are-Zero (SAZ) mode is enabled when FCR.SAZ is set and will ensure that any
subnormal operand input to a Functional Block is replaced with a 0 value of the same sign as

@ MICROCHIP

13

the subnormal value it is replacing. This avoids the consequences of processing or having to deal
with subnormal datum. This operation applies to all floating-point instructions except: FMOV, FMOVC,
FAND, FIOR, FTST, FLI2F and FDI2F.

Note: SAZ mode is applied to FABS and FNEG instructions to ensure result consistency with that of
an equivalent sequence of FPU arithmetic instructions.

Note: Does not apply to FPU to CPU or CPU to FPU move instructions.

3.6.3.2.2 Flush-To-Zero (FT2)
Flush-To-Zero (FTZ) mode is enabled when both FCR.FTZ and FCR.UDFM are set. If the underflow
exception is unmasked (FCR.UDFM = 0), then the FCR.FTZ bit will have no effect. Should a
floating-point operation generate an infinitely precise result that is less than the smallest possible
subnormal number, then the Functional Block will round this to a result of 0 with the same sign
as the subnormal value. This will occur irrespective of whether FTZ mode is enabled or not. Both
Underflow (FSR.UDF) and Inexact (FSR.INX) will be signaled (if not already set, sticky status FSR.UDFS
and FSR.INXS will also be set). Should a floating-point result be a subnormal number (that the
Functional Block has not rounded up to the smallest magnitude normal number), and FTZ mode is
enabled, the result will be replaced with 0 of the same sign as the subnormal value it is replacing.
Again, both Underflow (FSR.UDF) and Inexact (FSR.INX) will be signaled (if not already set, sticky
status FSR.UDFS and FSR.INXS will also be set), though the Underflow exception has to be masked
(in order to enabled FTZ mode), so no interrupt will be issued. Forcing the result to 0 allows the user
to ignore underflows (though at the expense of some accuracy).

The FCR.FTZ bit is only examined during the WB-stage of an instruction such that it may be modified
as late as the cycle before the instruction enters the WB-stage. For example, the following code
sequence will only apply the FTZ function to the FSUB instruction:

* Assume FCR.FTZ=0 && FCR.UDFM=1 at entry

FADD.s FO0, F1,F2 ;add without FTZ
FIOR #0x0400, FCR ; set FCR.FTZ
FSUB.s F3, F4,F5 ;sub with FTZ
FAND #0xFBFF, FCR ;clear FCR.FTZ
FADD.s F2,F6,F7 ;add without FTZ

3.6.3.2.3 Subnormal Operand Excepfon
Should any affected instruction execute using a subnormal operand, and SAZ mode is disabled, the
Subnormal Operand (FSR.SUBO) exception will be signaled. This provides a mechanism to indicate
the use of a subnormal value without requiring the operand be tested (FTST).

Should SAZ mode be enabled and a subnormal operand is encountered (and changed to a 0 value),
SUBO will not be signaled.

SAZ mode may be enabled irrespective of whether the SUBO exception is masked or not (though
when enabled will never signal SUBO).

@ MICROCHIP

3.6.4 FloaBng-Point Data Register (FO-F31)

Name: Fn
Bit 31 30 29 28 27 26 25 24
| Fn[31:24]
Access R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| Fn23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| Fn[15:8]
Access R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| Fni7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - Fn[31:0] Floating-Point Data Register bits

@ MICROCHIP

115

3.6.5 Floabng-Point Control Register
Name: FCR

Note:

1. Floating-Point Exception Mask bits, FCR [6:0]: Each Exception Mask bit corresponds to an
Exception Status flag in the FSR. The Mask bit must be clear to allow the exception event to
generate an interrupt to the CPU. The Underflow Mask bit (FCR.UDFM) is also used as part of the
Flush-to-Zero (FTZ) mode enable as discussed in 3.6.3.2.2. Flush-To-Zero (FTZ).

Floating-point rounding mode control, FCR [9:8]: These bits define the global IEEE 754
compatible rounding mode used by the FPU instruction. 3.6.8.9.3. Rounding Modes.
Floating-point subnormal override mode control, FCR [11:10]: These bits enable the Subnormals-
Are-Zero (SAZ) and Flush-to-Zero (FTZ) subnormal override modes supported by the FPU.

Bit 31 30 29 28 27 26 25 24
| | | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | saz | F1z | RND [1:0] |
Access R/W R/W R/W R/W
Reset 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| SUBOM | HUGIM | INXM | UDFM | OVFM | DIVOM | INVALM |
Access R/W RIW RIW R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 11 - SAZ Subnormals Are Zero Operand Mode bit

Value Description

1 Subnormals Are Zero mode is enabled
0 Subnormals Are Zero mode is disabled

Bit 10 - FTZ Flush To Zero Result Mode bit

Value Description

1 Flush To Zero mode is enabled
0 Flush To Zero mode is disabled

Bits 9:8 - RND [1:0] FPU Rounding Mode bit

Value Description

11 |IEEE Round to Negative Infinity (floor)
10 IEEE Round to Positive Infinity (ceiling)
01 |IEEE Round to Zero (truncate)
00 |IEEE Round to Nearest (even)

Bit 6 - SUBOM Subnormal Operand Exception Mask bit

@ MICROCHIP

116

Value Description
1 Subnormal exception is masked
0 Subnormal exception is not masked

Bit 5- HUGIM Huge Integer Exception Mask bit

Value Description
1 Huge Integer exception is masked
0 Huge Integer exception is not masked

Bit 4 - INXM Inexact Exception Mask bit

Value Description
1 Inexact exception is masked
0 Inexact exception is not masked

Bit 3- UDFM Underflow Exception Mask bit

Value Description
1 Underflow exception is masked
0 Underflow exception is not masked

Bit 2 - OVFM Overflow Exception Mask bit

Value Description
1 Overflow exception is masked
0 Overflow exception is not masked

Bit 1 - DIVOM Divide By Zero Exception Mask bit

Value Description
1 Divide By Zero exception is masked
0 Divide By Zero exception is not masked

Bit 0 - INVALM Invalid Exception Mask bit

Value Description
1 Invalid exception is masked
0 Invalid exception is not masked

@ MICROCHIP

3.6.6 Floabng-Point Status Register
Name: FSR

Note: Dynamic floating-point exception status, FSR [6:0]: Dynamic status bits are updated based
on the results from each instruction Functional Block and will be updated after execution of each
instruction.

Sticky floating-point exception status, FSR [14:8]: Sticky status bits can be set based on the results
from each instruction Functional Block but cannot be cleared by hardware (other than at device
Reset), and therefore represent a history of status since the last time the sticky bits were cleared.
The FSR bits can be cleared through software.

Floating point compare status, FSR [19:16]: Status generated by executing a floating-point compare
(FCPQ/FCPS) instruction. Used individually or combined to generate the floating-point branch
conditions used by the CPU CBRAN instructions.

Floating-point test status, FSR [27:24]: Floating-point datum characteristic status generated by
executing the floating-point test (FTST) instruction.

Bit 31 30 29 28 27 26 25 24

| | | | suB | INF | FN | FZ | FNAN |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16

| | &t | LT | EQ | UN]
Access R/W R/W R/W R/W
Reset 0 0 0 0
Bit 15 14 13 12 11 10 9 8

| SUBOS | HUGIS | INXS | UDFS [OVFS [DIVOS [INVALS |
Access R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0

| suBO | HuGgl | INXx | UDF | OVF | DINO | INVAL |
Access R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 28 - SUB (FTST) Subnormal Status bit

1 Operand is subnormal
0 Operand result is not subnormal

Bit 27 - INF (FTST) Infinite Status bit

1 Operand is infinite
0 Operand is not infinite

Bit 26 - FN (FTST) Negative Status bit

1 Operand is negative
0 Operand is not negative

@ MICROCHIP

118

Bit 25 - FZ (FTST) Zero Status bit

Value Description
1 Operand is zero
0 Operand is not zero

Bit 24 - FNAN (FTST) Not a Number Status bit

Value Description
1 Operand is a NaN (gNaN or sNaN) value
0 Operand is not a NaN value

Bit 19 - GT (FCPS/FCPQ) Greater Than Status bit

Value Description
1 Minuend is greater than the subtrahend (Fb > Fs)
0 Minuend is not greater than the subtrahend (Fb < Fs)

Bit 18 - LT (FCPS/FCPQ) Less Than Status bit

Value Description
1 Minuend is less than the subtrahend (Fb < Fs)
0 Minuend is not less than the subtrahend (Fb > Fs)

Bit 17 - EQ (FCPS/FCPQ) Equal Status bit

Value Description
1 Minuend is equal to the subtrahend (Fb = Fs)
0 Minuend is not equal to the subtrahend (Fb != Fs)

Bit 16 - UN (FCPS/FCPQ) Unordered Status bit

<
v
c
®

Description
Either or both operands are NaN values
Neither operands are NaN values

o

Bit 14 - SUBOS Sticky Subnormal Operand Exception Flag bit

Value Description
1 Subnormal Operand exception has just occurred, or at some time in the past
0 Subnormal Operand exception has not occurred

Bit 13 - HUGIS Sticky Huge Integer Exception Flag bit

Value Description
1 Huge Integer exception has just occurred, or at some time in the past
0 Huge Integer exception has not occurred

Bit 12 - INXS Sticky Inexact Exception Flag bit

Value Description
1 Inexact exception has just occurred, or at some time in the past
0 Inexact exception has not occurred

Bit 11 - UDFS Sticky Underflow Exception Flag bit

Value Description
1 Underflow exception has just occurred, or at some time in the past
0 Underflow exception has not occurred

@ MICROCHIP

119

Bit 10 - OVFS Sticky Overflow Exception Flag bit

Value Description
1 Overflow exception has just occurred, or at some time in the past
0 Overflow exception has not occurred

Bit 9 - DIVOS Sticky Divide by Zero Exception Flag bit

Value Description
1 Divide by Zero exception has just occurred, or at some time in the past
0 Divide by Zero exception has not occurred

Bit 8 - INVALS Sticky Invalid Exception Flag bit

Value Description
1 Invalid exception has just occurred, or at some time in the past
0 Invalid exception has not occurred

Bit 6 - SUBO Subnormal Operand Exception Flag bit

Value Description
1 Subnormal Operand exception has occurred
0 Subnormal Operand exception has not occurred

Bit 5 - HUGI Huge Integer Exception Flag bit

Value Description
1 Huge Integer exception has occurred
0 Huge Integer exception has not occurred

Bit 4 - INX Inexact Exception Flag bit

<
v
c
®

Description
Inexact exception has occurred
Inexact exception has not occurred

o

Bit 3 - UDF Underflow Exception Flag bit

Value Description
1 Underflow exception has occurred
0 Underflow exception has not occurred

Bit 2 - OVF Overflow Exception Flag bit

Value Description
1 Overflow exception has occurred
0 Overflow exception has not occurred

Bit 1 - DIVO Divide by Zero Exception Flag bit

Value Description
1 Divide by Zero exception has occurred
0 Divide by Zero exception has not occurred

Bit 0 - INVAL Invalid Exception Flag bit

Value Description
1 Invalid exception has occurred
0 Invalid exception has not occurred

@ MICROCHIP

120

3.6.7 FloaBng-Point ExcepBon Address Capture Register

Name: FEAR

Note:

1. FEAR[1] always set to 1'b0.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| FEAR[22:15]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
FEAR[14:7]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
FEAR[6:0] EACE
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 23:1 - FEAR[22:0] Floating-Point Instruction Exception Address Capture Register bits()

Bit 0 - EACE Exception Address Capture Enable bit

1 FEAR register address capture enabled

0 FEAR register address capture disabled (and FEAR [23:0] may contain a captured address)

@ MICROCHIP

121

3.6.8 FPU Module OperaGon

Figure 3-20. Module Block Diagram

FPU Instruction Select B |nstruction 3
) - Control &
Instruction P Select - [
nstruction Precision Selec | Register AN g
Rounding Mode Override - 3
FPU &
Instruction Register Selects | RD-stage
Instruction Literal Operand - Floating-Point .
Functional | Output N FTZ
#1Z Units FPU 5| Selector " override
ala WB-stages d A
v FPU —
F-reg Partial COﬂtEthrli____, X[n]-stages
<@—P» F-reg Data Register File 2 —_
Hazard Detection and b s L
. i 4
g g | Data Forwarding Block 5
o3& / Instruction Tracking X
aox Result Data Write-back:
S~ FCR COnte)(tSlJ______T__,I
FPU Control T
<} == R.RND[1:0!
h P71 Register (FCR) - [1:0] FCR.FT.
Floating-Point
Interrupt Request Exception Control
FSR Contextsl _________ =
|
FPU Status !
-t > Result Status Updat
i "1 Register (FSR) |1 ult Status Upda
Fbcc Conditional
Branch Status
Encoding
Register Read/Write Interface ~f—p»-
FBcc Conditional Branch Status <€

3.6.8.1 Floabng-Point Unit Registers
The dsPIC Floating-Point Unit (FPU) provides a large set of working registers (F-regs):

+ 32 x32-bit (Single Precision, FO ... F31) or
* 16 x 64-bit (Double Precision, FO, F2 ... F28, F30) or
+ A mix of the two sizes aligned as shown in Figure 3-21.

In addition to the F-regs, status (FSR) and control (FCR) registers are also supported as shown in
Figure 3-21:

+ FSR (FPU Status Register, 32-bit): Holds the status of retired floating-point instructions:
FSR [6:0]: Instruction “most-recent” exception status

FSR [14:8]: Instruction "sticky" exception status
FSR [19:16]: FCPS/FCPQ instruction status
FSR [28:24]: FTST instruction status

« FCR (FPU Control Register, 16-bit):
FCR [6:0]: Exception mask control

FCR [9:8]: Rounding mode control
FCR [10]: Subnormal result “Flush-to-Zero” (FTZ) control
FCR [11]: Subnormal operand “Subnormals-are-Zero” (SAZ) control

* FEAR: (FPU Exception Address Capture Register, 24-bit): Holds the address of the first instruction
encountered that causes an exception. All subsequent instructions in the FPU pipeline that

122

@ MICROCHIP

subsequently retire will not affect the FEAR, even if they too generate exceptions. The FEAR is
intended for use during debug of the floating-point software.

Note: The FSR msws and Isws may be read/written independently of each other by some
instructions.

Note: Although inconsistent with device interrupts, where interrupt controls are referred to as
enables (where logic 1 represents enabled), it is more conventional (and in keeping with the
IEEE-754 specification) that the FPU exception controls be referred to as masks (where logic 1
represents masked). These bits are all set at Reset, masking exceptions by default.

3.6.8.1.1 FPU Register Access
Data may be moved in and out of any FPU register, from OR to W-regs or DS memory, by using
dedicated coprocessor register move instructions that execute from within the integer pipeline
(refer to MOVCRW, MOVWCR, MOVLCR, LDWLOCR, STWLOCR, PUSHCR and POPCR CPU instructions as
described in 3.6.8. FPU Module Operation).

All data is moved as 32-bit entities, so Double Precision data moves will require the execution of two
instructions (64-bit data moves are not supported in this device).

In addition, the FPU supports FAND and FIOR instructions that can logically AND or OR a literal value
with the FSR (Isw only, exception status), FCR or FEAR (Isw only).

123

@ MICROCHIP

3.6.8.2 FPU Programmer’s Model

Figure 3-21. FPU Programmer’s Model

FP Working
> Registers

- FCR[15:0]

FSR[31:0]

63 31 0
DP Fo
sP F1 I Fo
DP F2
sP F3 | F2
opP F4
SP F5] F4
DP F6
sP F7 | Fé
DP F8
SP F9 [F8
DP F10
SP F11 [F10
DP F12
SP F13 [F12
DP F14
SP F15 | F14
DP F16
SP F17 [F16
DP F18
spP F19 [F18
DP F20
SP F21 [F20
DP F22
sP F23 | F22
DP F24
SP F25 [F24
DP F26
SP F27 | F26
DP F28
SP F29 [F28
DP F30
SP F31 [F30
FP Round Control (FCR[11:8]) SAZ | FTZ RNDI[1:0]
Exception Masks (FCR[6:0]) [SUBOM | HUGIM| INXM | UDFM [OVFM | DIVOM |INVALM
FTST Status (FSR[28:24]) SUB | INF FN FZ | FNAN
FCPS/FCPQ Status (FSR[19:16]) GT LT EQ UN
Sticky Exception Status (FSR[14:8]) |suBos | HuGIs | INXs | UDFs | ovFs | Dives |INVALS
Most-Recent Exception Status (FSR[6:0]) | suo | Hucl | INx | upF | ovF | Divo | INvAL
23 0
FP EXCEPTION ADDRESS CAPTURE REGISTER EACE

@ MICROCHIP

FEAR[23:0]

124

3.6.8.3 FPU Register Set
The FPU Programmer’s Model of registers is shown in Figure 2-1 and is comprised of floating-point
operand registers (F-regs), a floating-point control register (FCR), a floating-point status register
(FSR), and a floating-point exception address capture register (FEAR). None of the registers are
memory mapped and must be read or written by the CPU using the coprocessor move instructions
(MOVCRW, MOVWCR, PUSHCR, POPCR, LDWLOCR, STWLOCR, and MOVLCR). The FCR, FSR and FEAR
registers may also be subjected to a literal AND or OR operation by the FAND and FIOR instructions
respectively.

3.6.8.3.1 Floa®ng-Point Operand Registers (F-Regs)
To differentiate from the CPU working W-regs, the FPU operand/result data working registers are
referred to as F-regs. The FPU supports up to 32 Single Precision values, or up to 16 Double
Precision values. Aligned pairs of the F-regs registers (e.g., F1:FO values may be used to provide data
storage for Double Precision values. Single and Double Precision values may be mixed within the
register file. Other than data movement in and out of the FPU, all instructions are register-to-register
operations within the FPU register set.

The F-regs are not memory-mapped and can only be accessed by the CPU using specific instructions
as discussed in 3.6.8.3.3. CPU Access of FPU Registers.

The 32 x 32-bit F-reg array, together with additional register contexts, is implemented as a register
file. FPU instructions can have 1, 2 or 3 operands (read sources) and 0 or 1 result destination, and
most also update status in the FSR. Registers may be used individually for Single Precision data
values or coupled as odd; even pairs (only) should be used to support Double Precision data values
(e.g., F1:FO).

Source registers are bound to an instruction when the instruction is issued and are not writable

by the CPU until the instruction is committed. At this point, they are clocked into operand registers
that drive the target functional block and can therefore be subsequently written. Note that a bound
source register may be read at any time.

