

CMOS linear image sensor

S16074

Low power consumption, capable of switching pixel sizes by SPI

The S16074 is a CMOS linear image sensor developed for industrial cameras. It comes with built-in timing generators, bias generators, amplifiers, and 12-bit A/D converters. The video signal is output serially in 320 MHz LVDS format. 3 lines of pixel size of 7 \times 7 μ m, 9.3 \times 9.3 μ m, and 14 \times 14 μ m are arranged in parallel in the photosensitive area and can be switched with the SPI settings.

Features

- Pixel size: 7 × 7 μm, 9.3 × 9.3 μm, 14 × 14 μm
- High-speed readout: 65 klines/s max. (pixel size: 14 × 14 μm)
- Simultaneous integration of all pixels
- 3.3 V power supply operation
- SPI communication function
- Built-in 12-bit A/D converter

- Applications

- Machine vision
- Film inspection
- Printed circuit board appearance inspection

1

Print inspection

Structure

Parameter		Specification			
Photosensitive area*1	1	2	3	-	
Total number of pixels	4160	3120	2080	-	
Number of effective pixels	4096	3072	2048	-	
Dummy pixels*2 *3	16	12	8	pixels	
Light-shielding pixels*3 *4	16	12	8	pixels	
Pixel pitch*5	7	9.3	14	μm	
Pixel height*5	7	9.3	14	μm	
Package	Ceramic				
Window material*6		Borosilicate glass		-	

*1: See dimensional outline (P.15) and enlarged view of effective photosensitive area (P.16) capable of switching by SPI.

*2: The pixels on the left and right outside of effective pixels have the same structure as the effective pixels, so there is output according to incident light.

*3: These are not read out with initial settings. It is possible to switch to readout with SPI settings.

*4: Light-shielded pixels on the left and right outside of the dummy pixels (optical black)

*5: Can be selected by SPI

*6: With AR coat (double-sided multi-coat, reflectance 1% or less at 400 to 800 nm)

Absolute maximum ratings (Ta=25 °C)

Parameter		Symbol	Condition	Value	Unit
Supply voltage	Analog terminal	Vdd(A)		-0.3 to +3.9	V
	Digital terminal	Vdd(D)		-0.3 to +3.9	V
Digital input signal ter	minal voltage*7	Vi		-0.3 to +3.9	V
Vref_cp1 terminal vol	tage	Vref_cp1		-0.3 to +6.5	V
Vref_cp2 terminal vol	tage	Vref_cp2		-2.0 to +0.3	V
Operating temperatur	e	Topr	No dew condensation*8	-40 to +85	°C
Storage temperature		Tstg	No dew condensation*8	-40 to +85	°C

*7: CS, SCLK, MOSI, RSTB, MCLK, MST, All_Reset, PLL_Reset

*8: When there is a temperature difference between a product and the surrounding area in high humidity environments, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability.

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

Recommended operating conditions (Ta=25 °C)

Paramet	er	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	Analog terminal	Vdd(A)	3.15	3.3	3.45	V
	Digital terminal	Vdd(D)	3.15	3.3	3.45	v
Digital input voltage	High level	Vi(H)	Vdd(D) - 0.25	Vdd(D)	Vdd(D) + 0.25	V
	Low level	Vi(L)	0	-	0.3	v

Electrical characteristics

```
Digital input signal
```

[Ta=25 °C, Vdd (A)=Vdd (D)=3.3 V]

Parameter		Symbol	Min.	Тур.	Max.	Unit	
Master clock pulse fre	quency	f(MCLK)	15	-	40	MHz	
Master clock pulse dut	ty cycle	D(MCLK)	45	50	55	%	
	7 × 7 µm		1127/f(MCLK)	-	-		
Master start pulse cycle	9.3 × 9.3 µm	tpi(MST)	871/f(MCLK)	-	-	S	
	14 × 14 µm		615/f(MCLK)	-	-		
Master start pulse	High period	thp(MST)	91/f(MCLK)	-	-		
Master start puise	Low period	tlp(MST)	21/f(MCLK)	-	-	5	
Delay between master clock and master start		tCSD	0	-	5	ns	
Delay between master clock and reset*9		tCRD	-	-	5	ns	
Rise time ^{*10}		tr(sigi)	-	5	7	ns	
Fall time*10		tf(sigi)	-	5	7	ns	

*9: Delay time of the rising edges of PLL_Reset and All_Reset relative to the rising edge of MCLK

*10: Time for the input voltage to rise or fall between 10% and 90%

MCLK, MST input timing

KMPDC0677EB

PLL_Reset, All_Reset input timing

After 100 µs or longer after turning on the power supply, set the PLL_Reset and the All_Reset to low in this order during the time period of the master clock pulse 5 clk or more.

