

Unit Loading／Fan Out

Pin Names	Description	U．L． HIGH／LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ Output $I_{\mathbf{O H}} / I_{\mathbf{O L}}$
S	Common Data Select Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
OE	3－STATE Output Enable Input（Active LOW）	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{a}}-\mathrm{I}_{\mathrm{Od}}$	Data Inputs from Source 0	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{I}_{1 \mathrm{a}}-\mathrm{I}_{1 \mathrm{~d}}$	Data Inputs from Source 1	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{Z}}_{\mathrm{a}}-\bar{Z}_{\mathrm{d}}$	3－STATE Inverting Data Outputs	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Truth Table

Output Enable	Select Input	Data Inputs		Output
$\overline{\mathrm{OE}}$	S	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	$\overline{\text { Z }}$
H	X	X	X	Z
L	H	X	L	H
L	H	X	H	L
L	L	L	X	H
L	L	H	X	L

L L LOW Volt
X＝Immaterial
$Z=$ High Impedance

Functional Description

The 74F258A is a quad 2 －input multiplexer with 3－STATE outputs．It selects four bits of data from two sources under control of a common Select input（S）．When the Select input is LOW，the $\mathrm{I}_{0 x}$ inputs are selected and when Select is HIGH，the $I_{1 x}$ inputs are selected．The data on the selected inputs appears at the outputs in inverted form． The 74F258A is the logic implementation of a 4－pole，2－ position switch where the position of the switch is deter－ mined by the logic levels supplied to the Select input．The logic equation for the outputs is shown below：

$$
\overline{\mathrm{Z}}_{\mathrm{n}}=\overline{\mathrm{OE}} \cdot\left(\mathrm{I}_{1 \mathrm{n}} \cdot \mathrm{~S}+\mathrm{I}_{\mathrm{On}} \cdot \overline{\mathrm{~S}}\right)
$$

When the Output Enable input（ $\overline{(\mathrm{OE})}$ is HIGH，the outputs are forced to a high impedance OFF state．If the outputs of the 3－STATE devices are tied together，all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings．Designers should ensure that Output Enable signals to 3－STATE devices whose outputs are tied together are designed so there is no overlap．

Logic Diagram

[^0]Absolute Maximum Ratings（Note 1）

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage（Note 2）
Input Current（Note 2）
Voltage Applied to Output in HIGH State（with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ ） Standard Output 3－STATE Output
Current Applied to Output
in LOW State（Max）
ESD Last Passing Voltage（Min）
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ -0.5 V to +7.0 V -0.5 V to +7.0 V -30 mA to +5.0 mA
-0.5 V to V_{CC} -0.5 V to +5.5 V twice the rated $\begin{array}{r}\mathrm{I}_{\mathrm{OL}}(\mathrm{mA}) \\ 4000 \mathrm{~V}\end{array}$

Recommended Operating Conditions

Free Air Ambient Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	+4.5 V to +5.5 V

Note 1：Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired．Functional operation under these conditions is not implied．
Note 2：Either voltage limit or current limit is sufficient to protect inputs．

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage			－1．2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & \hline 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage $\quad 10 \% \mathrm{~V}_{\text {CC }}$			0.5	V	Min	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$
${ }_{1 / \mathrm{H}}$	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$I_{\text {cex }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\begin{aligned} & \mathrm{IID}^{\mathrm{ID}}=1.9 \mu \mathrm{~A} \\ & \text { All Other Pins Grounded } \end{aligned}$
$\overline{\mathrm{IOD}}$	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
ILL	Input LOW Current			－0．6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
${ }^{\text {IOZH }}$	Output Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
${ }^{\text {IozL }}$	Output Leakage Current			－50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short－Circuit Current	－60		－150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
Izz	Bus Drainage Test			500	$\mu \mathrm{A}$	0．0V	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{I}_{\text {CCH }}$	Power Supply Current		6.2	9.5	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }_{\text {cCL }}$	Power Supply Current		15.1	23	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
$\mathrm{I}_{\text {Ccz }}$	Power Supply Current		11.3	17	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-5^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \overline{\mathrm{t}_{\mathrm{PLH}}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay I_{n} to \bar{Z}_{n}	$\begin{aligned} & \hline 2.5 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \hline 5.3 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \overline{\mathrm{t}_{\mathrm{PLH}}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & \mathrm{S} \text { to } \overline{\mathrm{Z}}_{\mathrm{n}} \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.5 \end{aligned}$		$\begin{aligned} & \hline 7.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\text {PZL }} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$		$\begin{aligned} & \hline 6.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 8.0 \\ & \hline \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	

[^0]: Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays

