UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

General Description

The MAX4249-MAX4257 low-noise, low-distortion operational amplifiers offer rail-to-rail outputs and singlesupply operation down to 2.4 V . They draw $400 \mu \mathrm{~A}$ of quiescent supply current per amplifier while featuring ultra-low distortion (0.0002% THD), as well as low input voltage-noise density ($7.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$) and low input current-noise density ($0.5 \mathrm{fA} / \sqrt{\mathrm{Hz}}$). These features make the devices an ideal choice for portable/battery-powered applications that require low distortion and/or low noise.

For additional power conservation, the MAX4249/ MAX4251/MAX4253/MAX4256 offer a low-power shutdown mode that reduces supply current to $0.5 \mu \mathrm{~A}$ and puts the amplifiers' outputs into a high-impedance state. The MAX4249-MAX4257's outputs swing rail-torail and their input common-mode voltage range includes ground. The MAX4250-MAX4254 are unitygain stable with a gain-bandwidth product of 3 MHz . The MAX4249/MAX4255/MAX4256/MAX4257 are internally compensated for gains of $10 \mathrm{~V} / \mathrm{V}$ or greater with a gain-bandwidth product of 22 MHz . The single MAX4250/ MAX4255 are available in space-saving 5-pin SOT23 packages. The MAX4252 is available in an 8-bump chipscale package (UCSP™) and the MAX4253 is available in a 10-bump UCSP. The MAX4250AAUK comes in a 5 -pin SOT23 package and is specified for operation over the automotive $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature range.

Applications

Wireless Communications Devices
PA Control
Portable/Battery-Powered Equipment
Medical Instrumentation
ADC Buffers
Digital Scales/Strain Gauges

Features

- Available in Space-Saving UCSP, SOT23, and $\mu \mathrm{MAX}^{\circledR}$ Packages

- Low Distortion: 0.0002\% THD (1k load)
- 400رA Quiescent Supply Current per Amplifier
- Single-Supply Operation from 2.4V to 5.5V
- Input Common-Mode Voltage Range Includes Ground
- Outputs Swing Within 8mV of Rails with a $10 k \Omega$ Load
- 3MHz GBW Product, Unity-Gain Stable (MAX4250-MAX4254)
22MHz GBW Product, Stable with $A v \geq 10 \mathrm{~V} / \mathrm{V}$ (MAX4249/MAX4255/MAX4256/MAX4257)
- Excellent DC Characteristics

Vos $=70 \mu \mathrm{~V}$
IBIAS $=1 \mathrm{pA}$
Large-Signal Voltage Gain $=116 \mathrm{~dB}$

- Low-Power Shutdown Mode Reduces Supply Current to $0.5 \mu \mathrm{~A}$ Places Outputs in a High-Impedance State - 400pF Capacitive-Load Handling Capability

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4249ESD +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	-
MAX4249EUB +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-
MAX4250EUK +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23	ACCI
MAX4250AAUK +T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5 SOT23	AEYJ

+Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel.

Ordering Information continued at end of data sheet.
Selector Guide appears at end of data sheet.