Destination registers (F-regs and FSR) are bound to an instruction when the instruction is committed
and are not accessible by the CPU until the instruction has retired.

Floa®ng-Point Control Register (FCR)
The FCR is comprised of the following bit fields as defined in 3.6.5. FCR.

Floating-Point Exception Mask bits, FCR [6:0]: Each Exception Mask bit corresponds to an Exception
Status flag in the FSR. The Mask bit must be clear to allow the exception event to generate an
interrupt to the CPU. The Underflow Mask bit (FCR.UDFM) is also used as part of the Flush-to-Zero
(FTZ) mode enable as discussed in 3.6.3.2.2. Flush-To-Zero (FTZ).

Floating-Point Rounding mode control, FCR [9:8]: These bits define the global IEEE 754 compatible
rounding mode used by the FPU instruction. See 3.6.8.9.3. Rounding Modes.

Floating-Point Subnormal Override mode control, FCR [11:10]: These bits enable the Subnormals-
Are-Zero (SAZ) and Flush-to-Zero (FTZ) subnormal override modes supported by the FPU.

3.6.8.3.2 Floabng-Point Unit Register Contexts
To speed up real time control systems and other time critical applications, the dsPIC FPU supports
multiple register contexts that are tied to Interrupt Priority Levels.

The FPU includes a set of hardware register contexts. Each context includes the FSR, FCR and four
register pairs (i.e., FO through F7). All other F-regs and FEAR are not included and must be saved and
restored through software.

The number of supported register contexts matches that of the CPU and is fixed at seven, which
represents one context per CPU Interrupt Priority Level (IPL). Should the CPU change context, then
the FPU will follow suit, and all subsequent instructions issued to the FPU will execute within that
(new) context. However, all FPU instructions issued in a prior context will be allowed to continue to
execute and retire within that context, irrespective of the context change within the CPU. Similarly,

125

@ MICROCHIP

any data dependencies that occur within the context of the instruction underway will remain within
that context.

As the FSR is part of the register context, exceptions are context specific. Should the FPU change
register context, any FPU exceptions generated as a result of the execution of FPU instructions
already issued from the prior context will remain pending until the FPU returns to that original
context.

Hazard detection is also context based such that each instruction operand and result register is
tagged with its own context. Hazards can therefore only exist within the same register context.

This concept extends to the FSR and FCR which have an independent representation within each
register context. Consequently, the CPU will not stall (assuming no FSR and/or FCR hazard exists
within the current context) if it were to access the FSR or FCR while the FPU continued to execute
instructions issued from within a different context. These instructions would have access to their
own version of the FSR and FCR.

3.6.8.3.3 CPU Access of FPU Registers

The following CPU instructions are provided specifically to support data movement into and out of
the coprocessors. The assembler uses the register declarations to direct encoding of the FPU as the
target coprocessor within each instruction op code:

+ MOVCRW: Move any FPU register to a W-reg or DS memory (using indirect addressing).

* LDWLOCR: Move the contents of DS memory (read using register+literal offset addressing ([ws +
Sl1itl4]))to any FPU F-reg register.

* STWLOCR: Move any FPU F-reg to DS memory (read using register+literal offset addressing
([Wd+S1it1417)).

* PUSHCR: 16-bit short instruction dedicated to moving any FPU register onto the system stack.
+ MOVWCR: Move a W-reg or DS memory value (using indirect addressing) to any FPU register.

* POPCR: 16-bit short instruction dedicated to moving a value from the system stack to any FPU
register.

+ MOVLCR: Move a 32-bit literal value to any FPU register.

Note: These instructions are referred as mov. 1, push.1 or pop. 1. Please refer to the dsPIC33A
Programmer’s Reference Manual for the correct syntax of these instructions.

3.6.8.3.4 Intra-FPU Register Moves and Logical OperaGons

In addition to CPU to/from FPU data movement, the FPU supports instructions that execute within
its own pipeline that perform register to register moves or logical operations:

« FMOV: Copy any F-reg or F-reg pair into another F-reg or F-reg pair.

+ FMOVC: Move one of 32 Single or Double Precision constant values into an F-reg or F-reg pair.
+ FAND: Logically AND a 16-bit literal value (lit16) with the Isw of the FPU FSR, FCR or FEAR.

* FIOR: Logically OR a 16-bit literal value (lit16) with the Isw of the FPU FSR, FCR or FEAR.

Note: To allow subsequent instruction to immediately utilize FAND and FIOR changes to
FCR.RND[1:0] and FCR.SAZ control bits without stalls, these bits are manipulated and updated in
the first pipeline stage (RD-stage). However, the remaining FCR bits are not written back until the
end of the instruction as usual. Consequently, should the CPU need to read the FCR immediately
after modification, it will be stalled by the FPU until the FAND or FIOR instruction has retired.

3.6.8.4 Data Hazard Management
Read-After-Write (RAW) data hazards can arise due to:

« Data dependencies between FPU instructions

126

@ MICROCHIP

+ As the result of a register move from an FPU register to the CPU when an FPU instruction
underway has not yet completed its result write (to the same register)

Write-After-Read (WAR) data hazards within the FPU pipeline alone are not possible because the
pipeline ensures that instruction reads always precede subsequent instruction writes. However, a
WAR hazard can arise when the CPU pipeline writes to an FPU register that has yet to be read by a
previously issued but stalled FPU instruction.

Write-After-Write (WAW) data hazards are possible should the CPU attempt to write to an FPU
register that is also the target of a prior FPU instruction which has not yet completed its result write.

All hazards are detected within the FPU or CPU (or both) and will be mitigated either through data
forwarding or pipeline stalls. Refer to 3.6.8.7. FPU Hazards for further details.

3.6.8.5 FPU and CPU ExcepBons
Issued FPU instructions that become committed (accepted by the Execute stage) are always atomic
with respect to CPU exceptions. No CPU exception (other than a Reset event) can force the FPU to
abandon an instruction that is already underway.

CPU exceptions will result in a register context switch in both the CPU and FPU. Furthermore, FPU
exceptions are always context specific. That is, any FPU exception occurring after a context switch
will remain pending until the FPU returns to the prior context.

FPU exceptions can only be taken and handled when unmasked (referred to as alternate exception
handling). The FPU will return the calculated result of each operation and signal any exception via an
interrupt to the CPU.

If FPU exceptions are masked, the FPU will return a default result for each operation that generates
an exception as defined in Table 3-15. The exception will be signaled by setting the corresponding
bit(s) in the FSR, but no interrupt will be issued to the CPU. This is intended to allow code to execute
unhindered by exception handling at the time of execution. If required, exception status may be
examined at a later time and appropriate action taken.

3.6.8.5.1 Huge Integer and Subnormal ExcepBons
In addition to the IEEE 754-2008/2019 compliant exception support, this macro also offers two
additional exceptions and associated masks that some users may find useful.

* Huge Integer: FSR.HUGI
Exception signaled whenever a Float-to-Integer conversion operation (FF2DI and FF2LI) results in
an integer value that is larger than the destination register can represent.

+ Subnormal Operand: FSR.SUBO
Exception signaled whenever an operand of an affected instruction is a subnormal value and
Subnormals-Are-Zeros (SAZ) mode is disabled (FCR.SAZ = 0). This is the only exception that can be
triggered by an operand source condition (all others are related to result conditions).

Table 3-15. Default Excep6on Results

FSR Bit Name Default Result

Invalid INVAL® Distinguished gNaN or quieted sNaN or
Largest integer result (for FF2DI/FF2LI only)

Divide By Zero DIVO Correctly signed Infinity®
Notes:

1. Under default exception handling, UDF is only set (along with INX) if the result is an inexact underflow. Applies
irrespective of whether FTZ mode is enabled or not.

2. FCPS and FCPQ do not generate a result other than an FSR update. However, INVAL will be set by FCPS if either or both
operands are a qNaN or sNaN, or by FCPQ if either or both operands are an sNaN.

3. 0/0is a special case (where both the dividend and divisor are not finite) which will return the distinguished gNaN as the
result. INVAL will be set but DIVO will not.

127

@ MICROCHIP

........... continued

FSR Bit Name Default Result

Overflow OVF 3 Nearest (Even) Infinity with sign of
§ exact result
20 Zero Most positive finite
g number with sign of
3 exact result
« +Infinity Positive overflow:
+Infinity
Negative overflow:
Most negative finite
number
-Infinity Positive overflow: Most
positive finite number
Negative overflow:
-Infinity
Underflow UDF(™M FCR.FTZ = 0: Rounded subnormal result
FCR.FTZ = 1; Zero with sign of exact result
Inexact INX Rounded (inexact) result
Huge Integer HUGI Largest integer value with sign of input operand
Subnormal Operator SUBO N/A (input operand exception)
Notes:

1. Under default exception handling, UDF is only set (along with INX) if the result is an inexact underflow. Applies
irrespective of whether FTZ mode is enabled or not.

2. FCPS and FCPQ do not generate a result other than an FSR update. However, INVAL will be set by FCPS if either or both
operands are a gNaN or sNaN, or by FCPQ if either or both operands are an sNaN.

3. 0/0is a special case (where both the dividend and divisor are not finite) which will return the distinguished gNaN as the
result. INVAL will be set but DIVO will not.

3.6.8.6 CPU to FPU Interface
The CPU can issue instructions to a coprocessor (FPU), and directly read and write FPU registers.
However, coprocessors otherwise operate independently of the CPU instruction pipeline, executing
their instructions within their own pipeline hardware.