Digital	output	signal
---------	--------	--------

[Ta=25 °C, Vdd (A)=Vdd (D)=3.3 V, f (MCLK)=40 MHz]

Paramete	er	Symbol	Min.	Тур.	Max.	Unit	
Video data rate (LVDS)	DR		f(MCLK) × 8			
	7 × 7 µm		-	-	35		
Line rate	9.3 × 9.3 µm	LR	-	-	46	klines/s	
	14 × 14 µm		-	-	65		
IVDC output voltago*11	Offset	Vcom	1.13	1.25	1.38	V	
LVDS output voltage **	Differential	Vdiff	0.25	0.35	0.45	v	
LVDS rise time*12		tr(LVDS)	-	0.9	1.3	ns	
LVDS fall time*12		tf(LVDS)	-	0.9	1.3	ns	
Delay between bit out and video output ^{*13}	put sync signal	tPDD	-0.8	0.1	1	ns	
Delay between bit out and pixel sync signal ^{*1}	put sync signal	tPDC	-0.75	0.15	1.05	ns	
Delay between bit output sync	Rise time*13	tPDSR	-1.35	-0.45	0.55		
signal and frame sync signal	Fall time*13	tPDSF	-1.35	-0.45	0.55		
CMOS output voltage	High	Vsigo(H)	Vdd(D) - 0.25	Vdd(D)	-	V	
CMOS output voltage	Low	Vsigo(L)	-	0	0.25		
Timing generator clock pulse frequency		f(TGCLK)	-	f(MCLK)	-	MHz	
CMOS output rise time	* ¹⁴	tr(sigo)	-	10	12	ns	
CMOS output fall time	*14	tf(sigo)	-	10	12	ns	

*11: Attach a 100 $\boldsymbol{\Omega}$ terminator to the LVDS output terminal.

*12: Time for the output voltage to rise or fall between 10% and 90% when there is a 2 pF load capacitor attached to the output terminal *13: pclk_delay [5:0]=6

*14: Time for the output voltage to rise or fall between 10% and 90% when there is a 10 pF load capacitor attached to the output terminal

Sync signal, video signal

 \cdot Each waveform represents the difference between positive and negative signals of LVDS.

 \cdot Out_X[m] indicates video outputs.

X: A, B (port)

m: 0=0 to 3 bits, 1=4 to 7 bits, 2=8 to 11 bits

- \cdot Acquire the video output at the rising edge of PCLK.
- · After the rise of Sync, video output starts. Use Sync as a reference when importing data [see timing chart (P.9)].
- \cdot Simultaneous with a rise of CTR , Out_X [0] is output from D0, Out_X [1] is output from D4, and Out_X [2] is output from D8. Use CTR as a reference when importing data [see timing chart (P.10)].

Current consumption							
[Ta=25 °C, Vdd (A)=Vdd (D)=3.3 V, f(MCLK)=40 MHz]							
Parameter	Symbol	Min.	Тур.	Max.	Unit		
Vdd(A) terminal	Ic1	275	320	365			
Vdd(D) terminal	Ic2	135	160	185			

Electrical characteristics of A/D converters [Ta=25 °C, Vdd(A)=Vdd(D)=3.3 V, f(MCLK)=40 MHz]

Parameter	Symbol	Specification	Unit
Resolution	RESO	12	bit
Conversion voltage range	-	0 to1.3	V

Electrical and optical characteristics [Ta=25 °C, Vdd(A)=Vdd(D)=3.3 V, f(MCLK)=40 MHz, offset: default value]