Pin/Bump Configurations

UCSP is a trademark and $\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

MAX4249-MAX4257

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

ABSOLUTE MAXIMUM RATINGS
Power-Supply Voltage ($V_{D D}$ to $V_{S S}$)
+.............+6.0V to -0.3V
Analog Input Voltage (IN_+, IN_-)....(VDD +0.3 V) to ($\mathrm{V}_{\text {SS }}-0.3 \mathrm{~V}$)
SHDN Input Voltage6.0V to (VSS - 0.3V)
Output Short-Circuit Duration to Either SupplyContinuous
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
5-Pin SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........... 571 mW
8-Bump UCSP (derate $4.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........ 379 mW
8-Pin $\mu \mathrm{MAX}$ (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 362 mW
8 -Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............... 471 mW
10-Bump UCSP (derate $6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}} / 2\right.$, RL connected to $\mathrm{V}_{\mathrm{DD}} / 2, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to T_{MAX}, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) $($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Supply Voltage Range	VDD	(Note 4)			2.4		5.5	V
Quiescent Supply Current Per Amplifier	IQ	Normal mode	$V_{D D}=3 \mathrm{~V}$			400		$\mu \mathrm{A}$
			$V_{D D}=5 \mathrm{~V}$	E temperature		420	575	
				MAX4250AAUK			675	
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, UCSP only			420	655	
		Shutdown mode ($\overline{\mathrm{SHDN}}=\mathrm{V}$ SS $)($ Note 2)				0.5	1.5	
Input Offset Voltage (Note 5)	Vos	E temperature				± 0.07	± 0.75	mV
		MAX4250AAUK					± 1.85	
Input Offset Voltage Tempco	TCVos					0.3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IB	(Note 6)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.1	1	pA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				50	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				1500	
Input Offset Current	Ios	(Note 6)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.1	1	pA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				10	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				100	
Differential Input Resistance	RIN					1000		$\mathrm{G} \Omega$
Input Common-Mode Voltage Range	VCM	Guaranteed by CMRR test		E temperature	-0.2		$\mathrm{V}_{\mathrm{DD}}-1.1$	V
				MAX4250AAUK	0		$\mathrm{V}_{\mathrm{DD}}-1.1$	
Common-Mode Rejection Ratio	CMRR	$\begin{aligned} & V_{S S}-0.2 V \leq V_{C M} \leq \\ & V_{D D}-1.1 \mathrm{~V} \end{aligned}$		E temperature	70	115		dB
				MAX4250AAUK	68			

MAX4249-MAX4257
 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2\right.$, R L connected to $\mathrm{V}_{\mathrm{DD}} / 2, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER Power-Supply Rejection Ratio	SYMBOL PSRR	CONDITIONS			$\begin{gathered} \text { MIN } \\ \hline 75 \end{gathered}$	$\begin{gathered} \text { TYP } \\ \hline 100 \end{gathered}$	MAX	UNITS dB	
		V $\mathrm{DD}-2.4 \mathrm{~V}$ to 5.5 V	E temperature						
			MAX4250AAUK		72				
Large-Signal Voltage Gain	Av	$\begin{aligned} & \text { RL }=10 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}} / 2 ; \\ & \mathrm{V}_{\mathrm{OUT}}=25 \mathrm{mV} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & -4.97 \mathrm{~V} \end{aligned}$	E temperature		80	116		dB	
			MAX4250AAUK		77				
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD} / 2} ; \\ & \mathrm{V}_{\text {OUT }}=150 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & -4.75 \mathrm{~V} \end{aligned}$	E temperature		80	112			
			MAX4250AAUK		77				
Output Voltage Swing	Vout	$\begin{aligned} & \mid V_{I N+}-V_{I N} \mathrm{I} \geq 10 \mathrm{mV} ; \\ & R_{L}=10 \mathrm{k} \Omega \text { to } V_{D D} / 2 \end{aligned}$	VDD - Voh	E		8	25	mV	
				A			30		
			VoL - VSS	E		7	20		
				A			25		
Output Voltage Swing	Vout	$\begin{array}{\|l} \mid V_{I N+}-V_{I N}-I \geq 10 \mathrm{mV}, \\ R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D / 2} \end{array}$	VDD - Voh	E		77	200	mV	
				A			225		
			VoL - VSS	E		47	100		
				A	125				
Output Short-Circuit Current	ISC				68			mA	
Output Leakage Current	ILEAK	$\begin{aligned} & \text { Shutdown mode }\left(\overline{\mathrm{SHDN}}=\mathrm{V}_{S S}\right) \text {, } \\ & \text { VOUT }=\mathrm{V}_{S S} \text { to } \mathrm{V}_{\text {DD }}(\text { Note 2) } \end{aligned}$				0.001	1.0	$\mu \mathrm{A}$	
$\overline{\text { SHDN }}$ Logic Low	VIL	(Note 2)			$0.2 \times \mathrm{V}_{\mathrm{DD}}$			V	
SHDN Logic High	V_{IH}	(Note 2)			$0.8 \times \mathrm{V}_{\mathrm{DD}}$			V	
$\overline{\text { SHDN }}$ Input Current	IIL/IIH	$\overline{\text { SHDN }}=\mathrm{V}_{\text {SS }}=\mathrm{V}_{\text {DD }}($ Note 2)				0.5	1.5	$\mu \mathrm{A}$	
Input Capacitance						11		pF	
Gain-Bandwidth Product	GBW	MAX4250-MAX4254				3		MHz	
		MAX4249/MAX4255/MAX4256/MAX4257				22			
Slew Rate	SR	MAX4250-MAX4254				0.3		V/us	
		MAX4249/MAX4255/MAX4256/MAX4257			2.1				
Peak-to-Peak Input-Noise Voltage	enp-P	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			760			$n V_{P-P}$	
Input Voltage-Noise Density	e_{n}	$\mathrm{f}=10 \mathrm{~Hz}$				27		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	
		$\mathrm{f}=1 \mathrm{kHz}$			8.9				
		$\mathrm{f}=30 \mathrm{kHz}$			7.9				
Input Current-Noise Density	in_{n}	$\mathrm{f}=1 \mathrm{kHz}$			0.5			$\mathrm{fA} / \sqrt{\mathrm{Hz}}$	

MAX4249-MAX4257

UCSP, Single-Supply, Low-Noise,
 Low-Distortion, Rail-to-Rail Op Amps

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=5 V, V_{S S}=0 V, V_{C M}=0 V, V_{O U T}=V_{D D} / 2\right.$, R_{L} connected to $V_{D D} / 2, \overline{S H D N}=V_{D D}, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Total Harmonic Distortion Plus Noise	THD+N	$\begin{aligned} & \text { MAX4250-MAX4254 } \\ & A v=1 \mathrm{~V} / \mathrm{N}, \mathrm{~V} \text { OUT }=2 \mathrm{~V} \text { P-P, } \\ & R L=1 \mathrm{k} \Omega \text { to GND } \\ & \text { (Note } 7) \end{aligned}$		$\mathrm{f}=1 \mathrm{kHz}$		0.0004		\%
				$f=20 \mathrm{kHz}$		0.006		
		$\begin{aligned} & \text { MAX4249/MAX4255/ } \\ & \text { MAX4256/MAX4257 } \\ & A_{V}=1 \mathrm{~V} / \mathrm{N}, \text { VOUT }^{2} 2 \text { VPP-P, }^{2} \\ & \text { RL }=1 \mathrm{k} \Omega \text { to GND (Note } 7 \text {) } \end{aligned}$		$\mathrm{f}=1 \mathrm{kHz}$		0.0012		
				$f=20 \mathrm{kHz}$		0.007		
Capacitive-Load Stability		No sustained oscillations				400		pF
Gain Margin	GM	MAX4250-MAX4254, AV = 1V/V				10		dB
		MAX4249/MAX4255/MAX4256/MAX4257,$A v=10 \mathrm{~V} / \mathrm{V}$				12.5		
Phase Margin	ФМ	MAX4250-MAX4254, AV = 1V/V				74		Degrees
		$\begin{aligned} & \text { MAX4249/MAX4255/MAX4256/MAX4257, } \\ & \text { AV }=10 V / V \end{aligned}$				68		
Settling Time		$\begin{aligned} & \text { To } 0.01 \% \text {, Vout } \\ & =2 \mathrm{~V} \text { step } \end{aligned}$	MAX425	-MAX4254		6.7		$\mu \mathrm{s}$
			MAX424 MAX425	/MAX4255/ /MAX4257		1.6		
Delay Time to Shutdown	ts	$\operatorname{IVDD}=5 \%$ of normal operation	MAX425	1/MAX4253		0.8		$\mu \mathrm{s}$
			MAX424	/MAX4256		1.2		
Delay Time to Enable	ten	VOUT $=2.5 \mathrm{~V}$, Vout settles to 0.1%	MAX425	1/MAX4253		8		$\mu \mathrm{s}$
			MAX424	/MAX4256		3.5		
Power-Up Delay Time	tpu					6		$\mu \mathrm{s}$

Note 2: $\overline{\text { SHDN }}$ is available on the MAX4249/MAX4251/MAX4253/MAX4256 only.
Note 3: All device specifications are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over temperature are guaranteed by design.
Note 4: Guaranteed by the PSRR test.
Note 5: Offset voltage prior to reflow on the UCSP.
Note 6: Guaranteed by design.
Note 7: Lowpass-filter bandwidth is 22 kHz for $\mathrm{f}=1 \mathrm{kHz}$ and 80 kHz for $\mathrm{f}=20 \mathrm{kHz}$. Noise floor of test equipment $=10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$.

MAX4249-MAX4257

 UCSP, Single-Supply, Low-Noise,Low-Distortion, Rail-to-Rail Op Amps

Typical Operating Characteristics
$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}} / 2\right.$, input noise floor of test equipment $=10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ for all distortion measurements, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX4249-MAX4257

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

Typical Operating Characteristics (continued)

$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}} / 2\right.$, input noise floor of test equipment $=10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ for all distortion measurements, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX4249/MAX4255/MAX4256/MAX4257 GAIN AND PHASE vs. FREQUENCY

SUPPLY CURRENT AND SHUTDOWN SUPPLY CURRENT vs. TEMPERATURE

INPUT OFFSET VOLTAGE vs. SUPPLY VOLTAGE

MAX4250-MAX4254 POWER-SUPPLY REJECTION RATIO
vs. FREQUENCY

MAX4249-MAX4257

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

Typical Operating Characteristics (continued)

$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}} / 2\right.$, input noise floor of test equipment $=10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ for all distortion measurements, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX4249-MAX4257

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

Typical Operating Characteristics (continued)

$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}} / 2\right.$, input noise floor of test equipment $=10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ for all distortion measurements, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX4249/MAX4255/MAX4256/MAX4257 LARGE-SIGNAL PULSE RESPONSE

MAX4249/MAX4255/MAX4256/MAX4257 SMALL-SIGNAL PULSE RESPONSE

Pin/Bump Description

PIN/BUMP								NAME	FUNCTION
$\begin{aligned} & \hline \text { MAX4250/ } \\ & \text { MAX4255 } \end{aligned}$	$\begin{aligned} & \hline \text { MAX4251/ } \\ & \text { MAX4256 } \end{aligned}$	$\begin{aligned} & \hline \text { MAX4252/ } \\ & \text { MAX4257 } \end{aligned}$	MAX4252	$\begin{aligned} & \hline \text { MAX4249/ } \\ & \text { MAX4253 } \end{aligned}$			MAX4254		
$\begin{aligned} & \hline \text { 5-PIN } \\ & \text { SOT23 } \end{aligned}$	$\begin{gathered} \text { 8-PIN } \\ \text { SO/ } \mu \mathrm{MAX} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 8-PIN } \\ \mathrm{SO} / \mu \mathrm{MAX} \end{gathered}$	8-BUMP UCSP	$\begin{array}{\|c\|} \hline \text { 10-BUMP } \\ \text { UCSP } \end{array}$	10-PIN $\mu \mathrm{MAX}$	$\begin{aligned} & \text { 14-PIN } \\ & \text { SO } \end{aligned}$	$\begin{aligned} & \text { 14-PIN } \\ & \text { SO } \end{aligned}$		
1	6	1,7	A1, A3	A1, C1	1, 9	1,13	$\begin{gathered} 1,7,8 \\ 14 \end{gathered}$	OUT, OUTA, OUTB, OUTC, OUTD	Amplifier Output
2	4	4	C2	B4	4	4	11	VSS	Negative Supply. Connect to ground for singlesupply operation
3	3	3, 5	C1, C3	A3, C3	3, 7	3, 11	$\begin{gathered} 3,5,10, \\ 12 \end{gathered}$	$\begin{gathered} \text { IN+, INA+, } \\ \text { INB+, INC }+, \\ \text { IND+ } \end{gathered}$	Noninverting Amplifier Input
4	2	2, 6	B1, B3	A2, C2	2, 8	2, 12	$\begin{gathered} 2,6,9, \\ 13 \end{gathered}$	IN-, INA-, INB-, INC-, IND-	Inverting Amplifier Input
5	7	8	A2	B1	10	14	4	$V_{D D}$	Positive Supply
-	8	-	-	A4, C4	5,6	6, 9	-	$\frac{\overline{\mathrm{SHDN}},}{\frac{\mathrm{SHDNA}}{\text { SHDNB }}}$	Shutdown Input, Connect to VDD or leave unconnected for normal operation (amplifier(s) enabled).
-	1,5	-	-	-	-	$\begin{aligned} & 5,7 \\ & 8,10 \end{aligned}$	-	N.C.	No Connection. Not internally connected.
-	-	-	B2	B2, B3	-	-	-	-	Not populated with solder sphere

Detailed Description

The MAX4249-MAX4257 single-supply operational amplifiers feature ultra-low noise and distortion while consuming very little power. Their low distortion and low noise make them ideal for use as preamplifiers in wide dynamic-range applications, such as 16-bit analog-todigital converters (see Typical Operating Circuit). Their high-input impedance and low noise are also useful for signal conditioning of high-impedance sources, such as piezoelectric transducers.
These devices have true rail-to-rail output operation, drive loads as low as $1 \mathrm{k} \Omega$ while maintaining DC accura-
cy, and can drive capacitive loads up to 400pF without oscillation. The input common-mode voltage range extends from VDD -1.1 V to 200 mV beyond the negative rail. The push-pull output stage maintains excellent DC characteristics, while delivering up to $\pm 5 \mathrm{~mA}$ of current.
The MAX4250-4254 are unity-gain stable, whereas, the MAX4249/MAX4255/MAX4256/MAX4257 have a higher slew rate and are stable for gains $\geq 10 \mathrm{~V} / \mathrm{V}$. The MAX4249/MAX4251/MAX4253/MAX4256 feature a lowpower shutdown mode, which reduces the supply current to $0.5 \mu \mathrm{~A}$ and disables the outputs.
The MAX4250AAUK is specified for operation over the automotive $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature range.

MAX4249-MAX4257

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

Low Distortion

Many factors can affect the noise and distortion that the device contributes to the input signal. The following guidelines offer valuable information on the impact of design choices on Total Harmonic Distortion (THD)
Choosing proper feedback and gain resistor values for a particular application can be a very important factor in reducing THD. In general, the smaller the closedloop gain, the smaller the THD generated, especially when driving heavy resistive loads. Large-value feedback resistors can significantly improve distortion. The THD of the part normally increases at approximately 20dB per decade, as a function of frequency. Operating the device near or above the full-power bandwidth significantly degrades distortion.
Referencing the load to either supply also improves the part's distortion performance, because only one of the MOSFETs of the push-pull output stage drives the output. Referencing the load to midsupply increases the part's distortion for a given load and feedback setting. (See the Total Harmonic Distortion vs. Frequency graph in the Typical Operating Characteristics.)
For gains $\geq 10 \mathrm{~V} / \mathrm{V}$, the decompensated devices MAX4249/MAX4255/MAX4256/MAX4257 deliver the best distortion performance, since they have a higher slew rate and provide a higher amount of loop gain for a given closed-loop gain setting. Capacitive loads below 400 pF , do not significantly affect distortion results. Distortion performance remains relatively constant over supply voltages.

Low Noise

The amplifier's input-referred, noise-voltage density is dominated by flicker noise at lower frequencies, and by thermal noise at higher frequencies. Because the thermal noise contribution is affected by the parallel combination of the feedback resistive network (R_{F} II R_{G}, Figure 1), these resistors should be reduced in cases where the system bandwidth is large and thermal noise is dominant. This noise contribution factor decreases, however, with increasing gain settings.
For example, the input noise-voltage density of the circuit with $R_{F}=100 \mathrm{k} \Omega, R_{G}=11 \mathrm{k} \Omega(\mathrm{Av}=10 \mathrm{~V} / \mathrm{V})$ is $e_{n}=$ $15 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, en can be reduced to $9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ by choosing $R_{F}=10 \mathrm{k} \Omega, R_{G}=1.1 \mathrm{k} \Omega(\mathrm{AV}=10 \mathrm{~V} / \mathrm{V})$, at the expense of greater current consumption and potentially higher distortion. For a gain of $100 \mathrm{~V} / \mathrm{V}$ with $\mathrm{RF}_{\mathrm{F}}=100 \mathrm{k} \Omega, \mathrm{Rg}_{\mathrm{G}}=$ $1.1 \mathrm{k} \Omega$, the en is low $(9 \mathrm{nV} / \sqrt{\mathrm{Hz}})$.

Figure 1. Adding Feed-Forward Compensation

Figure 2a. Pulse Response with No Feed-Forward Compensation

Figure 2b. Pulse Response with 10pF Feed-Forward Compensation

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

Figure 3. Overdriven Input Showing No Phase Reversal

Figure 4. Rail-to-Rail Output Operation

Figure 5. Capacitive-Load Driving Circuit

Using a Feed-Forward Compensation

 Capacitor, CzThe amplifier's input capacitance is 11 pF . If the resistance seen by the inverting input is large (feedback network), this can introduce a pole within the amplifier's bandwidth, resulting in reduced phase margin. Compensate the reduced phase margin by introducing a feed-forward capacitor (Cz) between the inverting input and the output (Figure 1). This effectively cancels the pole from the inverting input of the amplifier. Choose the value of Cz as follows:

$$
C z=11 \times\left(R_{F} / R_{G}\right)[p F]
$$

In the unity-gain stable MAX4250-MAX4254, the use of a proper Cz is most important for $\mathrm{AV}=2 \mathrm{~V} / \mathrm{V}$, and $A V=-1 \mathrm{~V} / \mathrm{V}$. In the decompensated MAX4249/ MAX4255/MAX4256/MAX4257, Cz is most important for $\mathrm{AV}=10 \mathrm{~V} / \mathrm{V}$. Figures 2 a and 2 b show transient response both with and without Cz .
Using a slightly smaller Cz than suggested by the formula above achieves a higher bandwidth at the expense of reduced phase and gain margin. As a general guideline, consider using Cz for cases where R_{G} II R_{F} is greater than 20k Ω (MAX4250-MAX4254) or greater than $5 \mathrm{k} \Omega$ (MAX4249/MAX4255/MAX4256/ MAX4257).

Applications Information

The MAX4249-MAX4257 combine good driving capability with ground-sensing input and rail-to-rail output operation. With their low distortion, low noise, and lowpower consumption, these devices are ideal for use in portable instrumentation systems and other low-power, noise-sensitive applications.

Ground-Sensing and Rail-to-Rail Outputs The common-mode input range of these devices extends below ground, and offers excellent commonmode rejection. These devices are guaranteed not to undergo phase reversal when the input is overdriven (Figure 3).
Figure 4 showcases the true rail-to-rail output operation of the amplifier, configured with $\mathrm{Av}=10 \mathrm{~V} / \mathrm{V}$. The output swings to within 8 mV of the supplies with a $10 \mathrm{k} \Omega$ load, making the devices ideal in low-supplyvoltage applications.

Output Loading and Stability

Even with their low quiescent current of $400 \mu \mathrm{~A}$, these amplifiers can drive $1 \mathrm{k} \Omega$ loads while maintaining excellent DC accuracy. Stability while driving heavy capacitive loads is another key feature.

Figure 6. Isolation Resistance vs. Capacitive Loading to Minimize Peaking (<2dB)

Figure 8. MAX4250-MAX4254 Unity-Gain Bandwidth vs. Capacitive Load

These devices maintain stability while driving loads up to 400 pF . To drive higher capacitive loads, place a small isolation resistor in series between the output of the amplifier and the capacitive load (Figure 5). This resistor improves the amplifier's phase margin by isolating the capacitor from the op amp's output. Reference Figure 6 to select a resistance value that will ensure a load capacitance that limits peaking to $<2 d B$ (25%). For example, if the capacitive load is 1000 pF , the corresponding isolation resistor is 150Ω. Figure 7 shows that peaking occurs without the isolation resistor. Figure 8 shows the unity-gain bandwidth vs. capacitive load for the MAX4250-MAX4254.

Power Supplies and Layout

The MAX4249-MAX4257 operate from a single 2.4 V to 5.5 V power supply or from dual supplies of $\pm 1.20 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$. For single-supply operation, bypass the power supply with a $0.1 \mu \mathrm{~F}$ ceramic capacitor placed close to the VDD pin. If operating from dual supplies, bypass each supply to ground.
Good layout improves performance by decreasing the amount of stray capacitance and noise at the op amp's inputs and output. To decrease stray capacitance, minimize PC board trace lengths and resistor leads, and place external components close to the op amp's pins.

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

Typical Operating Circuit

Selector Guide

PART	GAIN BANDWIDTH (MHz)	MINIMUM STABLE GAIN (V/V)	NO. OF AMPLIFIERS PER PACKAGE	SHUTDOWN MODE	PIN-PACKAGE
MAX4249	22	10	2	Yes	10-pin $\mu \mathrm{MAX}, 14$-pin SO
MAX4250/A	3	1	1	-	5-pin SOT23
MAX4251	3	1	1	Yes	8-pin $\mu \mathrm{MAX} / \mathrm{SO}$
MAX4252	3	1	2	-	8-pin $\mu \mathrm{MAX} / \mathrm{SO}, 8$-bump UCSP
MAX4253	3	1	2	Yes	10-pin $\mu \mathrm{MAX}, 14$-pin SO, 10-bump UCSP
MAX4254	3	1	4	-	14-pin SO
MAX4255	22	10	1	-	5-pin SOT23
MAX4256	22	10	1	Yes	8-pin $\mu \mathrm{MAX} / \mathrm{SO}$
MAX4257	22	10	2	-	8-pin $\mu \mathrm{MAX} / \mathrm{SO}$

MAX4249-MAX4257

UCSP, Single-Supply, Low-Noise,
 Low-Distortion, Rail-to-Rail Op Amps

Pin/Bump Configurations (continued)

Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	$\begin{aligned} & \text { TOP } \\ & \text { MARK } \end{aligned}$
MAX4251ESA+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4251EUA+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4252EBL+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 UCSP	AAO
MAX4252ESA+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4252EUA+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4253EBC+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 UCSP	AAK
MAX4253EUB+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 MMAX	-
MAX4253ESD+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	-
MAX4254ESD+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	-
MAX4255EUK+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23	ACCJ
MAX4256ESA+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4256EUA+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4257ESA+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4257ESA/V+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4257EUA+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-

MAX4249-MAX4257
 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

Package Information
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
$5 \mathrm{SOT}-23$	$\mathrm{U} 5+2$	$\underline{21-0057}$	$\underline{90-0174}$
$8 \mu \mathrm{MAX}$	$\mathrm{U}+1$	$\underline{21-0036}$	$\underline{\underline{90-0092}}$
$10 \mu \mathrm{MAX}$	$\mathrm{U} 10+2$	$\underline{21-0061}$	$\underline{90-0330}$
$3 \times 3 \mu \mathrm{CSP}$	$\mathrm{B} 9+5$	$\underline{21-0093}$	-
14 SOIC	$\mathrm{S} 14+1$	$\underline{21-0041}$	$\underline{90-0112}$
$12 \mu \mathrm{CSP}$	$\mathrm{B} 12+4$	-	

MAX4249-MAX4257

UCSP, Single-Supply, Low-Noise,
Low-Distortion, Rail-to-Rail Op Amps
Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
8	$10 / 11$	Added lead-free packaging to the Ordering Information and changed the Input Bias Current and Input Offset Current conditions in the Electrical Characteristics table	$1,2,14$
9	$12 / 12$	Added MAX4257ESA/N+T to Ordering Information.	14

maxim integrated

[^0]
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Maxim Integrated:
MAX4255EUK-T MAX4256ESA MAX4256EUA MAX4250AAUK-T MAX4256ESA-T MAX4256EUA-T

[^0]: Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

