

Fine Tune Sensitivity 2-wired Monaural Microphone Amplifier

■ FEATURES

Supply Voltage
 Operating Voltage
 V_S = 8V to 16V
 V_{DD} = 1.8V to 16V

• 2-wired connections

Built-in Pre-Amplifier

(FET Input for Impedance Converter) & Bias Circuit

Voltage Gain Range

24dB to 40dB (Set by external resistors.)

-111dBV typ.

• Adjust and memorize the gain by 2-wire serial interface

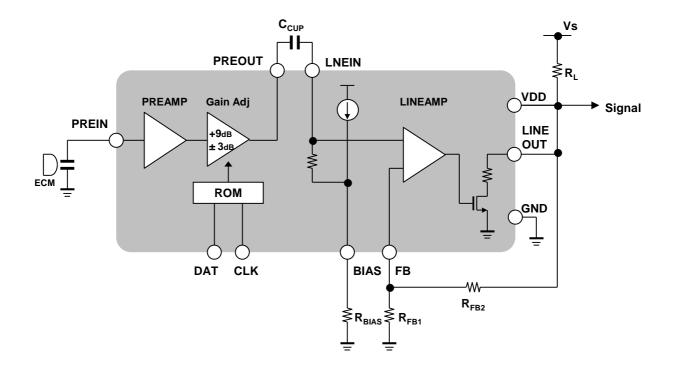
• Gain Adjustment 9dB ±3dB / 0.2dB step

Maximum Output Voltage
 2.1Vrms typ.

Equivalent Input Noise Voltage

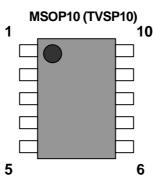
CMOS Technology

■ DESCRIPTION


The NJU72090 is a monaural microphone amplifier IC including pre-amplifier (impedance converter) for ECM microphone, gain adjuster and line amplifier. It is able to set the output gain by external resistors. And it is able to adjust and memorize the gain after parts assembling.

The NJU72090 is the most suitable for the ECM especially which needs sensitivity accuracy.

■ APPLICATIONS


- Microphone module
- Hands-free microphones
- ECM module

■ BLOCK DIAGRAM

■ PIN CONFIGURATION

No.	SYMBOL	FUNCTION
1	PREOUT	Pre-amplifier output terminal
2	LINEIN	Line amplifier input terminal
3	BIAS	Reference current setting terminal
4	FB	Line amplifier feedback terminal
5	LINEOUT	Line amplifier output terminal
6	VDD	Power supply terminal
7	GND	Ground terminal
8	DAT	Serial data input terminal
9	CLK	Serial clock input terminal
10	PREIN	Pre-amplifier input terminal

■ PRODUCT NAME INFORMATION

■ ORDERING INFORMATION

PRODUCT NAME	PACKAGE	RoHS	HALOGEN- FREE	TERMINAL FINISH	MARKING	WEIGHT (mg)	MOQ (pcs)
NJU72090RB2 (TE1)	MSOP10 (TVSP10)	Yes	Yes	Sn2Bi	72090	19	2000

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	
Operating Voltage	V_{DD}	18 ⁽¹⁾	V	
Maximum Input Voltage	Vimax	0.3	Vrms	
Power Dissipation (T _a = 25°C)	В	2-Layer	mW	
MSOP10 (TVSP10)	P_D	470 ⁽²⁾	TTIVV	
Storage Temperature	T _{stg}	-40 to 150	°C	
Junction Temperature	Tj	150	°C	

⁽¹⁾ VDD terminal

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATING	UNIT
Operating Voltage	V_{DD}	1.8 to 16 ⁽¹⁾	V
Operating Temperature	Topr	-40 to 105	°C

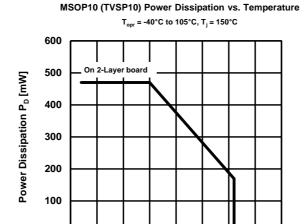
⁽¹⁾ VDD terminal

^{(2) 2-}Layer: Mounted on glass epoxy board (76.2 mm × 114.3 mm × 1.6 mm: based on EIA/JEDEC standard, 2-layer FR-4).