Parameter	Symbol	Gain	Pixel size	Min.	Тур.	Max.	Unit
Spectral response range	λ	-			400 to 1000		nm
Peak sensitivity wavelength	λр	-		-	700	-	nm
			7 × 7 µm	-	45	-	
		1	9.3 × 9.3 µm	-	72	-	
Dhataaanaitii iitu itu	C		14 × 14 µm	-	54	-	
Photosensitivity	SW		7 × 7 µm	-	360	-	$V/(lx \cdot S)$
		8	9.3 × 9.3 µm	-	574	-	1
			14 × 14 µm	-	430	-	
			7 × 7 µm	-	42	-	
		1	9.3 × 9.3 µm	-	38	-	1
Conversion forten	CE.		14 × 14 µm	-	13	-	
Conversion factor	CE		7 × 7 µm	-	336	-	μv/e
		8	9.3 × 9.3 µm	-	304	-	1
			14 × 14 µm	-	104	-	1
Output offset level	Voffset	-		-	550	-	DN
			7 × 7 µm	-	0.5	20	
	VD	1	9.3 × 9.3 µm	-	0.4	15	- mV
Dark autout*16			14 × 14 µm	-	0.24	9.6	
			7 × 7 µm	-	4	160	
		8	9.3 × 9.3 µm	-	3.2	120	
			14 × 14 µm	-	1.9	77	
Saturation output	Vsat	-		1.05	1.13	-	V
		1	7 × 7 µm	25	27	-	
Saturation charge	Qsat	1	9.3 × 9.3 µm	28	30	-	ke⁻
		1	14 × 14 µm	81	87	-	
Readout poiso*17	Nroad	1		-	0.6	1.9	m\/ rmc
Reducut hoise -	Niedu	8		-	1.6	4.7	
			7 × 7 µm	43	44	-	
		1	9.3 × 9.3 µm	44	45	-	
			14 × 14 µm	48	49	-	
SNR max.	-		7 × 7 µm	34	35	-	ab ab
		8	9.3 × 9.3 µm	35	36	-	1
			14 × 14 µm	39	40	-	
2 *19		1		550	1900	-	
	Drange	8		220	700	-	1 -
		1		-	±5	±10	0/
Photoresponse nonuniformity ¹⁹	PRNU	8		-	±5	±10	%
Image lag ^{*20}	Lag	1		-	-	0.1	%

*15: Measured with a 2856 K tungsten lamp

*16: Ts= 10 ms, difference from the offset output level

*17: Dark state

*18: Vsat/Nread

*19: Photoresponse nonuniformity is defined as follows when uniform light with an exposure of 50% of saturation enterd. PRNU = $\Delta X/X \times 100$ (%)

X: average of the outputs of N pixels

 $\Delta X :$ difference between the maximum or minimum output of N pixels and X

N: 4096 (pixel size: $7 \times 7 \mu$ m), 3072 (pixel size: $9.3 \times 9.3 \mu$ m), 2048 (pixel size: $14 \times 14 \mu$ m)

*20: The signal component of the previous data that remains after data is read under saturation output conditions. Image lag increases if light greater than the saturation exposure is incident.

Spectral response (typical example)

- Spectral transmittance of window material

Block diagram

The video output signals are output separately to 2 ports: A and B.

N=4096 (pixel size: 7 × 7 μm) 3072 (pixel size: 9.3 × 9.3 μm) 2048 (pixel size: 14 × 14 μm)

Note: excluding dummy pixels and light-shielding pixels

KMPDC0916EA

Timing chart

Description of operation

The integration time is determined by the low period of the master start pulse.

MST	┦		
	① ② Integration time	Integration time	Integration time
	3 Video dete	Video data	Video data
	Video data	Video data	Video data
Out_A[2]	Video data	Video data	Video data
Out_B[0]	Video data	Video data	Video data
Out_B[1]	Video data	Video data	Video data
Out_B[2]	Video data	Video data	Video data
			KMPE

(1) The start of integration time is determined by the falling edge of the master start pulse.

(2) The end of integration time is determined by the rising edge of the master start pulse.

(3) Video data is output after the rising edge of the next frame after the master start pulse. Video data is output in order from the first pixel. Note: Signal integration is possible even during video output.

Start/end timing of the integration time, video output start position

 \cdot Line rate corresponds to the master start pulse period.

 \cdot TGCLK is a timing generator clock inside the sensor.

• The integration time corresponds to the low period of the master start pulse + 38 cycles of TGCLK.

Video output

	PCLK frequency = $f(MCLK) \times 8$						
ADC 1	Invalid data	Invalid data	1st nixel	2nd nixel			
ADC 2	Invalid data	Invalid data	M + 1 th pixel	M + 2 th pixel			
ADC 3	Invalid data	Invalid data	$(2 \times M) + 1$ th pixel	$(2 \times M) + 2$ th pixel			
ADC_4	Invalid data	Invalid data	$(3 \times M) + 1$ th pixel	$(3 \times M) + 2$ th pixel			
PCLK							
Sync							
	Invalid data Invalid data	Invalid data Invalid data	1st pixel M + 1 th pixel	2nd pixel M + 2 th pixel			
Out_A[0]	A0 A1 A2 A3 B0 B1 B2 B3	A0 A1 A2 A3 B0 B1 B2 B3	A0 A1 A2 A3 B0 B1 B2 B3	A0 A1 A2 A3 B0 B1 B2 B3			
Out A[1]	A4 A5 A6 A7 B4 B5 B6 B7	A4 A5 A6 A7 B4 B5 B6 B7	A4 A5 A6 A7 B4 B5 B6 B7	A4 A5 A6 A7 B4 B5 B6 B7			
		A8 A9 A10 A11 B8 B9 B10 B11		<u>A8 A9 A10 A11 B8 B9 B10 B11</u>			
Out_A[2]							
	Invalid data Invalid data	Invalid data Invalid data	$(2 \times M) + 1$ th pixel $(3 \times M) + 1$ th pixel	$(2 \times M) + 2$ th pixel $(3 \times M) + 2$ th pixel			
Out B[0]							
		C4 C3 C8 C7 D4 D3 D8 D7					
Out_B[2]	010 011 08 09 010 011	010 011 08 09 010 011	010 011 08 09 010 011	C8 C9 C10 C11 D8 D10 D11			
CTR							
		·					
	Note: M=1024 (pixel size: 7 ×	7 μm), 768 (pixel size: 9.3 ×	9.3 µm), 512 (pixel size: 14 ×	14 µm)			
					KMPDC0919EA		
		PCLK frequency = 1	$f(MCLK) \times 4$				
		recircitequency					
ADC_1	Invalid data	Invalid data	1st pixel	2nd pixel			
ADC_2	Invalid data	Invalid data	M + 1 th pixel	M + 2 th pixel			
ADC_3	Invalid data	Invalid data	$(2 \times M) + 1$ th pixel	$(2 \times M) + 2$ th pixel			
ADC_4	Invalid data	Invalid data	$(3 \times M) + 1$ th pixel	$(3 \times M) + 2$ th pixel			
PCLK							
Sync							
	Invalid data Invalid data	Invalid data Invalid data	1st nixel M + 1 th nixel	2nd nixel $M + 2$ th nixel			
	AU AI AZ AJ DU DI DZ DJ	AU AI AZ AS BU BI BZ BS	AU AI AZ AS DU DI DZ DS	AU AI AZ AJ DU DI DZ DJ			
Out_A[1]	A4 A5 A6 A/ B4 B5 B6 B/	A4 A5 A6 A7 B4 B5 B6 B7	A4 A5 A6 A/ B4 B5 B6 B/	A4 A5 A6 A7 B4 B5 B6 B7			
Out_A[2]	A8 A9 A10 A11 B8 B9 B10 B11	A8 A9 A10 A11 B8 B9 B10 B11	A8 A9 A10 A11 B8 B9 B10 B11	A8 A9 A10 A11 B8 B9 B10 B11			
	Toursell of share and the state	Town Red where Town Red where					
	Invalid data Invalid data	Invalid data Invalid data	$(2 \times M) + 1$ th pixel $(3 \times M) + 1$ th pixel	$(2 \times M) + 2$ th pixel $(3 \times M) + 2$ th pixel			
Out_B[0]	C0 C1 C2 C3 D0 D1 D2 D3	C0 C1 C2 C3 D0 D1 D2 D3	C0 C1 C2 C3 D0 D1 D2 D3	C0 C1 C2 C3 D0 D1 D2 D3			
Out_B[1]	C4 C5 C6 C7 D4 D5 D6 D7	C4 C5 C6 C7 D4 D5 D6 D7	C4 C5 C6 C7 D4 D5 D6 D7	C4 C5 C6 C7 D4 D5 D6 D7			
Out_B[2]	C8 C9 C10 C11 D8 D9 D10 D11	C8 C9 C10 C11 D8 D9 D10 D11	C8 C9 C10 C11 D8 D9 D10 D11	C8 C9 C10 C11 D8 D9 D10 D11			
CTR							
	Noto M-1024 (size size 7)	7 um) 769 (missel sizes 0.2 si	0.2 um) E12 (minut since 44 u	14)			

SPI address settings

Address	Degister	Initial value		Catting	
(Decimal)	Binary Decimal		Decimal	Setting	
0	Mode[1:0]	00	0	Pixel size, number of pixels (initial setting: $7 \times 7 \mu m$, 4096 pixels)	
1	fpclk	0	0	PCLK frequency [initial setting: $f(CLK) \times 8$]	
2	Dummy	0	0	Dummy/light-shielding pixels (initial setting: no readout)	
19	pclk_delay[5:0]	0 0000	0	PCLK timing (initial setting: pclk_delay[5:0]=0)	
20	AGC[4:0]	1 1101	29	Gain (initial setting: gain=1)	
21 to 24	Offset 1 to 4[7:0]	1000 0000	128	Output offset (initial setting: Offset 1 to 4[7:0]=128)	

Note: Be sure to set the addresses shown in the above table. Setting to the addresses not shown in the above table may cause errors.

■ Mode

It is possible to select pixel size and readout number of pixels, from the following three modes.

- \cdot Mode[1:0]=0: pixel size=7 \times 7 μ m, readout number of pixels=4096 pixels
- \cdot Mode[1:0]=1: pixel size=9.3 \times 9.3 µm, readout number of pixels=3072 pixels
- · Mode[1:0]=2: pixel size=14 \times 14 μ m, readout number of pixels=2048 pixels

The initial setting is 0. Do not set to Mode [1:0]=3.

PCLK frequency

It is possible to select PCLK frequency from the following two settings.

· fpclk=0: PCLK = f(MCLK) \times 8

· fpclk=1: PCLK = f(MCLK) \times 4

Readout of dummy pixels and light-shielding pixels (OB pixels)

By setting Dummy, it is possible to select readout of dummy pixels and light-shielding pixels.

· Dummy=0: No readout of dummy pixels and light-shielding pixels

· Dummy=1: Output in the order of dummy pixels and light-shielding pixels before outputting effective pixels

- ③ From Out_A, the 1st to 16th dummy pixels are read out sequentially. From Out_B, the 17th to 32nd dummy pixels are read out sequentially.
- ② From Out_A, the 1st to 16th OB pixels are read out sequentially. From Out_B, the 17th to 32nd OB pixels are read out sequentially.

③ After the dummy and OB pixels are read out, effective pixels are read out in sequence.

PCLK timing

PCLK can be delayed inside the sensor and output. Increasing pclk_delay [5: 0] by 1 delays output of PCLK by about 0.15 ns.

Gain setting

The sensor may not operate properly if a setting not in the following table is specified. Specify a setting shown in the table.

AGC[4:0]							
Decimal			Gain	Description			
	[4]	[3]	[2]	[1]	[0]		
2	0	0	0	1	0	8	
4	0	0	1	0	0	4	
12	0	1	1	0	0	2	
29	1	1	1	0	1	1	Initial setting

Output offset settings

Output offset value can be adjusted by setting Offset 1 to 4[7:0]. The default value is 128. When Offset is increased by 10, the offset value increases by about 1 DN. Pixels set differ according to addresses 21 to 24.

· Address 21: 1st pixel to M th pixel

 \cdot Address 22: M + 1 th pixel to 2 \times M th pixel

 \cdot Address 23: 2 \times M + 1 th pixel to 3 \times M th pixel

 \cdot Address 24: 3 \times M + 1 th pixel to 4 \times M th pixel

Note: M=1024 (pixel size: 7 \times 7 μm), 768 (pixel size: 9.3 \times 9.3 μm), 512 (pixel size: 14 \times 14 μm)

KMPDC0922EA

SPI settings

Set the SPI using SCLK, CS, and MOSI.

