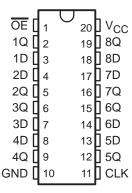
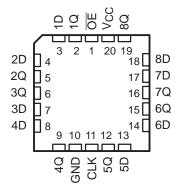
SDAS167C - APRIL 1982 - REVISED NOVEMBER 1999

- D-Type Flip-Flops in a Single Package With 3-State Bus Driving True Outputs
- **Full Parallel Access for Loading**
- **Buffered Control Inputs**
- **Package Options Include Plastic** Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) DIPs


description

These octal D-type edge-triggered flip-flops feature 3-state outputs designed specifically for drivina highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.


On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels set up at the data (D) inputs.

A buffered output-enable (\overline{OE}) input places the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without interface or pullup components.

SN54ALS374A, SN54AS374 . . . J PACKAGE SN74ALS374A, SN74AS374 . . . DW OR N PACKAGE (TOP VIEW)

SN54ALS374A, SN54AS374 . . . FK PACKAGE (TOP VIEW)

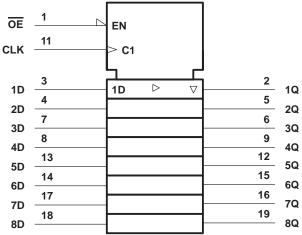
OE does not affect internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

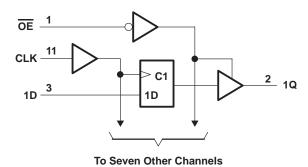
The SN54ALS374A and SN54AS374 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS374A and SN74AS374 are characterized for operation from 0°C to 70°C.

FUNCTION TABLE (each flip-flop)

	INPUTS		OUTPUT
OE	CLK	D	Q
L	\uparrow	Н	Н
L	\uparrow	L	L
L	H or L	Χ	Q ₀
Н	X	Χ	Z

testing of all parameters.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


SDAS167C - APRIL 1982 - REVISED NOVEMBER 1999

logic symbol[†]

IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}	0.5	V to $7\ V$
Input voltage range, V _I	0.5	\mbox{V} to 7 \mbox{V}
Voltage applied to a disabled 3-state output	0.5 V	to 5.5 V
Package thermal impedance, θ _{JA} (see Note 1): DW package		58°C/W
N package		69°C/W
Storage temperature range, T _{stg}	65°C f	to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions

		SN5	4ALS37	'4A	SN7	'4ALS37	'4A	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
ІОН	High-level output current			-1			-2.6	mA
loL	Low-level output current			12			24	mA
T _A	Operating free-air temperature	-55		125	0		70	°C

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and

SDAS167C - APRIL 1982 - REVISED NOVEMBER 1999

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST OF	ANDITIONS	SN5	4ALS374	IA	SN7	4ALS374	IA.	LINUT
PARAMETER	1551 00	ONDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
VIK	$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.5			-1.5	V
	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -2			V _{CC} -2			
Voн	V-2 - 4 5 V	$I_{OH} = -1 \text{ mA}$	2.4	3.3					V
	V _{CC} = 4.5 V	$I_{OH} = -2.6 \text{ mA}$				2.4	3.2		
Voi	V00 - 45 V	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	V
VOL	V _{CC} = 4.5 V	I _{OL} = 24 mA					0.35	0.5	V
lozh	V _{CC} = 5.5 V,	V _O = 2.7 V			20			20	μΑ
l _{OZL}	$V_{CC} = 5.5 \text{ V},$	V _O = 0.4 V			-20			-20	μΑ
lį	$V_{CC} = 5.5 \text{ V},$	V _I = 7 V			0.1			0.1	mA
lН	V _{CC} = 5.5 V,	V _I = 2.7 V			20			20	μΑ
I _Ι Γ	V _{CC} = 5.5 V,	V _I = 0.4 V			-0.2			-0.2	mA
I _O ‡	V _{CC} = 5.5 V,	V _O = 2.25 V	-20		-112	-30		-112	mA
		Outputs high		11	20		11	19	
lCC	V _{CC} = 5.5 V	Outputs low		19	28		19	28	mA
		Outputs disabled		20	31		20	31	