■ ELECTRICAL CHARACTERISTICS

 $\underline{(V_S=8V,\,R_L=680\Omega,\,R_{BIAS}=18k\Omega,\,R_{FB1}=1k\Omega,\,R_{FB2}=27k\Omega,\,f=1kHz,\,T_a=25^{\circ}C,\,unless\,\,otherwise\,\,noted.)}$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT					
DC CHARACTERISTICS ($R_G = 0\Omega$, No	DC CHARACTERISTICS ($R_G = 0\Omega$, No Signal, unless otherwise noted.)										
Supply Current1	I _{DD1}		-	4.85	6.00	mA					
Supply Current2	I _{DD2}	$R_{FB1} = 0\Omega$, $R_{FB2} = \infty$, VDD terminal	-	220	320	μA					
Supply Current3	I _{DD3}	$R_L = 0\Omega$	-	24	35	mA					
Reference Current	I _{REF}		-	9.3	-	μA					
Output DC Voltage	Vo	LINEOUT terminal	4.6	4.7	4.8	V					
AC CHARACTERISTICS (C _{IN} = 1nF, t	ınless otherw	ise noted.)									
PREIN Input Capacitance	Cipre		-	1	-	pF					
PREIN Input Resistance	Ripre		-	500	-	GΩ					
LINEIN Input Resistance	Riline		210	300	390	kΩ					
PREOUT Typical Voltage Gain	Gvtyp	$V_{IN} = 10$ mVrms, GAIN setting = 0×00	-	9	-	dB					
PREOUT Maximum Voltage Gain	Gvmax	$V_{IN} = 10$ mVrms, GAIN setting = 0×0 F	-	12	-	dB					
PREOUT Minimum Voltage Gain	Gvmin	V _{IN} = 10mVrms, GAIN setting = 0 x 10	-	5.8	-	dB					
Voltage Gain	Gv	$V_{IN} = 10 \text{mVrms},$	36.9	37.9	38.4	dB					
Frequency Response	ΔG _f	f = 1kHz to 10kHz, Coup = 15nF	-0.5	0.0	0.5	dB					
Equivalent Input Noise Voltage	V _{NI}	Weighted-A	-	-111	-107	dBV					
Total Harmonic Distortion	THD	V _{IN} = 10mVrms, BW = 400Hz to 30kHz	-	0.1	0.5	%					
Maximum Output Voltage	V _{OM}	THD = 3%	1.8	2.1	-	Vrms					
Ripple Rejection Ratio	RR	V _{Ripple} = 0.5Vrms	-	30	-	dB					

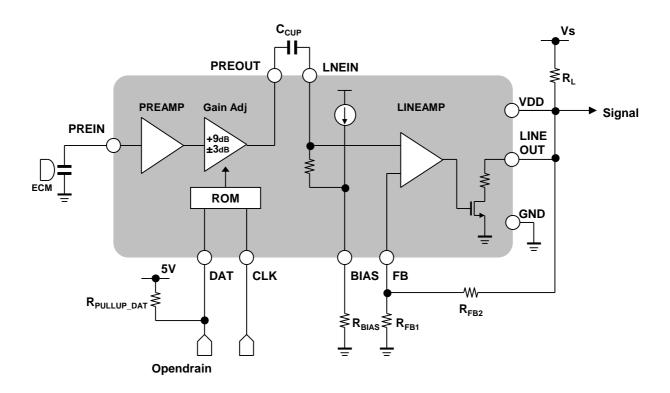


■ THERMAL CHARACTERISTICS

PACKAGE	SYMBOL	VALUE	UNIT
Junction-to-Ambient Thermal Resistance	0	2-Layer	°C/W
MSOP10 (TVSP10)	θja	266 ⁽²⁾	*C/VV

^{(2) 2-}Layer: Mounted on glass epoxy board (76.2 mm × 114.3 mm × 1.6 mm: based on EIA/JEDEC standard, 2-layer FR-4).