Note: Set SCLK to low when CS is on falling/rising edges.

[Ta=25 °C, Vdd(A)=Vdd(D)=3.3 V]

Parameter	Symbol	Min.	Тур.	Max.	Unit
SPI clock pulse frequency	f(SCLK)	-	7.5	10	MHz
SPI setup time (CS)	tSET(CS)	7	-	-	ns
SPI hold time (CS)	tHOLD(CS)	7	-	-	ns
SPI setup time (MOSI)	tSET(MO)	7	-	-	ns
SPI hold time (MOSI)	tHOLD(MO)	7	-	-	ns

SPI setting example

KMPDC0924EA

Checking the SPI setting

You can check the current SPI setting in the following manner.

Note: Set SCLK to low when CS is on falling/rising edges.

[Ta=25 °C, Vdd(A)=Vdd(D)=3.3 V]

Parameter	Symbol	Min.	Тур.	Max.	Unit
Output signal rise time* ²¹	tr(sigo)	-	10	12	ns
Output signal fall time* ²¹	tf(sigo)	-	10	12	ns
Delay between SCLK and MISO output	tSMD	-	-	25	ns

*21: Time for the output voltage to rise or fall between 10% and 90% when the load capacitance of the output terminal is 10 pF.

Dimensional outline (unit : mm)

Tolerance unless otherwise noted: ±0.2

*1: Distance from package edge to photosensitive area edge

*2: Pixels on the left and right outside of the effective pixels

*3: Pixels on the left and right outside of the dummy pixels

*4: See the enlarged view of effective photosensitive area (P.16) for details

*5: Distance from package bottom to photosensitive surface

*6: Distance from glass surface to photosensitive surface

*7: Glass thickness

*8: Distance from package edge to photosensitive area ③ center

*9: Distance from package edge to photosensitive area ② center

*10: Distance from package edge to photosensitive area ① center

KMPDA0641EA

Enlarged view of effective photosensitive area (unit: µm)

KMPDC0928EA

Pin connections

Pin no.	Symbol	Function	I/O	Pin no.	Symbol	Function	I/O
1	MISO	SPI output signal	0	23	Vref1	Bias voltage ^{*22}	0
2	SCLK	SPI clock signal	Ι	24	Out_Bp[0]	Video output signal (LVDS)	0
3	RSTB	SPI reset signal	Ι	25	Out_Bn[0]	Video output signal (LVDS)	0
4	MOSI	SPI input signal	Ι	26	Out_Bp[1]	Video output signal (LVDS)	0
5	CS	SPI enable signal	Ι	27	Out_Bn[1]	Video output signal (LVDS)	0
6	MST	Master start signal	Ι	28	Out_Bp[2]	Video output signal (LVDS)	0
7	All_Reset	Timing generator reset signal	Ι	29	Out_Bn[2]	Video output signal (LVDS)	0
8	MCLK	Master clock signal	Ι	30	PCLKn	Bit output sync signal (LVDS)	0
9	PLL_Reset	Multiplication/divider circuit reset signal	Ι	31	PCLKp	Bit output sync signal (LVDS)	0
10	TGCLK	Timing generator clock signal	0	32	CTRn	Pixel sync signal (LVDS)	0
11	GND	Ground	-	33	CTRp	Pixel sync signal (LVDS)	0
12	Vdd(D)	Supply voltage (3.3 V)	Ι	34	Syncn	Frame sync signal (LVDS)	0
13	GND	Ground	-	35	Syncp	Frame sync signal (LVDS)	0
14	Vdd(D)	Supply voltage (3.3 V)	Ι	36	Out_Ap[0]	Video output signal (LVDS)	0
15	GND	Ground	-	37	Out_An[0]	Video output signal (LVDS)	0
16	Vdd(D)	Supply voltage (3.3 V)	Ι	38	Out_Ap[1]	Video output signal (LVDS)	0
17	GND	Ground	-	39	Out_An[1]	Video output signal (LVDS)	0
18	Vdd(A)	Supply voltage (3.3 V)	Ι	40	Out_Ap[2]	Video output signal (LVDS)	0
19	GND	Ground	-	41	Out_An[2]	Video output signal (LVDS)	0
20	Vdd(A)	Supply voltage (3.3 V)	Ι	42	Vref2	Bias voltage ^{*22}	0
21	GND	Ground	-	43	Vref_cp2	Bias voltage for charge pump circuit (-1.5 V)*22	0
22	Vdd(A)	Supply voltage (3.3 V)	Ι	44	Vref_cp1	Bias voltage for charge pump circuit (5.5 V)*22	0

*22: Insert a 1 μ F capacitor between Vref and GND.

Note: Leave NC pins open; do not connect to GND.

Note: The video output symbols are defined as follows:

Out_An[0]

[0]: 0to 3-bit, [1]: 4 to 7-bit, [2]: 8 to 11-bit

— A to B: output ports

Recommended soldering conditions

Parameter	Specification	Note
Soldering temperature	260 °C max. (within 5 seconds)	

Note: When you set soldering conditions, check that problems do not occur in the product by testing out the conditions in advance.

Precautions

(1) Electrostatic countermeasures

This device has a built-in protection circuit against static electrical charges. However, to prevent destroying the device with electrostatic charges, take countermeasures such as grounding yourself, the workbench, and tools to prevent static discharges. Also protect this device from surge voltages which might be caused by peripheral equipment.

(2) Input window

If dust or stain adheres to the surface of the input window glass, it will appear as black spots on the image. When cleaning, avoid rubbing the window surface with dry cloth, dry cotton swab or the like, since doing so may generate static electricity. Use soft cloth, paper, a cotton swab, or the like moistened with alcohol to wipe off dust and stain. Then blow compressed air so that no stain remains.

(3) UV light irradiation

Because this product is not designed to resist characteristic deterioration under UV light irradiation, do not apply UV light irradiation to it.

- Connection circuit example

Digital buffer				1 4		
	MISO		Vref_cp1	⊥μ⊢ 44⊣⊣⊨ 1.υΕ		
• • • • 2	SCLK		Vref_cp2			
• 1 > 3	RSTB		Vref2	42 <u>+</u> 1+		
	MOSI		Out_An[2]	41	້ ≤100 Ω	<u>)</u>
• 1 > 5	CS		Out_Ap[2]	40	<u> </u>	
	MST		Out_An[1]	39	 ≶100 Ω	<u>)</u>
	All_Reset		Out_Ap[1]	38	_ ` _•	
	MCLK		Out_An[0]	37	້ ≥100 Ω)
• 9	PLL_Reset		Out_Ap[0]	36	<u></u>	-
	TGCLK		Syncp	35	€100 Ω) Ω
	GND	S16074	Syncn	34	<u>_</u>	
3.3 V 12	Vdd(D)		CTRp	33	• ≤100 C	0
	GND		CTRn	32	<u>}100 3</u>	-
	Vdd(D)		PCLKp	31	•)
	GND		PCLKn	30	<u></u>	-
	Vdd(D)		Out_Bn[2]	29	₹100 C)
	GND		Out_Bp[2]	28	<u></u>	-
	Vdd(A)		Out_Bn[1]	27	₹100 C)
	GND		Out_Bp[1]	26	<u>_</u>	-
3.3 V + + 20	Vdd(A)		Out_Bn[0]	25	₹100 C	<u>)</u>
10 µ # # 0.1 µ <u>-</u> 21	GND		Out_Bp[0]	24 1 uF	<u>_</u>	
3.3 V + + 22	Vdd(A)		Vref1	23		
το μι ^ψ ι ^ψ ιουτ μ <u>ψ</u>						KMPDC0929EA

Note: Digital buffer is not necessary when MISO and TGCLK are not used.

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- Disclaimer
- · Image sensors

Technical note

· CMOS linear image sensors

The content of this document is current as of January 2024.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Chuo-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184

1126-1 IChino-cho, Chuo-ku, Hamamatsu City, 435-8558 Japan, letepriotie: (0,155-45-4531, FGX. (0,155-455-454), FGX. (0,156-454), FGX. (0,167-454), FGX. (0,1