An FPU can only receive, send and process data that is funneled through (and under the
direction of) the CPU. No CPU addressing capability is shared with an FPU. Consequently, an FPU
can only support register direct addressing for all instruction source or destination addressing
modes that target a FPU register. Data flow to and from each FPU is controlled using dedicated
move instructions that execute within the CPU. Because the CPU and FPU pipelines execute
independently, data related hazards that may arise when moving data between the CPU and an
FPU are mitigated using a simple request/grant bus which will stall the CPU as needed.

The CPU supports speculative execution of instructions that immediately follow a conditional
branch. These could be FPU instructions, so a mechanism exists to allow the CPU to cleanly Kill
these instructions should the branch prediction prove incorrect.

In case an FPU SFR read is killed, all FPU SFR (e.g., status and control registers) are defined such that
a read of any SFR is not destructive within itself. This will avoid the possibility of a killed SFR read
affecting the state of the FPU.

3.6.8.6.1 FPU Pipeline OperaBon
The CPU decodes all coprocessor instructions during the F-stage. The source and destination
coprocessor registers are extracted from the opcode and supplied to the coprocessor, along with
a corresponding instruction select and control signals such that no instruction decode is necessary
within the coprocessor.

128

@ MICROCHIP

The FPU pipeline stages consist of Read (RD), Execute (X[n]) and Write-Back (WB) stages. The Read
and Write-Back stages consist of a single register and are common to all instructions. The Execute
stage consists of as many stages as required to execute the specific instruction (i.e., X [0], X[1].....
X[n]) but at least X [0].

The CPU pipeline F-stage and A-stage fetch can issue FPU instructions respectively as shown

in Figure 3-23. The pipeline can suffer both structural and data hazards, as discussed later in
3.6.8.7.1. FPU Structural Hazards and FPU Functional Block Unavailable, respectively, which can
result in CPU and FPU pipeline stalls, as shown in the corresponding diagrams.

One instruction may be issued into the RD-stage, where it will remain for one cycle (hazards aside)
until dispatched into the X [0] stage. The number of cycles each instruction remains within the
execute phase varies depending upon the operation. In order to avoid stalling the pipeline for the
duration of any long instruction, up to four instructions may be dispatched into X[0] and executed
concurrently (structural hazards aside).

Instructions retire in the same order in which they are issued. As a consequence of being able to
execute multiple instructions with varying execution times, the pipeline Instruction/Hazard Tracker
logic is designed to ensure that in-order retirement is maintained.

All instructions with an execution latency of four cycles or less are implemented such that the
execution stages are fully pipelined. Consequently, assuming no data dependencies (hazards) arise,
these instructions can be repeatedly issued at a rate of one per cycle (and receive their results at a
rate of one per cycle after an initial execution latency), without incurring a structural hazard stall.

For instructions where the execution latency exceeds four cycles (FDIV and FSQRT), the FPU pipeline
will fill the instruction and then stall subsequent instructions (due to a structural hazard) until the
required execution resource becomes available.

+ FDIV: Floating-point divide is implemented as an iterative operation such that the input data
cannot be pipelined until all iterations have completed and the result is passed onto the
adjustment stage within the Functional Block. For example, should the CPU issue two sequential
FDIV instructions, the second FDIV instruction will stall in the RD-stage until the first FDIV enters
the final execution cycle, at which point the second FDIV may be dispatched into execute stage to
commence execution.

+ FSQRT: Floating-point square root requires 10 (Single Precision) or 13 (Double Precision) cycles
to execute. The hazard tracker can handle up to four issued instructions, so an FSQRT followed
by up to three sequential FPU instructions (including FSQRT) may be executing at any one time.
The CPU may issue one more instruction, but it will remain in the RD-stage until the oldest FSQRT
instruction underway enters the WB-stage, six cycles later, and subsequently retires. At this point,
one slot within the hazard tracker is now available for use, and the pending FPU instruction
will be committed for execution. Another FSQRT instruction will retire in the next cycle, opening
another hazard tracker slot for another issued FSQRT instruction, and so forth, until the hazard
tracker is full again and the pipeline must wait a further six cycles for the initial FSQRT to retire.
For FSQRT alone, the best case block repeat rate is therefore one per cycle for the initial 4 FSQRT
instructions issued, with a subsequent four FSQRT instructions to be issued after six (Single
Precision) or nine (Double Precision) cycles have passed. This supports an average execution time
of (4+6)/4 or 2.5 cycles/instruction (Single Precision) or (4+9)/4 or 3.25 cycles/instruction (Double
Precision).

FPU Read Stage

The FPU pipeline RD-stage receives instructions issued by the CPU. The CPU issues FPU instructions
from the A-stage into the FPU RD stage which consists of a single register, such that only one FPU
instruction can be held at any one time. The instruction is committed when it is dispatched to X[0],
where it will start execution. X[0] holds the instruction such that the CPU is free to issue another
instruction into the RD-stage.

129

@ MICROCHIP

The RD-stage is also subject to hazard checks and can therefore be stalled. Should a RAW hazard be
detected with a prior instruction that is already executing within the FPU pipeline, the hazard will be
detected in the RD-stage which will then be stalled until such time that the hazard is resolved.

Should the CPU subsequently attempt to issue additional FPU instructions, the RD-stage will not be
able to accept them so will also stall the CPU until such time that the RAW hazard has been resolved.
From the CPU perspective, this scenario is viewed as a structural hazard.

The RD-stage will also stall the CPU under the following conditions:

1. Whenever the number of instructions (default value is four) are in their execute X[n] stages, an
instruction is pending in the RD-stage, and the CPU is attempting to issue a further instruction.
In this situation, the Instruction/Hazard Tracker is full so the FPU cannot dispatch another
instruction from the RD-stage into X [0] until one of the instructions currently executing passes
into the WB-stage (refer to 3.6.8.7.1. FPU Structural Hazards). Assuming the default value is four,
this can occur when the pipeline is executing instructions that take longer than four cycles to
execute, and additional FPU instructions are issued while the long instruction is still executing
(i.e., not yet in the WB-stage). The longer instruction(s) execute and retire at a rate which is
slower than the rate at which the Instruction/Hazard Tracker can be filled, resulting in the CPU
being stalled.

2. Whenever the CPU attempts to issue more than two FDIV instructions while a previously
issued and dispatched FDIV instruction is still executing (i.e., not yet in the WB-stage). FDIV is
a special case where no more than one instance can be executed within the pipeline at any one
time. Consequently, executing another FDIV while a prior instance is still executing will cause
this second FDIV to be issued but held pending in the RD-stage (i.e., CPU will not stall). But
attempting to issue a third FDIV instruction while the pending (second) instance has not yet been
dispatched to X [0], will resultin a CPU (issue) stall. The RD-stage also includes special logic to
support the FAND and FIOR operations (refer to FAND and FIOR Instructions).

FPU Execute Stage

Each instruction may consist of one or more execute stages depending upon the functional block
targeted by the operation. When the instruction enters the X [0]-stage, it is registered such that the
RD-stage is free to receive another instruction issued by the CPU.

All instructions (other than FDIV) are pipelined through as many X[n] stages as deemed necessary to
meet the timing requirements.

The pipeline stages will be added such that the propagation delay of each is as balanced as possible,
and that sequential issue of the same instruction may be fully pipelined (i.e., instructions using

the same Functional Block may be sequentially issued without incurring a structural hazard in the
execute stage).

FPU Write-Back Stage

The WB-stage captures each Single Precision or Double Precision result as they exit the execute
stage in dedicated registers. FPU instruction execution time is variable, but only one instruction
is permitted to be in the WB-stage at any one time. If more than one instruction has completed

execution and is in a position to retire, the pipeline will determine which instruction to retire to

maintain instruction execution order and eliminate any WAW hazards. The instruction will then

complete the write-back in one cycle during the WB-stage before being retired. The Instruction/
Hazard Tracker logic will ensure instructions enter the WB-stage in the same order as they were
issued (refer to 3.6.8.7.3. Instruction/Hazard Tracker).

Prior to writing the result, if FTZ mode is enabled (see 3.6.3.2.2. Flush-To-Zero (FTZ)), the result is
modified accordingly if subnormal. This final value is also passed onto the RAW hazard mitigation
forwarding logic (see Internal RAW Hazards).

130

@ MICROCHIP

FAND and FIOR InstrucGons
The FAND and FIOR instructions operate with a 16-bit literal, and can only target the FCR, FSR

and FEAR. They are considered a special case as they are executed using custom blocks that are
implemented within the RD-stage for some FCR bits and the WB-stage for everything else.

To allow subsequent instruction to immediately use FAND and FIOR changes to FCR.RND [1:0]
and FCR.SAZ control bits without (RAW hazard) stalls, these bits are modified during the RD-stage,
then updated at the end of the RD-stage such that they are available for immediate use by any
subsequent instruction.

The remaining FCR bits and all FSR and FEAR bits are read, modified and written back during the
WB-stage. Reading the FSR late (i.e., in the WB-stage rather than the RD-stage) avoids a potential
RAW hazard arising between a prior instruction FSR update and a subsequent FAND or FIOR FSR
operation.

3.6.8.7 FPU Hazards

The coprocessor interface can suffer from structural and data dependencies as described in the
following sections. RAW, WAR and WAW data hazards are possible; RAR hazards are not.

3.6.8.7.1 FPU Structural Hazards
When a requested FPU resource is unavailable, a structural hazard will be detected. This may result
in the coprocessor stalling the CPU until the hazard is resolved.

Hazards that arise from actions within the FPU are referred to as “internal” hazards. Those that arise
due to actions between the CPU and FPU are referred to as “external” hazards. Depending upon
how the CPU/FPU pipeline is viewed (separate or conjoined), some of these hazards may be viewed
as either structural (i.e., a resource is unavailable) or data related.

FPU Pipeline Full or Busy

When the CPU attempts to issue an instruction to the coprocessor and it is unable to accept it
because the pipeline is full or busy, an external structural hazard will result, and the coprocessor will
stall the CPU until such time that the instruction can be accepted.

When an issued instruction is stalled in the FPU RD-stage due to a RAW hazard with a prior currently
executing instruction, the FPU pipeline is considered busy such that further FPU instructions cannot
be accepted. Consequently, should the CPU attempt to issue any additional FPU instructions while
the RD-stage is stalled, the FPU will stall the CPU until such time that the hazard resolves, resulting in
an external structural hazard as shown in Figure 3-24.

The pipeline is considered full when the Instruction/Hazard Tracker FIFO is full, which occurs when
the number of instructions (default value is four) are active within it, including the one waiting in the
RD-stage for dispatch into X[0]. The pipeline will remain full until the oldest instruction enters the
WB-stage. Should the CPU attempt to issue another FPU instruction, the FPU will stall the CPU until
such time that the Instruction/Hazard Tracker FIFO is no longer full.

FPU FuncOonal Block Unavailable

If the FPU pipeline is not full, and the FPU attempts to dispatch an instruction from the RD-stage that
uses a functional block that is already in use by a prior instruction, an internal structural hazard will
result, and the RD-stage will be stalled until such time that the functional block is no longer in use. If
the CPU attempts to issue another FPU instruction before this occurs, the FPU will then stall the CPU
until the hazard resolves.

This scenario can arise as a result of in-order retirement where instructions that target the same
functional block will be stalled in the pipeline waiting for slower, older instructions to complete
execution. An example is shown in Figure 3-3 where a slow instruction (FS1N) is followed by multiple
instructions that target the same MISC_SP functional block. The first MoV will stall in X [0] waiting
for the FSIN to retire, resulting in an internal structural hazard. The subsequently issued FMOV will
issue but will be stalled in the RD-stage because it cannot progress into X [0] until the first FMOV is
able to move into the WB-stage, another internal structural hazard. As the RD-stage is now stalled,

131

@ MICROCHIP

should the CPU attempt to issue any additional FPU FMOV or FMOVC instructions (which share the
same functional block), the FPU will stall the CPU until such time that the pipeline can advance again,
causing an external structural hazard.

This scenario will always arise for sequential issue of the multi-cycle iterative FDIV instruction (all
other instructions can be pipelined) as shown in Figure 3-4.

FPU Register Unavailable to Read

When the CPU attempts to read a register that is bound to an issued FPU instruction, an external
structural hazard will result and the coprocessor will not be able to read until such time that the
register becomes available, creating a read stall for the CPU.

FPU Register Unavailable to Write

When the CPU attempts to write to a register that is bound to an issued FPU instruction, the
co-processor will not be able to write until such time that the register becomes available, creating a
write stall for the CPU (see FPU WAW Hazards).

3.6.8.7.2 FPU Data Hazards
The coprocessor interface can suffer from data dependencies leading to RAW, WAR and WAW data
hazards (RAR hazards are not possible). Unlike the CPU integer pipeline, a coprocessor hazard does
not necessarily prevent the pipeline from progressing for other coprocessor instructions, unless
subject to other hazards.

Internal RAW Hazards

An internal RAW (Read-After-Write) data dependency hazard will occur when the result of an FPU
instruction is not available at the time it is selected as the source operand (F-reg) of a subsequent
FPU instruction. The affected instruction will be stalled in the RD-stage until such time that the
hazard is resolved.

In order to mitigate the hazards, the coprocessor includes data forwarding paths between the FPU
execution result data output and the coprocessor RD-stage (as shown in Figure 3-8). This path will
forward the write data value should the write and read instructions target a common register.
Forwarding as soon as the result data is available (i.e., prior to the FPU register write) will help
mitigate the impact of the hazard.

External RAW Hazards

An external RAW (Read-After-Write) data dependency hazard will occur should the contents of an
FPU register be unavailable at the time it is read by the CPU because the register is bound to a
previously issued FPU instruction. The coprocessor will detect the hazard and read will be stalled
until such time that the register becomes available (i.e., after the result has be written), creating a
read stall for the CPU.

In addition, an external RAW hazard will occur if:

+ A CPU write to a coprocessor register is immediately followed by the CPU issuing a coprocessor
instruction that uses the same register as an operand source.

or
+ A CPU write to a coprocessor register is immediately followed by a CPU read of the same register.

In both of these CPU RAW hazard scenarios, the CPU is responsible for detecting the hazard and
inserting the necessary stall cycle for the coprocessor to resolve the hazard. Hazard detection is the
same for both scenarios.

In order to resolve these hazards, the coprocessor includes data forwarding paths between the CPU
W-stage and both the coprocessor RD-stage (as shown in Figure 3-5) and the CPU read data output
(as shown in Figure 3-6). These paths will forward the write data value should the write and read
instructions target a common register.

132

@ MICROCHIP

Note: When the CPU attempts to write to an F-reg, it is possible that an instruction in the RD-stage
is using the same register as an operand source, and it is stalled as the result of an internal RAW
hazard. Forwarding the new CPU write data into this register would then be incorrect because

the RD-stage instruction was issued prior to the CPU write instruction. Consequently, should the
instruction in the RD-stage have been there for more than one cycle (i.e., be stalled), the FPU will
disable the forward path and allow the stall mechanism to recognize the hazard as usual. This will
prevent the CPU write from completing until such time that the instruction in the RD-stage has been
dispatched to start execution.

CPU write data forwarding to the coprocessor RD-stage allows the CPU to issue a coprocessor
instruction earlier than would be possible if the CPU coprocessor write had to complete. CPU write
data forwarding to the CPU read data path together with a CPU stall cycle (detected and inserted
by the CPU) resolves the (unlikely) hazard that arises when a CPU write is followed immediately by
a CPU read of the same coprocessor register. The converse scenario where a CPU read of an FPU
register into a W-reg is immediately followed by a CPU write of the same W-reg to another F-reg is
shown in Figure 3-7.

FPU WAR Hazards

WAR (Write-After-Read) anti-dependency hazard can occur should the pipeline allow read and write
execution to be out of (instruction sequence) order. That is, a WAR hazard will arise whenever an
instruction writes to a register before the same register is read by a priorinstruction. That is, the
read and write occur out of execution order resulting in the (older) read instruction ultimately using
the (later) write data which would be incorrect.

Under normal sequential execution conditions, a WAR hazard should never arise because the read
of all older instructions always precedes the writes of later ones. However, a WAR hazard can

arise within the coprocessor pipeline should a slow instruction (e.g., FPU FSIN) have a result

data dependency (RAW hazard) with a later instruction, and that later instruction is followed by a
MOVWCR Or POPCR instruction that targets the same register as the dependency. This is because the
dependency will force an FPU pipeline stall until the result data is available and the RAW hazard is
resolved, but the MOVWCR or POPCR move instructions (which do not execute using the FPU pipeline)
will not be stalled. Consequently, it is possible that the write from the MOVWCR or POPCR instruction
would occur prior to the stalled instruction continuing execution (after the RAW hazard). The write
would then be overwritten by the FPU pipeline and therefore lost. This scenario is detected as a
WAR hazard and prevented from happening by stalling the most recent write, such that the write
order remains correct. CPU to FPU move instructions that do not target the register involved in the
stall will still execute as normal (i.e., without stalling).

The coprocessor must therefore detect the possibility of such a hazard and force in-order execution
of all dependent instructions by stalling the most recent CPU write instruction in the W-stage until
after the prior read is completed.

An example WAR hazard and its resolution is shown in Figure 3-10. A RAW hazard between the
FSIN.s and FMOV. s instructions will stall FMOV. s to resolve the hazard (stall cycles shown in green),
but this will also set the pipeline up for a possible WAR hazard because the subsequent MOVWCR
instruction is not prevented from continuing execution.

As is the case in this example, should the MOVWCR instruction destination be the same F-reg as
that used by the FMOV. s as a source, the MOVWCR must be prevented from writing until the prior
(FSIN. s) has been able to forward the write data to the MOV . s RD-stage. The FSIN.s and MOVWCR
enter their respective write stages together, and the FPU prioritizes the CPU write, maintaining
correct write ordering. This results in a one cycle stall of MOVWCR instruction to resolve the hazard.

FPU WAW Hazards

The WAW (Write-After-Write) hazard is a further consequence of allowing instructions to continue
execution while others are stalled or taking longer to execute. As is the case for WAR hazards,
instruction writes can end up out of order, leaving an incorrect (stale) value in a destination register.

133

@ MICROCHIP

WAW output dependency is possible because once the coprocessor instruction is issued, the

CPU and coprocessor pipelines operate independently. A multicycle coprocessor instruction may
therefore complete after one or more CPU instructions that were subsequently issued (i.e., out of
order). AWAW hazard will exist when the CPU instruction is ready to retire before the coprocessor
instruction retires and either:

+ The same register is a destination for both the coprocessor instruction and the CPU instruction
that follows it.

or

« The CPU instruction write targets a coprocessor register that is being used by the prior
coprocessor instruction.