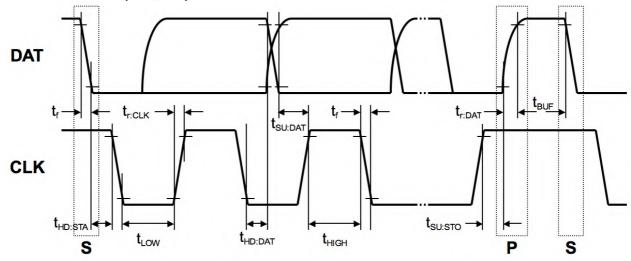
■ POWER DISSIPATION vs. AMBIENT TEMPERATURE


Ambient Temperature [°C]

100 125 150

0 -50 -25 0 25 50 75

■ APPLICATION CIRCUIT


■ 2-wire BUS (DAT, CLK)

The NJU72090 has a 2-wire serial interface with a DAT terminal and a CLK terminal. The DAT terminal is open drain, and the CLK terminal is controlled by push-pull drive.

The CLK terminal requires a source current capacity of up to 100mA (CLK OTP write current (IWRITE)) when writing OTP.

■ TIMING ON 2-wire BUS (DAT, CLK)

■ CHARACTERISTICS OF I/O STAGES FOR 2-wire BUS (DAT, CLK)

 $(T_a = 25 ^{\circ}C, \ V_S = 8V, \ R_L = 680 \Omega, \ R_{BIAS} = 18k \Omega, \ R_{FB1} = 1k \Omega, \ R_{FB2} = 27k \Omega, \ R_{PULLUP_DAT} = 3.9k \Omega \ unless \ otherwise \ noted.)$

(14 20 0) 10 01) 12 00022) 1220 10122) 1421	DE =:::==; ::: 0	LEGI_D/(I G.G			
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
CLK High Level Input Voltage	V _{IH_CLK}	4.95	5.00	5.30	V
CLK Low Level Input Voltage	VIL_CLK	0.0	-	0.3	V
DAT High Level Input Voltage	VIH_DAT	2.0	5.0	5.5	V
DAT Low Level Input Voltage	V_{IL_DAT}	0.0	-	0.3	V
DAT Low Level Output Voltage	Vol_dat	0.0	-	0.3	V
CLK High Level Input Current	I _{IH_CLK}	-	-	40	μA
CLK Low Level Input Current	I _{IL_CLK}	-	0	-	μA
DAT High Level Input Current	I _{IH_DAT}	-	-	40	μA
DAT Low Level Input Current	I _{IL_DAT}	-	0	-	μA
CLK Supply Current for OTP Writing	I _{WRITE}	-	-	100	mA

■ CHARACTERISTICS OF BUS LINES (DAT,CLK) FOR 2-wire BUS DEVICES

 $(T_a = 25^{\circ}C, V_S = 8V, R_L = 680\Omega, R_{BIAS} = 18k\Omega, R_{FB1} = 1k\Omega, R_{FB2} = 27k\Omega, R_{PULLUP_DAT} = 3.9k\Omega$ unless otherwise noted.)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
CLK clock frequency	fcLK	10	50	68	kHz
Rise time of CLK signals	t _{r_CLK}	-	-	50	ns
Rise time of DAT signals	t r_dat	-	-	1	μs
Fall time of both CLK and DAT signals	t _f	-	-	300	ns
Hold time (repeated) START condition.	thd:STA	4	-	-	μs
Low period of clock	t LOW	4.7	-	-	μs
High period of clock	tнідн	9.5	10.0	10.5	μs
Data set-up time	t _{SU:DAT}	250	-	-	ns
Set-up time for STOP condition	t su:sto	160	-	-	ns
Data hold time	thd:dat	5	-	-	ns
Bus free time between a STOP and START condition	t _{BUF}	4.7	-	-	μs

■ DEFINITION OF 2-wire REGISTER

Note) Please don't send except specified data for avoiding an incorrect operation.

2-wire BUS FORMAT

<1byte command (RESET)>

		MSB LSB		
	S	Control Address	Α	Р
,	1bit	8bit	1bit	1bit

<2byte command>

	MSB	LSB		MSB	LSB		
S	Control Address	3	Α	Data		Α	Р
1bit	8bit	•	1bit	8bit	•	1bit	1bit

S: Starting Term

A: Acknowledge Bit

P: Ending Term

Control Address

Mode				Mode	Select				Hex	Contents
Wiode	MSB							LSB	TICX	Oonens
RESET *	1	0	0	0	0	0	0	0	80(h)	Reload the setting from ROM.
READ	1	0	0	0	0	0	0	1	81(h)	Output the setting to DAT terminal.
CONTROL	1	0	0	0	0	0	1	0	82(h)	Write the setting on RAM and read it.
WRITE	1	0	0	0	0	1	0	0	84(h)	Write the setting on ROM.

^{*}Please use the "1byte command" in case of RESET mode.

CONTROL REGISTER DATA TABLE

<CONTROL and WRITE Mode>

MSB							LSB
	BIT						
D7	D6	D5	D4	D3	D2	D1	D0
Don't Care	Don't Care	Don't Care			GAIN		

CONTROL REGISTER DEFAULT VALUE OF INTERNAL ROM

The NJU72090 read setting from internal ROM when power is turn on.

Control register default value of internal ROM is all "0" before you write setting on ROM.

MSB							LSB
	BIT						
D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0

■ DEFINITION OF RESISTOR

GAIN: 5.8dB to 12.0dB in 0.2dB/step. 5-bit signed binary.

MSB LSB

	BIT						
D7	D6	D5	D4	D3	D2	D1	D0
Don't Care	Don't Care	Don't Care			GAIN		

<GAIN Data>

All V Date		0.00			
D4	D3	D2	D1	D0	Setting
1	0	0	0	0	+5.8dB
1	0	0	0	1	+6.0dB
1	0	0	1	0	+6.2dB
1	0	0	1	1	+6.4dB
1	0	1	0	0	+6.6dB
1	0	1	0	1	+6.8dB
1	0	1	1	0	+7.0dB
1	0	1	1	1	+7.2dB
1	1	0	0	0	+7.4dB
1	1	0	0	1	+7.6dB
1	1	0	1	0	+7.8dB
1	1	0	1	1	+8.0dB
1	1	1	0	0	+8.2dB
1	1	1	0	1	+8.4dB
1	1	1	1	0	+8.6dB
1	1	1	1	1	+8.8dB
0	0	0	0	0	+9.0dB ^(T)
0	0	0	0	1	+9.2dB
0	0	0	1	0	+9.4dB
0	0	0	1	1	+9.6dB
0	0	1	0	0	+9.8dB
0	0	1	0	1	+10.0dB
0	0	1	1	0	+10.2dB
0	0	1	1	1	+10.4dB
0	1	0	0	0	+10.6dB
0	1	0	0	1	+10.8dB
0	1	0	1	0	+11.0dB
0	1	0	1	1	+11.2dB
0	1	1	0	0	+11.4dB
0	1	1	0	1	+11.6dB
0	1	1	1	0	+11.8dB
0	1	1	1	1	+12.0dB

(T)Initial Setting

■ APPLICATION NOTES

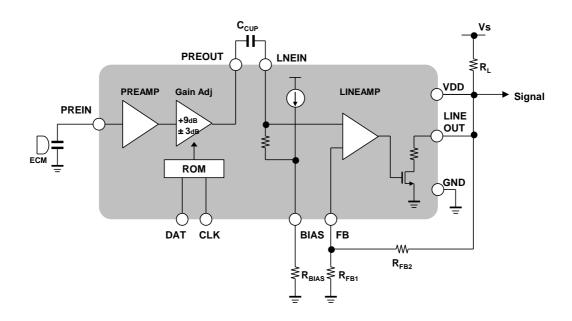


Fig. 1 Application circuit example

1. Supply Voltage of Vs

The recommended supply voltage range of Vs is as follows:

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	Vs		1	8	16	V

2. Voltage Gain

2.1 Pre-Amplifier + Gain adjustment

$$G_{VP} = 9$$
 [dB] (With Gain adjustment typical gain)

2.2 Line Amplifier

$$G_{VL} = 20 \cdot Log \left(1 + \frac{R_{FB2}}{R_{FB1}} \right) [dB]$$

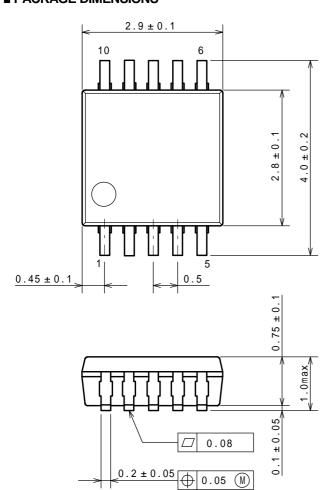
Ex.
$$G_{VL} = 20 \cdot Log(\frac{27k}{1k}) \approx 28.9 \text{ [dB]}$$

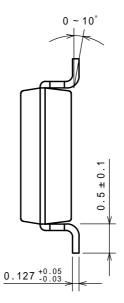
$$V_{OUT} = V_{BIAS} \cdot \left(1 + \frac{R_{FB2}}{R_{FB1}}\right) [V], V_{BIAS} = I_{REF} \cdot R_{BIAS}$$

Ex.
$$V_{OUT} = 9.3u \cdot 18k \cdot \left(1 + \frac{27k}{1k}\right) \approx 4.7 \text{ [V]}$$

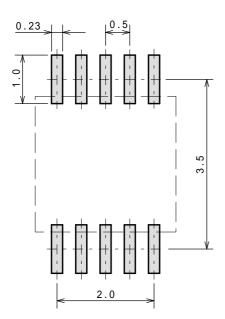
2.4 NJU72090 TOTAL

$$G_V = G_{VP} + G_{VL} = G_{VP} + 20 \cdot Log \left(1 + \frac{R_{FB2}}{R_{FB1}}\right) [dB]$$


Ex.
$$G_V = 9 + 20 \cdot Log \left(1 + \frac{27k}{1k}\right) \approx 37.9 \text{ [dB]}$$