 $[\]uparrow$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

			SN54AL	S374A	SN74AL	S374A	UNIT
			MIN	MAX	MIN	MAX	UNII
fclock	Clock frequency			30		35	MHz
t _W	Pulse duration	CLK high or low	16.5		14		ns
t _{su}	Setup time	Data before CLK↑	10		10		ns
t _h	Hold time	Data after CLK↑	4		0		ns

switching characteristics over recommended operating conditions (unless otherwise noted (see Figure 3)

PARAMETER	FROM	то	SN54AL	S374A	SN74AL	S374A	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT
fmax			30		35		MHz
^t PLH	CLK	_	3	14	3	12	ns
t _{PHL}	CLK	Q	5	17	5	16	115
^t PZH	ŌĒ	_	3	18	3	17	no
t _{PZL}	OE .	Q	5	21	5	18	ns
^t PHZ	ŌĒ	Q	1	11	1	10	no
t _{PLZ}	OE .	Q	2	19	2	18	ns

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

SDAS167C – APRIL 1982 – REVISED NOVEMBER 1999

recommended operating conditions

		SI	N54AS37	'4	SI	174AS37	' 4	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
Іон	High-level output current			-12			-15	mA
loL	Low-level output current			32			48	mA
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DAD	RAMETER	TEST CO	NDITIONS	SN	54AS374	1	SN	74AS374	1	UNIT
PAR	KAWEIEK	lESI CO	NDITIONS	MIN	TYP†	MAX	MIN	TYP [†]	MAX	UNII
VIK		$V_{CC} = 4.5 \text{ V},$	$I_{I} = -18 \text{ mA}$			-1.2			-1.2	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -2 \text{ mA}$	V _{CC} -2			V _{CC} -2			
Vон		V _{CC} = 4.5 V	$I_{OH} = -12 \text{ mA}$	2.4	3.2					V
		VCC = 4.5 V	I _{OH} = -15 mA				2.4	3.3		
Val		V _{CC} = 4.5 V	I _{OL} = 32 mA		0.29	0.5				V
VOL		VCC = 4.5 V	I _{OL} = 48 mA					0.34	0.5	V
lozh		V _{CC} = 5.5 V,	V _O = 2.7 V			50			50	μΑ
lozL		V _{CC} = 5.5 V,	V _O = 0.4 V			-50			-50	μΑ
II		V _{CC} = 5.5 V,	V _I = 7 V			0.1			0.1	mA
lн		V _{CC} = 5.5 V,	V _I = 2.7 V			20			20	μΑ
L.,	OE, CLK	V22 - 5 5 V	V ₁ = 0.4 V			-0.5			-0.5	mA
¹IL	Data	V _{CC} = 5.5 V,	V _I = 0.4 V			-3			-2	mA
lo [‡]		V _{CC} = 5.5 V,	V _O = 2.25 V	-30	-	-112	-30		-112	mA
			Outputs high		77	120		77	120	
Icc		V _{CC} = 5.5 V	Outputs low		84	128		84	128	mA
			Outputs disabled		84	128		84	128	

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

			SN54A	S374	SN74A	S374	UNIT
			MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency			100*		125	MHz
	Pulse duration	CLK high	5.5*		4		20
t _W	ruise duration	CLK low	3*		3		ns
t _{su}	Setup time	Data before CLK↑	3*		2		ns
t _h	Hold time	Data after CLK↑	3*		2		ns

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

SDAS167C - APRIL 1982 - REVISED NOVEMBER 1999

switching characteristics over recommended operating conditions (unless otherwise noted) (see Figure 3)