In both cases, the resource cannot be shared.

An internal WAW hazard can arise between successive FPU instructions that have differing execution
time. However, each issued instruction is tracked by pushing its associated functional unit ID into

a FIFO, which is emptied in the same order as it is filled when instructions move results from their
functional units into the WB-stage. Should an expected (from the FIFO) functional unit result not

be ready, this knowledge is used in the write stage to complete the destination write in the correct
sequence, stalling those instructions that arrive out of order, thereby eliminating the WAW hazard.

If the CPU and FPU pipelines are viewed as conjoined, a WAW hazard is also possible should the
CPU attempt to write a value to the same register as that also targeted by a previously issued

FPU instruction whose write has not yet completed. However, access to the write target(s) of

an instruction is inhibited as soon as the instruction is committed (see 3.6.8.5. FPU and CPU
Exceptions). Consequently, any attempt by the CPU to write to an FPU register that is already bound
to a prior FPU instruction being executed will result in the write grant failure (and the CPU write
stalling).

An example WAW hazard and its resolution is shown in Figure 3-11 for an FPU instruction that
requires three iterations of the execute stage to complete. This results in a two cycle write stall
within the CPU instruction pipeline.

Note: For the purpose of WAW hazard detection, the FSR is considered as a single entity.

Note: The FSR is bound to all FPU instructions except for FEMOVC and FMOV (these ops do not
update the FSR), and FAND and FIOR unless they will modify the FSR. The FEAR is bound to all FPU
instructions except for FMOVC, FMOV and FTST. Itis also not bound to FAND or FIOR unless it will
be modified by them. Note that this applies irrespective of whether FEAR is enabled or not (i.e.,
FEAR.EACE is a “don't care” with respect to FEAR hazard detection).

3.6.8.7.3 InstrucBon/Hazard Tracker

The Instruction/Hazard Tracker is a mechanism whereby hazard related information required while
an instruction is progressing through the execute stages is captured in a FIFO for each issued
instruction when that instruction is committed and enters the FPU pipeline X [0]-stage. The FIFO
depth (Default is four) defines how many instructions may be sequentially dispatched into the
execution stage before it is regarded as full.

Each FIFO entry includes the following information which is used during the X-stages:

1. Entry valid flag.
2. Flags to indicate which Functional Block (function and operation precision) is targeted.

3. Operand source register identification and valid flag such that RAW hazards may be identified as
the instruction progresses.

Flags to support Single Precision and Double Precision NaN propagation logic.
5. Flag to indicate if instruction is FDIV or FSUB (where the operand order is reversed).
Flag to indicate if instruction is FMAC (special case for NaN propagation).

134

@ MICROCHIP

Each FIFO entry requires a ‘valid’ bit which is clear whenever the entry is empty or after it has been
used in the WB-stage. This bit will inhibit any associated hazard detection after an instruction has
retired.

Operation precision partially identifies the selected Functional Block but also directs the hazard
logic. Single Precision operations need only check for hazards involving single F-regs whereas
Double Precision must check F-reg pairs for hazards.

Operand register identification and valid flags log which F-regs are used for operands (not all
instructions require all three source operands) for hazard tracking. In addition, each FIFO entry
includes the following information (also detected in the RD-stage) which is used during the
instruction WB-stage:

1. Flags to indicate if any result is to be written to an F-reg and whether the FSR is to be updated.

2. Result destination register (and context) identification (defined as DP targets). Additional flags
select the active registers (i.e., DP F-reg pair or one of two SP F-reg destinations).

3. Flag to indicate if instruction permits FTZ override of result.

CPU A-stage instruction address to capture in the FEAR (if enabled) should the instruction
generate an exception.

5. Flags to indicate if the instruction is a FAND or IOR, and the associated FSR/FCR/FEAR target
register select bits.

6. The presence of a subnormal operand (when SAZ mode is disabled) is captured and used to
signal the subnormal exception (i.e., at the same time as any other exceptions the instruction
may generate).

3.6.8.7.4 CPU Write Stalls
Whenever the CPU encounters a write stall, the entire integer pipeline is stalled (because the CPU
only supports in-order execution). No subsequent instruction is permitted to move into the W-stage
to retire until the write stall is resolved. Different Pipeline stages are explained in 3.6.8.6.1. FPU
Pipeline Operation.

@ MICROCHIP

135

Figure 3-22. CPU Pipeline Coprocessor Interface Flow
Instruction read decode

Instruction write decode

Generate FPU instruction select

Issue FPU instruction (drive coprocessor instruction interface)

F A R / X)/ Capture coprocessor read data(MOVCRW or PUSHCR)

F A X w Drive coprocessor write data(MOVWCR or POPCR)

‘:’ CPU pipeline (only) instruction
- CPU-> FPU pipeline instruction

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

136

@ MICROCHIP

dsPIC33AK128MC106 Family
CPU

Figure 3-23. CPU Pipeline Coprocessor Issue Flow

Instruction fetch

Instruction read decode

Instruction write decode

FPU instruction additional execute stages
X[n] (as needed for op)

FPU instruction issue

FPU instruction commit

Data Sheet 70005539B - 137

@ MICROCHIP © 2023-2024 Microchip Technology Inc. and its

subsidiaries

dsPIC33AK128MC106 Family
CPU

Figure 3-24. Pipeline and FuncOonal Block Busy Internal/External Structural Hazards

~ Internal Structural hazard:
Fb MOV stalled in X[0]-stage, unable to advance due
to FSIN

_ Internal Structural hazard:
Fc MOV stalled in RD-stage, unable to advance due to
Fb inability to advance

- External Structural hazard:
Fd MOV stalled in A-stage, unable to issue due to
stalled RD-stage

FSIN.s F0, Fl
FMOV.s F2, F3
FMOV.s F4, F5
FMOV.s FE, F7

I:l CPU pipeline (only) instruction F F . =
EI CPU pipeline stall ar no operation
- CPU ->FPU pipeline instruction
- FPU pipeline operation

- FPU pipeline stall

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

Figure 3-25. FDIV Pipeline and FuncBonal Block Busy Internal/External Structural Hazards

Iterative X[0] stage divide evaluation

/ Fe FDIV stalled in RD-stage while Fb FDIV X[0] iterations execute

Fc issue stalled by FPU, and Fb FDIV stalled in RD-

FDIV.s FO, Fl, F8 stage while Fa FDIV X[0] iterations execute
FDIV.s F2, F3, FS —_——
FLEY. % B4y By B Internal structural hazard (functional block busy):
Stall Fb FDIV until Fa FDIV enters WB-stage [:J CPUppalin st s g BRiea gy
External structural hazard (RD-stage full): - CPU > FPU pipeline Instruction
Stall Fc FDIV until Fb FDIV is dispatched from RD-stage
- FPU pipeline operation

- FPU pipeline stall
Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

Data Sheet 700055298 -138

@ MICROCH'F © 2023-2024 Microchip Technology Inc. and its

subsidiaries

Figure 3-26. External RAW Hazard (CPU Write Data to FPU Read Forwarding)

/ Register Direct Freg or Coprocessor SFR RAW hazard:
Compare Fa dst Freg to Fb src Freg
If true, stall 1 cycle
Test if Fa dst and Fb src are coprocessor SFRs {any)If
true, stall 1 cycle
(hazard detected in CPU)

External RAW hazard:
Stall FADB issue until CPU -> FPU move exits X-stage

€ A R X w # Register Direct Freg or Coprocessar SFR RAW hazard:
/ If hazard detected in CPU (A-stage stalled),
/ forward CPU W-stage data to coprocessor RD-stage
Fa A R W / (hazard mitigated by forwarding path in coprocessor)

MOVWCR

F F A R X w
RAW hazard
F A 3 X W
MOV.1l
FADD.s

FPU pipeline operation

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

139

@ MICROCHIP

Figure 3-27. External Raw Hazard (CPU F-REG Write Data to CPU F-REG Read Forwarding)

Register Direct Freg or Coprocessor SFR RAW hazard:
Compare Fa dst Freg to Fb src Freg

If true, stall 1 cycle

Test if Fa dst and Fb src are coprocesser SFRs (any] If
true, stall 1 cycle

(hazard detected in CPU)

F A R X W
Fa i
{MOVWCR er A R X W
POPCR) I
Fb L
{MOVCRW or A A R X W
PUSHCR]
F I A R X w
F A R X W
RAW hazard

N\
MOV.1l \WO, (FL I:l CPU pipeline {only)} instruction
MOV.1 Fl), w2

l:\ CPU pipeline stall

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

Figure 3-28. External Raw Hazard (CPU W-REG Write Data to CPU W-REG Read Forwarding)

Register Direct (Correcting Wreg Data VValue Read):
Read data: Compare Fa dst Wreg to Fb src Wreg

If true, forward Fa dst data to Fb X data-in

(hazard detected and mitigated in CPU)

|5 A R X w
Fa
(MOVINER or A R X W
POPCR) : I
Fb
(MOVCRW or A R X W
PUSHCR)
F A R X w
F A R X w
RAW hazard

\ :
MOV.1 9, @ I:l CPU pipeline (only) instruction
MOV.l {@0) Fi

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

140

@ MICROCHIP

Figure 3-29. Internal Raw Hazard (FPU Write Data to FPU Read Forwarding)

£ n 5 x o Register Direct Freg or Coprocessor SFR RAW hazard:
,_// Compare Fa dst Freg to Fb src Freg(s)

/ / If true, stall Fb in RD-stage until Fa result available to
F A R X w -/ forward to RD-stage

RAW hazard

FSIN.s \FO, (F0

FABS.s (FO) F1

“ay

* Internal RAW hazard:

RD-stage stalled

I:l CPU pipeline {only) instruction
- CPU -> FPU pipeline instruction
' FPU pipeline operation
- FPU pipeline stall

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

141

@ MICROCHIP

Figure 3-30. Internal Raw Hazard, External and Internal Structural Hazards

~ Register Direct Freg RAW hazard:
If hazard detected (FADD src = FSIN dst),
stall FADD RD until FSIN X[3]-stage data available to forward to RD-stage

External structural hazard (RD-stage full):
Stall FNEG issue until FADD is dispatched from RD stage

RAW hazard

FADD.s
FSUB.s Fl, F7, F8

Note:
1) Even though FSUB shares the same functional
|:| CPU pipeline (only) instruction block as FADD, no structural hazard occurs due to
functional block pipelining.
D CPU pipeline stall or no operation 2) No RAW hazard with F1 because same hazard

resolved for prior instruction.