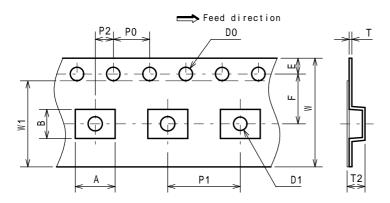


MSOP10 (TVSP10) MEET JEDEC MO-187-DA/THIN TYPE

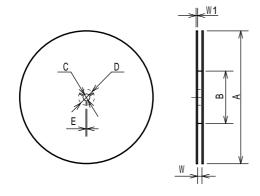

■ PACKAGE DIMENSIONS

Unit: mm

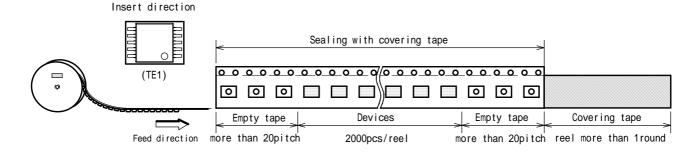
■ EXAMPLE OF SOLDER PADS DIMENSIONS

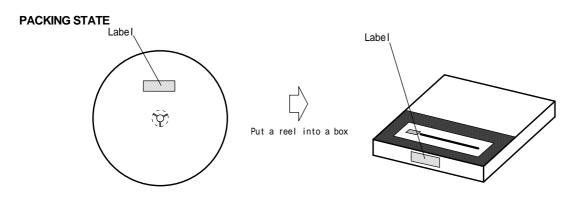


MSOP10 (TVSP10) MEET JEDEC MO-187-DA/THIN TYPE


■ PACKING SPEC TAPING DIMENSIONS

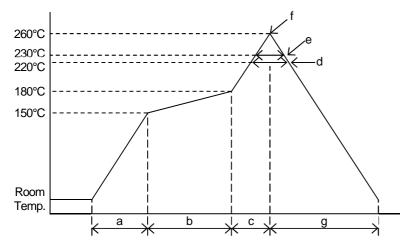
Unit: mm


SYMBOL	DIMENSION	REMARKS
Α	4.4	BOTTOM DIMENSION
В	3.2	BOTTOM DIMENSION
D0	1.5 +0.1	
D1	1.5 +0.1	
Е	1.75 ± 0.1	
F	5.5 ± 0.05	
P0	4.0 ± 0.1	
P1	8.0 ± 0.1	
P2	2.0 ± 0.05	
T	0.3 ± 0.05	
T2	1.75 (MAX.)	
W	12.0 ± 0.3	
W1	9.5	THICKNESS 0.1max


REEL DIMENSIONS

SYMBOL	DIMENSION
Α	254 ± 2
В	100 ± 1
С	13 ± 0.2
D	21 ± 0.8
E	2 ± 0.5
W	13.5 ± 0.5
W1	2.0+0.2

TAPING STATE



■ RECOMMENDED MOUNTING METHOD

INFRARED REFLOW SOLDERING PROFILE

	а	Temperature ramping rate	1 to 4°C/s
	b	Pre-heating temperature	150 to 180°C
		Pre-heating time	60 to 120s
	С	Temperature ramp rate	1 to 4°C/s
	d	220°C or higher time	shorter than 60s
	е	230°C or higher time	shorter than 40s
	f	Peak temperature	lower than 260°C
	g	Temperature ramping rate	1 to 6°C/s

The temperature indicates at the surface of mold package.

■ REVISION HISTORY

DATE	REVISION	CHANGES
November 17, 2020	Ver.1.0	Initial release

[CAUTION]

- NJR strives to produce reliable and high quality semiconductors. NJR's semiconductors are intended for specific applications and require proper maintenance and handling. To enhance the performance and service of NJR's semiconductors, the devices, machinery or equipment into which they are integrated should undergo preventative maintenance and inspection at regularly scheduled intervals. Failure to properly maintain equipment and machinery incorporating these products can result in catastrophic system failures
- 2. The specifications on this datasheet are only given for information without any guarantee as regards either mistakes or omissions. The application circuits in this datasheet are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial property rights.
 All other trademarks mentioned herein are the property of their respective companies.
- To ensure the highest levels of reliability, NJR products must always be properly handled.
 The introduction of external contaminants (e.g. dust, oil or cosmetics) can result in failures of semiconductor products.
- NJR offers a variety of semiconductor products intended for particular applications. It is important that you select the proper component for your intended application. You may contact NJR's Sale's Office if you are uncertain about the products listed in this datasheet.
- 5. Special care is required in designing devices, machinery or equipment which demand high levels of reliability. This is particularly important when designing critical components or systems whose failure can foreseeably result in situations that could adversely affect health or safety. In designing such critical devices, equipment or machinery, careful consideration should be given to amongst other things, their safety design, fail-safe design, back-up and redundancy systems, and diffusion design.
- 6. The products listed in this datasheet may not be appropriate for use in certain equipment where reliability is critical or where the products may be subjected to extreme conditions. You should consult our sales office before using the products in any of the following types of equipment.
 - · Aerospace Equipment
 - · Equipment Used in the Deep Sea
 - · Power Generator Control Equipment (Nuclear, steam, hydraulic, etc.)
 - \cdot Life Maintenance Medical Equipment
 - · Fire Alarms / Intruder Detectors
 - · Vehicle Control Equipment (Airplane, railroad, ship, etc.)
 - · Various Safety Devices
- 7. NJR's products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. NJR shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products. The products are sold without warranty of any kind, either express or implied, including but not limited to any implied warranty of merchantability or fitness for a particular purpose.
- 8. Warning for handling Gallium and Arsenic (GaAs) Products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 9. The product specifications and descriptions listed in this datasheet are subject to change at any time, without notice.