PARAMETER	FROM	то	SN54A	\S374	SN74A	S374	UNIT
FARAWETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT
fmax			100*		125		MHz
t _{PLH}	CLK	0	3	11	3	8	ne
t _{PHL}	CLN	Q	4	11.5	4	9	ns
^t PZH	ŌĒ		2	7	2	6	ne
t _{PZL}	OE .	Q	3	11	3	10	ns
^t PHZ	ŌĒ	Q	2	10	2	6	ne
t _{PLZ}	OE OE	l ^q	2	7	2	6	ns

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

APPLICATION INFORMATION

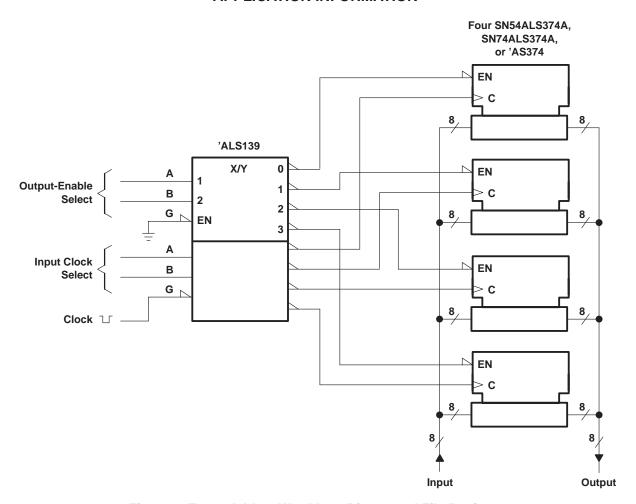


Figure 1. Expandable 4-Word by 8-Bit General File Register

SDAS167C - APRIL 1982 - REVISED NOVEMBER 1999

APPLICATION INFORMATION

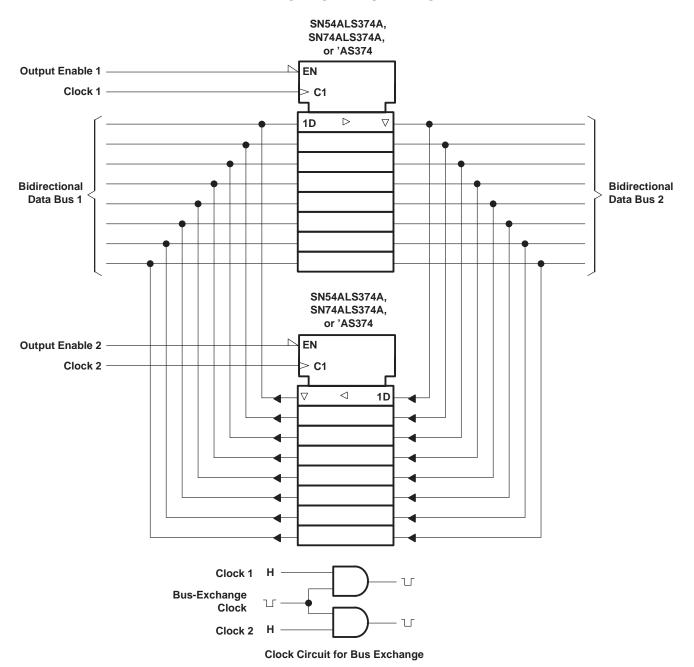
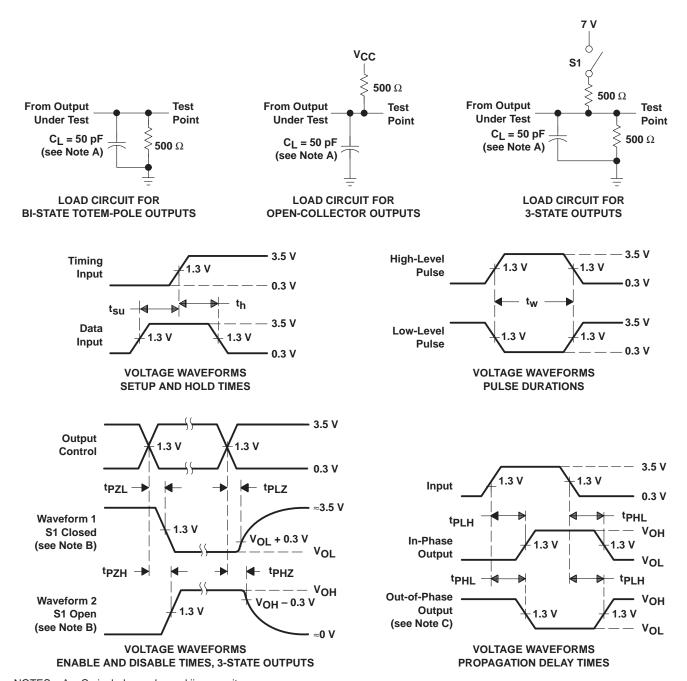



Figure 2. Bidirectional Bus Driver

SDAS167C - APRIL 1982 - REVISED NOVEMBER 1999

PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
- D. All input pulses have the following characteristics: PRR \leq 1 MHz, $t_{\Gamma} = t_{f} = 2$ ns, duty cycle = 50%.
- E. The outputs are measured one at a time with one transition per measurement.

Figure 3. Load Circuits and Voltage Waveforms

30-Apr-2019

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9756201QRA	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9756201QR A SNJ54AS374J	Samples
83020022A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	83020022A SNJ54ALS 374AFK	Samples
8302002RA	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	8302002RA SNJ54ALS374AJ	Samples
8302002SA	ACTIVE	CFP	W	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	8302002SA SNJ54ALS374AW	Samples
JM38510/37204B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type		JM38510/ 37204B2A	Samples
JM38510/37204BRA	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type		JM38510/ 37204BRA	Samples
M38510/37204B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 37204B2A	Samples
M38510/37204BRA	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 37204BRA	Samples
SN54ALS374AJ	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type		SN54ALS374AJ	Samples
SN54AS374J	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54AS374J	Samples
SN74ALS374ADW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS374A	Samples
SN74ALS374ADWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS374A	Samples
SN74ALS374ADWRE4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS374A	Samples
SN74ALS374AN	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74ALS374AN	Samples
SN74ALS374ANE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74ALS374AN	Samples
SN74ALS374ANSR	ACTIVE	so	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS374A	Samples

PACKAGE OPTION ADDENDUM

30-Apr-2019

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74AS374DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	AS374	Samples
SN74AS374N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74AS374N	Samples
SNJ54ALS374AFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	83020022A SNJ54ALS 374AFK	Samples
SNJ54ALS374AJ	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	8302002RA SNJ54ALS374AJ	Samples
SNJ54ALS374AW	ACTIVE	CFP	W	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	8302002SA SNJ54ALS374AW	Samples
SNJ54AS374J	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9756201QR A SNJ54AS374J	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

30-Apr-2019

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

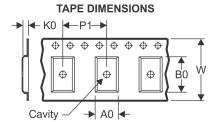
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54ALS374A, SN54AS374, SN74ALS374A, SN74AS374:

Catalog: SN74ALS374A, SN74AS374

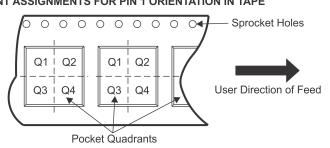
Military: SN54ALS374A, SN54AS374

NOTE: Qualified Version Definitions:

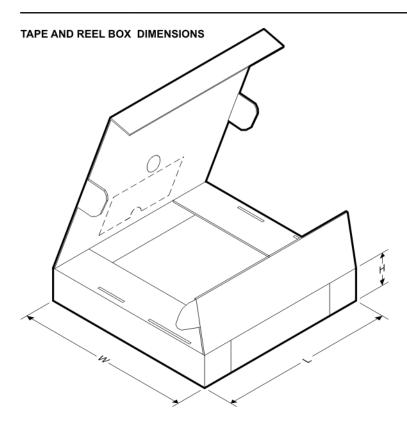

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 6-May-2017


TAPE AND REEL INFORMATION

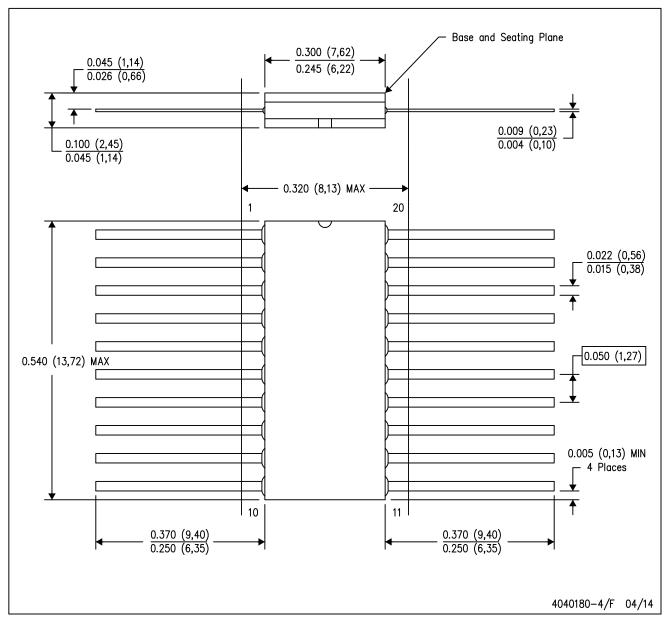
A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ALS374ADWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74ALS374ANSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1

www.ti.com 6-May-2017



*All dimensions are nominal

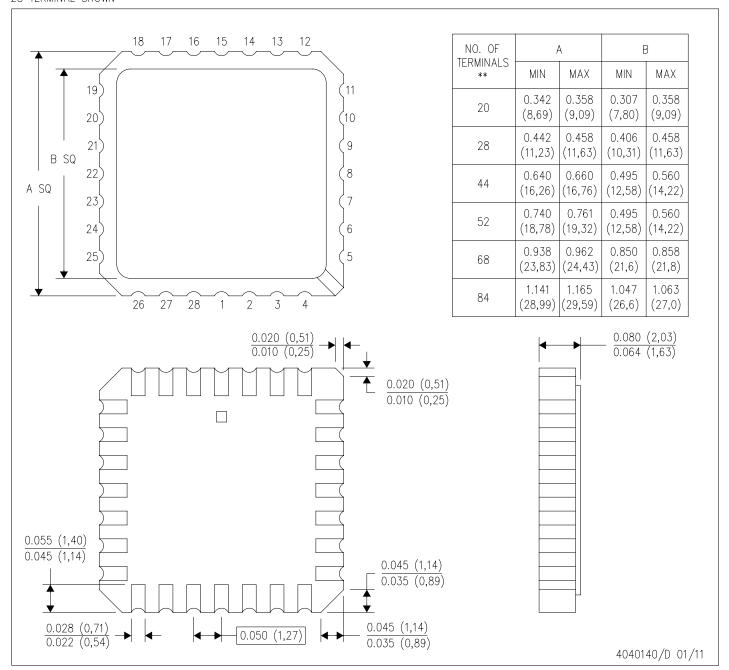
Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
SN74ALS374ADWR	SOIC	DW	20	2000	367.0	367.0	45.0	
SN74ALS374ANSR	SO	NS	20	2000	367.0	367.0	45.0	

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.

 D. Index point is provided on cap for terminal identification only.

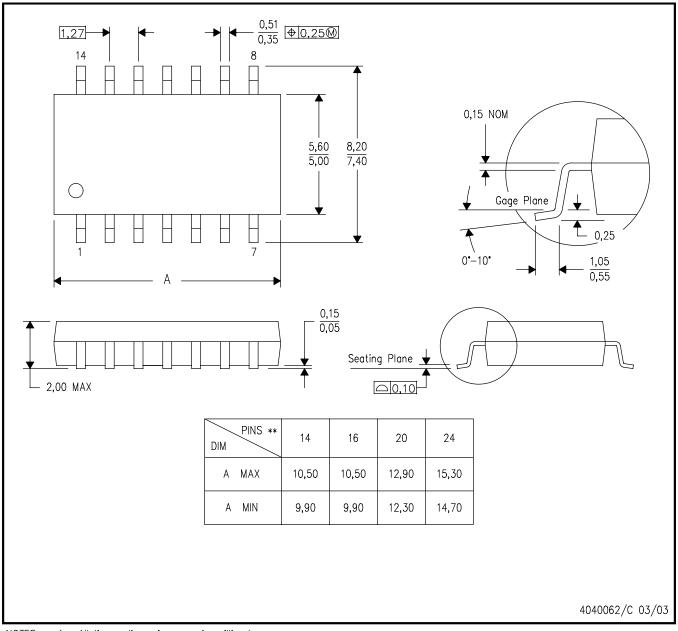

 E. Falls within Mil—Std 1835 GDFP2—F20

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

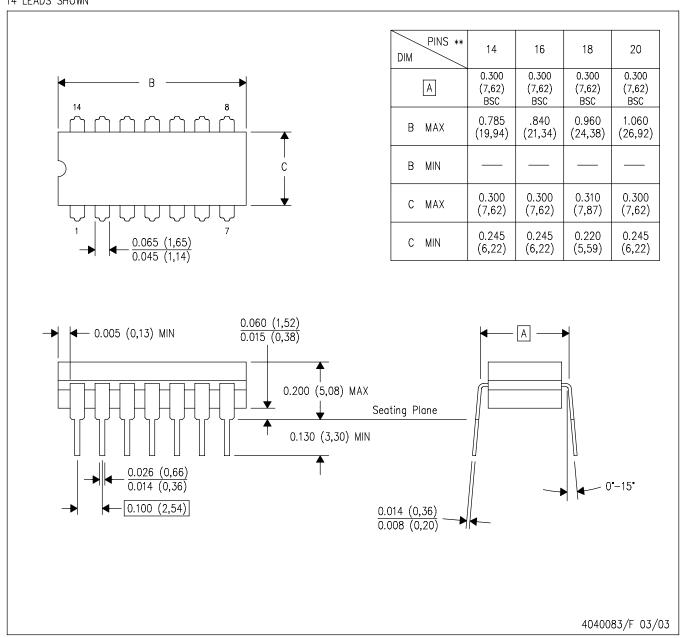
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN


PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

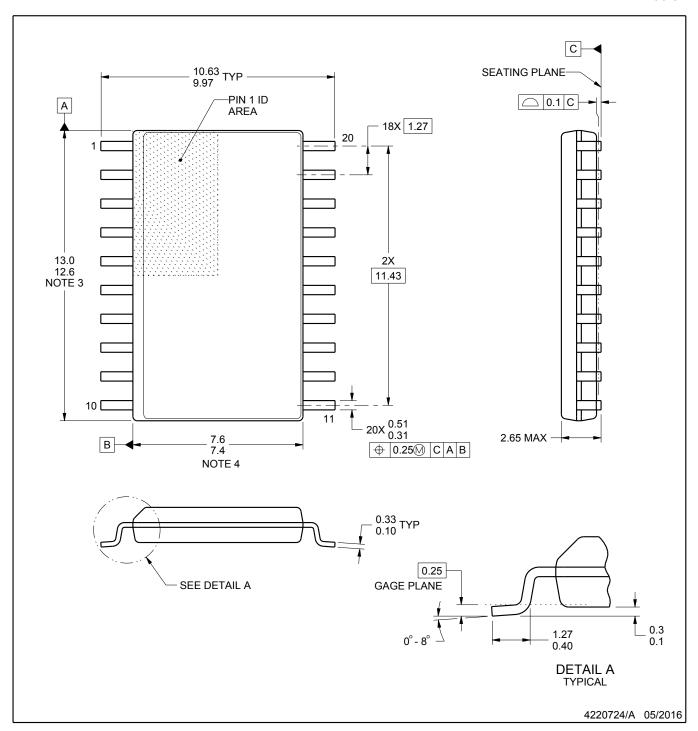
14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