- CPU -= FPU pipeline instruction
- FPU pipeline operation
- FPU pipeline stall

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

142

@ MICROCHIP

Figure 3-31. FPU WAR Hazard

FSIN.s F4, Fl
- 1)

Mov.l /W ,@
WAR hazard

Regis ter Direct Freg or Coprocessor SFR RAW hazard:
Compare Fa dst Freg to Fb src Freg(s)

Register Direct Freg WAR hazard:
Resolved by forcing in-order writes.
Fc write stalled untll Fa enters WB-stage

W f«———— Concurrent FSIN and MOVWCR update, where MOVWCR wins

X w If true, stall Fb in RD-stage until Fa result available to
forward to RD-stage
Fc
MOVWCR & R
F A X w

!:] CPU pipeline (only) instruction
—_—

CPU pipeline stall or no operation
- CPU -> FPU pipeline instruction
Pr—
- FPU pipeline operation
- FPU pipeline stall

w
X
R
A
F
_\(—J F A R X w

FPU -> CPU write grant {delayed to mitigate WAR hazard)
CPU pipeline is stalled for the duration of the write stall

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

@ MICROCHIP

143

Figure 3-32. CPU/FPU WAW Hazard

Register Direct FSR WAW hazard:
Compare Fa dst Freg to Fb dst Freg
If true, stall Fb in CPU W-stage (write stall) until Fa write completes

".
_— FPU Instruction additional execute stages
st
— {as needed for op)
WE .~ Concurrent MOV and FSIN FSR update, where MOV wins
P
Fb s
MOVWCR A & X hi b W
o
F A R X X X W
-
7 F A R R R % w
-
CPU -> FPU write request -
F A A A R X W
WAW Hazard with FSR.A 5 F F A R X w
/‘\
L N
\ Vo
\ . F A R X W
FSIN.s FO,‘\ Fl %
MOV. 1 W1, FSR \
\\
' FPU -> CPU write grant (delayed to mitigate WAW hazard)
|:| CPU pipeline {only) instruction CPU pipeline is stalled for the duraticn of the write stall

|:| CPU pipeline stall or no operation
- CPU -> FPU pipeline instruction
B FPU pipeline operation

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

3.6.8.8 Operand Pre-Processing
Floating-point operands are subject to examination during the RD-stage in order to implement
NaN propagation and the subnormal value override function. This is necessary to apply rules that
determine the outcome in the presence of one or more NaN input values and evaluate operands for
special conditions.

3.6.8.8.1 NaN Propaga©on Operand Detecon
For instructions that generate a result, special propagation rules apply when one or both source
operands are NaN values, such that sNaNs can be successfully used as “tracer” values. Should a NaN
be deemed as propagated, then it will replace the operation result.

With reference to NaN Propagation, all instructions will examine the operands for NaN values during
the RD-stage:

+ Two operand instructions:

If one or both operands are NaN values, the RD-stage will apply a propagation priority as shown
in Table 3-13.

+ Three operand FMAC instruction:
The source operands are examined in the RD-stage as usual but in conjunction with the selected
intermediate result, and any NaN values detected are propagated as shown in Table 3-14.

+ Three operand FFLIM instruction:
If one or both limit operands are NaN values, the RD-stage will apply a propagation priority as
shown in Table 3-12. If the FFLIM input value is a NaN, the limit values are ignored and the input
NaN value is propagated (quieted if an sNaN).

144

c\ MICROCHIP

In all cases, if a NaN is to be propagated, the corresponding NaN value is entered as the operand
value in the Instruction/Hazard Tracker FIFO entry for that instruction. The instruction FIFO entry
also sets a flag to indicate that NaN propagation is enabled.

3.6.8.8.2 Subnormals Operands
The FPU supports a subnormal operand override mode, Subnormals-Are-Zero (SAZ), the
functionality of which is defined in 3.6.3.2.3. Subnormal Operand Exception. Subnormals- Are-Zero
(SAZ) mode is enabled when FCR.SAZ is set.

Should a subnormal operand be detected when SAZ mode is disabled, the subnormal exception
will be signaled by setting FSR.SUBO (and FSR.SUBOS if not already set) during the WB-stage (i.e., at
the same time as when all other exceptions are signaled). If SAZ mode is enabled, the subnormal
exception will not be signaled.

Note: SAZ mode is not applicable to FAND, FIOR, FMOV, FMOVC or any CPU to/from FPU data move
instruction, none of which can modify any FPU status. In addition, SAZ mode is ignored by FTST
such that a subnormal operand will always be recognized as such by the instruction, irrespective
of the state of FCR.SAZ. However, SAZ mode can influence FF2LI/FF2DI operands. In these cases,
subnormal or zero operands will write the same result (integer value of 0). But if the operand is
subnormal and SAZ mode disabled, a subnormal exception will also be signaled. Conversely, if the
operand is subnormal and SAZ mode enabled, a subnormal exception will not be signaled.

3.6.8.9 Result Post-Processing

Floating-point results are subject to examination during the WB-stage to implement the subnormal
result override Flush-To-Zero (FTZ) mode and NaN propagation results.

3.6.8.9.1 Subnormal Results
The FPU supports a subnormal result override mode, Flush-To-Zero (FTZ), the functionality of which
is defined in 3.6.3.2.2. Flush-To-Zero (FTZ). Flush-To-Zero (FTZ) is enabled when both FCR.FTZ and
FCR.UDFM are set. Should the underflow exception be unmasked (FCR.UDFM = 0), then the FCR.FTZ
bit will have no effect.

This mode is implemented within the WB-stage such that results written to the destination register
(and those forwarded) will be adjusted accordingly if FTZ mode is enabled. The FCR.FTZ bit is only
examined during the WB-stage of an instruction such that it may be modified as late as the cycle
before the instruction enters the WB-stage.

Note: FTZ mode is not applicable to FAND, FIOR, FMOV, FMOVC or any CPU to/from FPU data move
instruction, none of which can modify any FPU status. It is also not applicable to FTST because the
FSR is the only possible destination for this operation. In addition, FTZ mode will have no effect
on FF2LI/FF2DI and FLI2F/FDI2F instruction results because - FF2LI/FF2DI results are integers and -
FLI2F/FDI2F destination data may be 0 but never subnormal.

3.6.8.9.2 NaN Propaga®on Result Write
NaN operand values are detected in the RD-stage, prioritized, and then passed (via an Instruction/
Hazard Tracker FIFO entry) to the instruction WB-stage. A valid NaN propagation will cause the
operation result from the Execute stage to be ignored, and the propagated NaN value to be written
into the result destination instead, as discussed in NaN Propagation.

3.6.8.9.3 Rounding Modes
The rounding mode for each instruction Functional Block is defined by the value written into
FCR.RND [1:0] as defined in 3.6.5. FCR. The FPU treats the rounding mode input as an operand
supplied from the RD-stage when the instruction is dispatched into the Execute stage.

Note: Rounding Modes are not applicable to FAND, FIOR, FCPQ, FCPS, FTST, FABS, FNEG, FFLIM,
FMAX, FMIN, FMAXNUM, FMINNUM, FMOV, FMOVC or any CPU to/from FPU data move instruction.

There is a 3-bit rounding mode input (rnd [2:0]) to support up to eight different rounding modes for
all FPU conversion operations. Setting rnd [2] = 1 and mapping rnd [1:0] to FCR [9:8] will allow user
selection of the IEEE 754 compliant modes as defined in 3.6.5. FCR.

145

@ MICROCHIP

The integer/floating-point conversion instructions (FDI2F, FLI2F, FF2DI, FF2LI) may either specify
the rounding mode within the instruction syntax or default to that defined in FCR.RND [1:0]. CPU will
issue one of these instructions and the FPU will use it to determine the Functional Block Rounding
mode as shown in Table 3-16.

Table 3-16. FPU Conversion OP Rounding Modes Control

Rounding Mode Bits in Opcode[2:0] Functional Block Rounding Mode

111 |IEEE Round to Negative Infinity (floor)
110 IEEE Round to Positive Infinity (ceiling)
101 |IEEE Round to Zero (truncate)

100 IEEE Round to Nearest (even)

0xx Global mode (defined by FCR.RND[1:01)

3.6.8.10 FloaGng Point Status
The FPU generates four types of status:

+ Exception condition “most-recent” status from most instructions (see Table 3-19). These bits are
located within FSR [6:0]:INX, HUGI, OVF, UDF, DIVO, INVAL, SUBO.

+ Exception condition "sticky" status from most instructions (see Table 3-19). These bits are located
within FSR [14:8]: INXS, HUGIS, OVFS, UDFS, DIVOS, INVALS, SUBOS.

+ Value ordering relations status to indicate the result of the FCPS/FCPQ compare instructions.
These bits are located within FSR [19:16]:GT, LT, EQ, UN.

+ Operand characteristic status from the FTST datum inspection/classify instruction. These bits are
located within FSR [28:24]: SUB, INF, FZ, FN, FNAN.

Operand comparisons are likely to be used frequently, so the compare status bits generated

by the FCPS/FCPQ instructions are supported with CPU conditional branch instructions. All other
status must be read into the CPU (using the MOVCRW instruction) or pushed onto the stack (using
PUSHCR) and then acted upon as necessary.

Note: Irrespective of whether an exception is masked or not, writing a logic 1 to an exception status
flag using any instruction that can write 1's to the FSR will not result in any associated exception
being taken.

3.6.8.10.1 Compare Status and Predicates
IEEE 754-2008/2019 standards specify Quiet and Signaling Compare Predicates (equations) as shown
in Table 3-17. A “signaling” predicate signals (i.e., attempts to generate an exception) when a Quiet
NaN or Signaling NaN (gNaN or sNaN) operand is detected.

A “quiet” predicate will not signal when a gNaN operand is detected.

An sNaN will always signal an exception when detected as an operand for all instructions except
those that do not generate any exceptions (FMOV, FMOVC, FABS, FNEG and FTST).

The FPU coprocessor macro implements Signaling and Quiet predicates by supporting two floating-
point compare options, one signaling (FCPS), one quiet FCPQ), and a set of floating-point branch
operations that test for the required predicates. Each compare instruction will set one of the four
mutually exclusive ordering relations (GT, LT, EQ, UN status bits) located in the FSR to indicate the
result of the comparison.

+ FCPS (signaling compare):

- gNaN or sNaN: If either or both operands are a gNaN or sNaN value, the compare is
considered unordered which will cause the FSR.UN bit to be set. In addition, the FSR.INVAL
bit will be set, causing the CPU to be signaled via the Invalid exception (assuming that the
exception is not masked).

* FCPQ (quiet compare):

146

@ MICROCHIP

- gNaN: If one or more operands contain a gNaN value, the compare is considered unordered
which will cause the FSR.UN bit to be set. A gNaN will not set the FSR.INVAL bit, so no
signaling will occur.

- sNaN: If either or both operands are a sNaN value, the compare is considered unordered
which will cause the FSR.UN bit to be set. In addition, the FSR.INVAL bit will be set, causing
the CPU to be signaled via the Invalid exception (assuming that the exception is not masked).

The compare operation subtracts Fs (subtrahend) from Fb (minuend). The EQ, GT and LT status bits
are set as follows:

« If the minuend is equal to the subtrahend (Fb = Fs) the EQ status bit is set.
« If the minuend is greater than the subtrahend (Fb > Fs) the GT status bit is set.
* If the minuend is less than the subtrahend (Fb < Fs) the LT status bit is set.

In addition, the UN status bit is set if one or both operands is a NaN. If this is the case, no other
compare status is set (i.e., UN and EQ, GT, LT are mutually exclusive).

Note: The FCPS/FCPQ instructions consider -0 and +0 as equivalent.

Note: Comparing a value to itself should produce an equivalence result. However, UN has
precedence over EQ such that, should two values be identical but both NaN, the UN bit will be
set but the EQ bit will be cleared.

FPU Status Condi©onal Branches

The CPU has the ability to conditionally branch off various status bits generated within the
coprocessor. In the case of the FPU, an internal status register (FSR) is supported which is updated
at the end of each floating-point operation.

The FPU FSR is comprised of instruction exception status and FCPS/FCPQ/FTST instruction status.
Conditional branching is supported within the CPU for the FCPS/FCPQ compare instructions only.

The CPU ISA includes a set of generic coprocessor conditional branch instructions, CBRAO through
CBRA15, each of which can operate with any instantiated coprocessor and branch based upon the
state of a corresponding bit within a vector supplied by each coprocessor. In the case of the FPU,
CBRAO through CBRA13 are used, each represented as an FBRA instruction with its corresponding
assembler attribute, for the FCPS/FCPQ instruction status branch conditions. The FCPS/FCPQ status
is held in FSR [19:16] and indicates the comparison result. CBRA[N] timing is the same as any other
CPU conditional branch, such that the condition is examined at the end of the CBRA[Nn] R-stage. If
the condition is true, the branch is taken. If the condition is not true, the branch is not taken and
sequential execution continues.

As is the case for all conditional branches, the instruction(s) immediately following the branch are
speculatively executed, and they will either be part of the taken or the not taken path, based on
the direction of the branch. These instructions are permitted to be floating-point operations. This
requires that the FPU accommodate the possibility that these instructions could ultimately be killed
due to a branch mispredict.

Note that the FPU will not return the result of FBRA instruction until any FCPS/FCPQ instruction
already underway in the coprocessor pipeline has retired. The CPU will consequently stall until such
time that the msw of the FSR is available to be read (though these are fast operations, so stalls
should be minimal). In effect, a CPU conditional branch instruction operation will synchronize the
integer and floating-point pipelines with respect to FPU FCPS/FCPQ status.

The LS 3-bits of the branch opcode concatenated with the sub-opcode bit (such that the sub-opcode
bit becomes the LSb of this value), may be used by the CPU decoder as a bit pointer into the

16-bit branch status test value to select the corresponding branch predicate result. The branch then
decides if the outcome is true (taken) or false (not taken) based on the state of the selected bit
(where true is when the bit is set, false when clear).

147

@ MICROCHIP

Note: FCPS/FCPQ and FTST instructions update two different portions of the FSR. Consequently,
execution of an FTST instruction (which also updates the FSR) will not inhibit the CPU CBRAN
instructions from using the branch status generated from the FSR ordering relation bits.

The FTST instruction will test the operand and update the SUB, INF, FN, FZ, FNAN status bits.

No exceptions will be generated by this instruction. Due to the relative infrequent use of this
instruction, dedicated conditional branches are not supported by the CPU to test these status bits.
The user must read the FSR and then act upon the bits of instruction using existing CPU instructions.

148

@ MICROCHIP

149

paJspioun 1 k| k| k| €1vda> NN paJapJO k| 1 1 1 Zlvddad 40
ueyyl
J9)ealn Jo |enb3 Jo
paJspioun 1 k| k| 1 L lvddd 195N ueyl sso7 k| 1 1 k| 0lvddd ER
|lenb3
Jo uey]
J91R3ID) JO
patspioun 1 1 4 1 6vd4a>D 15N ueyl sso7 d 4 1 4 8vddd 11
ueyy lenb3
Ss97 Jo Jo ueyj
paJtspioun 1 4 1 4 A1) 11N 1318315 E| 1 4 1 9vddd ED)
|lenb3
Jo ueyyl
SS97 40 ueyyl
paJspJoun 1 1 1 k| Svd4> 31N Ja8lealn k| k| k| 1 vd4ad 15
(lenb310N)
ueyj ssa
|jenb3 Jo Jo ueyyl
patspioun 1 1 4 4 £vddd AvamD 131ea.15 4 4 1 1 [44:1< aN
(lenb3
10N Jo
paJapJioun)
ueyj ssa
Jo ueyy
J91R3ID) JO
paJspioun 1 k| 1 1 Lvddd aNN |enb3 k| 1 k| k| ovyddd 03

uiyad
BAIIRUIRY)

Susplo

S91B21paJd PILIDOSSY PUe Sayduelg [eUOGIPUO) JUlod-Bugeold *LT-€ a|qeL

IUOWBUN 8unaplo

MICROCHIP

smeas (3saL) ogsiisloeley) puesado Z'0T'E'9:

3.6.8.10.3 FPU InstrucOon Kill
As is the case for all instructions executed within conditional branch speculative slots, floating-point
instructions will be killed if a branch mispredict occurs. The CPU will recognize a mispredict prior
to the end of the conditional branch R-stage (i.e., when the prior instruction status is available
to forward). If the instruction in the first speculative slot is an FPU instruction, it will be issued
to the FPU, but the CPU will assert a signal to kill the instruction for one cycle, forcing the FPU
to subsequently abandon execution prior to it being committed. If the instruction in the second
speculative slot is an FPU instruction, it will be abandoned prior to being issued to the FPU.

Figure 3-33. FPU InstrucBon SpeculaBve ExecuBon

Fa Aa

Predicted target PC

Continue execution from correct path

c\ MICROCHIP

Fsl
(FPU Op)

Xa
(SR rdy)

Forwarded branch decision (status result)

Speculatively executed FPU instruction issued but subsequently aborted due to
incorrect branch prediction.
Assert kill_r_stage_instruction for 1 cycle to force FPU to abandon execution.

Speculatively execute 1* not taken (+ve offset) or taken (-ve offset) path

Speculative executed (CPU or FPU) instruction aborted due to

RD

incorrect branch prediction

Fs2
(CPU or FPU

Op)

Speculatively execute2nd not taken (+ve offset) or taken (-ve offset) path
F A R X w
F A R X w
F A R X w
F A R X w
F A R X w

150

