DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4520B MSI

Dual binary counter
Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4520B is a dual 4-bit internally synchronous binary counter. The counter has an active HIGH clock input (CP_{0}) and an active LOW clock input ($\overline{\mathrm{CP}}_{1}$), buffered outputs from all four bit positions $\left(\mathrm{O}_{0}\right.$ to $\left.\mathrm{O}_{3}\right)$ and an active HIGH overriding asynchronous master reset input (MR). The counter advances on either the LOW to HIGH transition of the CP_{0} input if $\overline{\mathrm{CP}}_{1}$ is HIGH or the HIGH to

LOW transition of the $\overline{\mathrm{CP}}_{1}$ input if CP_{0} is low. Either CP_{0} or $\overline{\mathrm{CP}}_{1}$ may be used as the clock input to the counter and the other clock input may be used as a clock enable input. A HIGH on MR resets the counter (O_{0} to $\mathrm{O}_{3}=\mathrm{LOW}$) independent of $\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}$.
Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

Fig. 2 Pinning diagram.

HEF4520BP(N): 16-lead DIL; plastic (SOT38-1)
HEF4520BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF4520BT(D): 16-lead SO; plastic (SOT109-1)
(SOT109-1)
(): Package Designator North America

PINNING

$C P_{0 A}, C P_{0 B}$	clock inputs (L to H triggered)
$\overline{C P}_{1 A}, \overline{C P}_{1 B}$	clock inputs (H to L triggered)
$\mathrm{MR}_{A}, \mathrm{MR}_{B}$	master reset inputs
$\mathrm{O}_{0 A}$ to $\mathrm{O}_{3 A}$	outputs
$\mathrm{O}_{0 B}$ to $\mathrm{O}_{3 B}$	outputs

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications

FUNCTION TABLE
ω

$\mathbf{C P}_{0}$	$\overline{\mathbf{C P}}_{1}$	MR	MODE
$\boldsymbol{\Gamma}$	H	L	counter advances
L	\mathbf{L}	L	counter advances
\mathbf{L}	X	L	no change
X	$\boldsymbol{\Gamma}$	L	no change
$\boldsymbol{\Gamma}$	L	L	no change
H	\mathbf{L}	L	no change
\mathbf{X}	X	H	O_{0} to $\mathrm{O}_{3}=\mathrm{LOW}$

Notes
1． $\mathrm{H}=\mathrm{HIGH}$ state（the more positive voltage）
L＝LOW state（the less positive voltage）
$X=$ state is immaterial
$\digamma=$ positive－going transition
＝negative－going transition

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 110 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 220 \\ 100 \\ 80 \end{array}$	ns ns ns	$\begin{aligned} & 83 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLH }}$	$\begin{array}{r} 110 \\ 50 \\ 40 \\ \hline \end{array}$	$\begin{array}{r} \hline 220 \\ 100 \\ 80 \end{array}$	ns ns ns	$\begin{aligned} & 83 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{MR} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 75 \\ & 35 \\ & 25 \end{aligned}$	150 70 50	ns ns ns	$\begin{aligned} & 48 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 24 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 17 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {TLH }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} \hline 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Minimum CP_{0} pulse width; LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\mathrm{WCPL}}$	60 30 30 15 20 10		ns ns ns	see also waveforms Figs 4 and 5
Minimum $\overline{\mathrm{CP}}_{1}$ pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	twCPH	60 30 30 15 20 10		ns ns ns	
Minimum MR pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	twMRH	30 15 20 10 16 8		ns ns ns	
Recovery time for MR	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {RMR }}$	50 25 30 15 20 10		ns ns ns	
Set-up times $\mathrm{CP}_{0} \rightarrow \overline{\mathrm{CP}}_{1}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	50 25 30 15 20 10		ns ns ns	
$\overline{\mathrm{CP}}_{1} \rightarrow \mathrm{CP}_{0}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	50 25 30 15 20 10		ns ns ns	
Maximum clock pulse frequency	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{f}_{\text {max }}$	8 16 15 30 20 40		MHz MHz MHz	

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	\mathbf{V}_{DD}	TYPICAL FORMULA FOR $\mathbf{P}(\mu \mathbf{W})$	
Dynamic power	5	$850 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$3800 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$10200 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
			$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)
			$\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

Fig. 4 Waveforms showing recovery time for MR ; minimum $\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}$ and MR pulse widths.

Fig. 5 Waveforms showing set-up times for CP_{0} to $\overline{\mathrm{CP}}_{1}$ and $\overline{\mathrm{CP}}_{1}$ to CP_{0}, and propagation delays.

Fig. 6 Timing diagram.