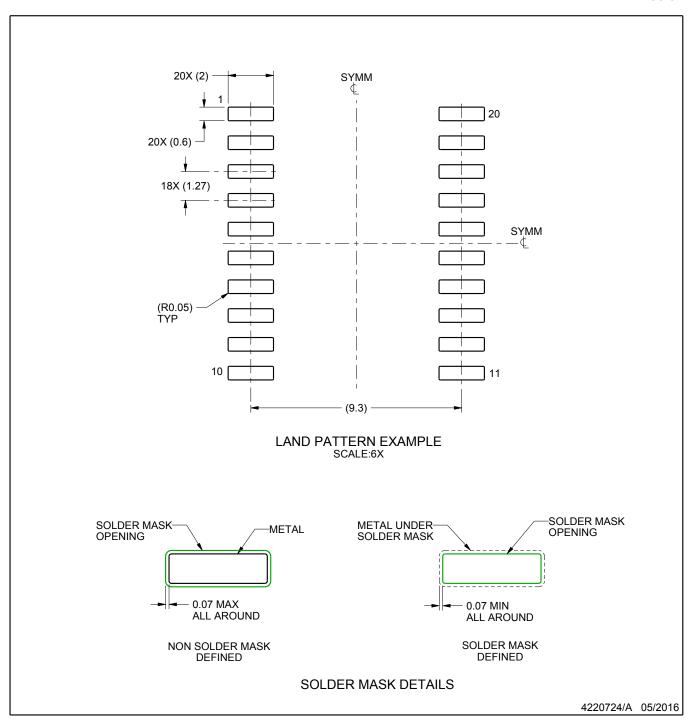
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

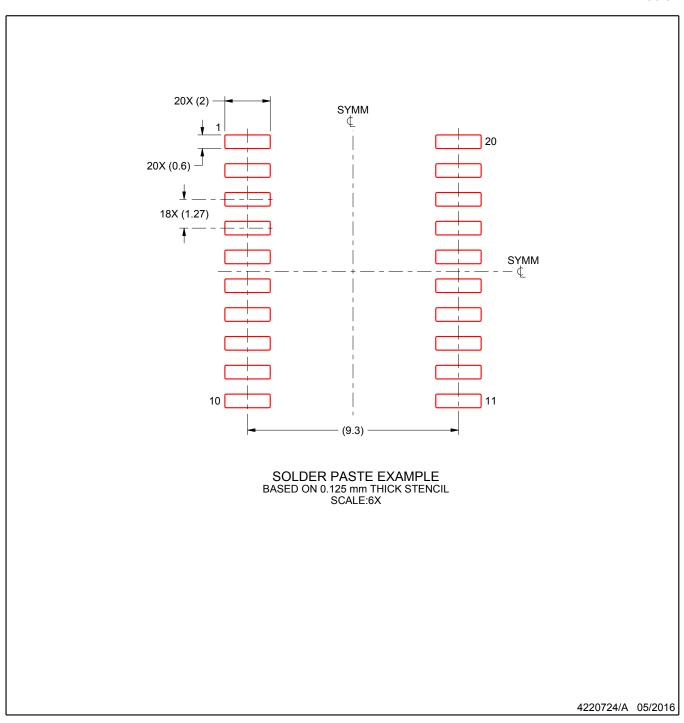
SOIC


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated