

Features

- 3.3V operating voltage
- Up to 120MSPS for 6-channel inputs
- 9-bit programmable gain amplifier
- 8-bit programmable offset
- 4-bit programmable line-clamping bias
- Internal voltage reference
- 3-wire serial control interface
- 48-pin LQFP-EP package

Applications

Currency Scanner Double Sided Scanners

General Description

The HT82V48 is a fully integrated, dual high performance 16-bit 3-channel 60MSPS analog signal processor for high-speed double-sided scanner applications.

Each channel consist a Sample and Hold Amplifier, a 9-bit Programmable Gain Amplifier and an 8-bit offset correction Digital to Analog Converter. The PGA and offset DAC are programmed independently allowing unique values of gain and offset for the two 3-channel analog inputs. Each of the 3-channel signals are routed to a 60MHz high performance analog-todigital converter.

For image sensor reference level stabilisation, the device also provide programmable line-clamping bias internally.

The internal registers are programmed through a 3-wire serial interface, which provides timing control, gain, offset and operating mode adjustments.

The device operates from a single 3.3V power supply with a typical power consumption of 925mW.

Block Diagram

Pin Assignment

Pin Description

Pin Name	I/O	Description				
DVDD1	Р	FE Digital Supply				
VSS1	Р	FE Digital Ground				
DVDD2	Р	ata Bus Digital Supply				
VSS2	Р	ata Bus Digital Ground				
AVDD1	Р	FE #1 Analog Supply				
AVSS1	Р	AFE #1 Analog Ground				
AVDD2	Р	AFE #2 Analog Supply				
AVSS2	Р	AFE #2 Analog Ground				
ADCK	DI	System Master Clock and ADC Sampling Clock				
SH	DI	Sample-Hold Clock				
CLP	DI	Clamping Interval				
SCK	DI	Serial Control Interface (SCI) Clock				
SD	DIO	SCI Data				
SEB	DI	SCI Enable, Active Low				
VIR1	AI	Analog Input , AFE #1 Channel R				
VIG1	AI	Analog Input , AFE #1 Channel G				
VIB1	AI	Analog Input , AFE #1 Channel B				
BIAS1	AIO	AFE #1 Bias Decoupling				
REFB1	AO	AFE #1 ADC Bottom Reference Voltage Decoupling				
REFT1	AO	AFE #1 ADC Top Reference Voltage Decoupling				
CML1	AO	AFE #1 Internal Bias Level Decoupling				
VIR2	AI	Analog Input , AFE #2 Channel R				
VIG2	AI	Analog Input , AFE #2 Channel G				
VIB2	AI	Analog Input , AFE #2 Channel B				
BIAS2	AIO	AFE #2 Bias Decoupling				
REFB2	AO	AFE #2 ADC Bottom Reference Voltage Decoupling				
REFT2	AO	AFE #2 ADC Top Reference Voltage Decoupling				
CML2	AO	AFE #2 Internal Bias Level Decoupling				

Pin Name	I/O	Description
OEB	DI	Output Data Enable, Active Low
D[15:8]	DO	Data Output
D[7:0]	DO	Data Output

Type: AI=Analog Input; AO=Analog Output; AIO=Analog In/out, DI=Digital Input; DO=Digital Output; DIO=Digital In/out, P=Power

Absolute Maximum Ratings

Supply VoltageV_ss-0.3V to $V_{\text{SS}}\text{+}4.3V$

Input Voltage	\dots Vss-0.3V to V _{DD} +0.3V
Analogue Supply Power	

Storage Temperature	50°C to 125°C
Operating Temperature	0°C to 70°C
Digital supply power	3.0V to 3.6V

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

						Ta=25°C	
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
Power Su	oply	·					
AVDD	Analogue Supply Power	—	3.0	3.3	3.6	V	
DVDD	Digital Supply Power	—	3.0	3.3	3.6	V	
Digital Inputs							
VIH	High level input voltage	—	0.7×DV _{DD}	_	_	V	
VIL	LOR level input voltage	—	—	_	0.2×DV _{DD}	V	
Ін	High level input current	_	_	—	1	μA	
I⊫	LOR level input current	—	—	_	1	μA	
Cı	Input capacitance	_	_	5		pF	
Digital Ou	Digital Outputs						
V _{OH}	High level output voltage	I _{OH} =1mA	DV _{DD} -0.5	—	—	V	
Vol	LOR level output voltage	I₀∟=1mA	_	_	0.5	V	
loz	High impedance output current	_	_		1	μA	

AVpp=DVpp=3.3V. AVss=DV	/ss=0V. Ta=25°C.	ADCK=60MHz unles	s otherwise stated.
	- <u>-</u>		

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
Overall sy	Overall system specification (including 16-bit ADC, PGA, Offset and SHA functions)						
	Maximum Conversion rate	_	—	60	_	MSPS	
		LOR=0; Max Gain	—	0.33	_	V _{P-P}	
	Full-scale input voltage range	LOR=0; Min Gain	—	3.03	_	V _{P-P}	
		LOR=1; Max Gain	—	0.20	_	V_{P-P}	
		LOR=1; Min Gain	—	1.82	_	V _{P-P}	
VIN	Input signal limits	—	AVss-0.3	_	AV _{DD} +0.3		
	Full-scale transition error	Gain=0dB	_	30	_	mV	

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	Zero-scale transition error	Gain=0dB		30	—	mV
DNL	Differential non-linearity	_	_	2	_	LSB
INL	Integral non-linearity	_	_	50	_	LSB
	Channel to channel gain matching	_	_	1.5	_	%
		Min Gain	_	30	_	LSBrms
	lotal output noise	Max Gain	_	300	_	LSB _{rms}
Reference	25	l	•			
V	Linner reference voltage	LOR=0	1.95	2.05	2.25	V
VRT	Opper reference voltage	LOR=1	_	1.85	_	V
N		LOR=0	0.95	1.05	1.25	V
VRB	LORer reference voltage	LOR=1	_	1.25	_	V
CML	Input return bias voltage	_	_	1.5	_	V
V	Differential reference voltage	LOR=0	0.90	1.0	1.10	V
VRTB	Differential reference voltage	LOR=1	_	0.6	_	V
Clamping	(CLP) DAC					
	Resolution	—	_	4	—	bits
V	Stop size	CRNG=0	—	0.173	—	Watan
VCSTEP	Step size	CRNG=1	_	0.11	—	v/step
V _{свот}	Output voltage at code 0h	—	—	0.4	—	V
V	Output voltage at eade Eh	CRNG=0	_	2.76	—	V
VCTOP	Output voltage at code FII	CRNG=1	_	2.05	—	v
DNL	Differential non-linearity	—	-0.5	—	+0.5	LSB
INL	Integral non-linearity	—	_	+/-1	—	LSB
Offset DA	C					
	Resolution			8		bits
	Step size	_		2.274	—	mV/step
		Code 0x00		-290	—	mV
		Code 0xFF		+290	—	mV
Programm	nable Gain Amplifier		1			1
	Resolution			9	—	bits
	Gain equation	—	0.67 + F	PGA[8:0] × 5	5.35/511	V/V
Gmax	Max gain, each channel			6.0	—	V/V
Gmin	Min gain, each channel	—		0.65	—	V/V
	Channel Matching	—	_	5	15	%
A/D Conve	erter		1		1	
	Resolution			16	—	bits
	Speed			60	—	MSPS
	Full-scale input range	LOR=0		2	—	V
		LOR=1	_	1.2	_	V
Digital Inp	buts					
VIH	High level input voltage	—	0.7×DV _{DD}		—	V
VIL	LOR level input voltage		-		0.2×DV _{DD}	V
Ін	High level input current	—	-		1	μA
l⊫	LOR level input current	—	-		1	μA
Cı	Input capacitance	—		5	—	pF
Digital Ou	tputs					

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{он}	High level output voltage	I _{OH} =1mA	DV _{DD} -0.5	_	_	V
Vol	LOR level output voltage	I₀∟=1mA	—	_	0.5	V
loz	High impedance output current	_	—	_	1	μA
Digital I/O	Pins					
Vih	Applied high level input voltage	_	0.7×DV _{DD}	_	_	V
VIL	Applied low level input voltage	_	—	_	0.2×DV _{DD}	V
Vон	High level output voltage	I _{он} =1mA	DV _{DD} -0.5			V
V _{OL}	Low level output voltage	I _{oL} =1mA			0.5	V
II.	Low level input current	—	_		1	μA
Ін	High level input current	_	—	_	1	μA
loz	High impedance output current	_	_	_	1	μA
Supply Cu	irrents					
	Total supply current	_	—	290	_	mA
	Analogue supply current	_	_	240	_	mA
	Digital supply current	_	—	50	_	mA
	Power down mode	_	—	400	—	μA

A.C. Characteristics

 $AV_{DD}=DV_{DD}=3.3V$, $AV_{SS}=DV_{SS}=0V$, Ta=25°C, ADCK=60MHz unless otherwise stated.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Clock Par	ameter					
t _{ADCK}	ADCK period	—	16.67	_	_	ns
DUTY	ADCK duty	_	45	50	55	%
t _{ssH}	SH setup time	—	0	_	4	ns
t _{нsн}	SH hold time	—	0		4	ns
t _{sн}	SH width	—		1/2		ADCK
Serial Control Interface						
t _{sscк}	SCK setup time	_	10	_	_	ns
t _{нscк}	SCK hold time	—	10	_	_	ns
t _{SSD}	SD setup time	—	10			ns
t _{HSD}	SD hold time	—	10	_	_	ns
t _{TSD}	SD transition time; input/output alternated	—	5			ns
Data Output						
t _{VD}	3-state to data valid	—	_	3	4	ns
t _{ZD}	Output enable high to 3-state	—	_	3	4	ns
t _{DD}	Data output propagation delay	_	_	8	10	ns
LAT	Output latency (Pipeline delay)	_	_	_	7	ADCK

Note: Parameters are measured at 50% of the rising/falling edge.

Functional Description

Introduction

The HT82V48 can sample up to two groups of three inputs, namely VIR1, VIG1, VIB1, VIR2, VIG2 and VIB2 simultaneously. After sampling the device then processes the sampled video signals with respect to an external reference level. Each processing channel consists of an input sampling block, a 4-bit programmable RLC DAC, an 8-bit programmable offset DAC and 9-bit Programmable Gain Amplifier. The ADC then converts each resulting analogue signal to a 16-bit digital word. The digital output from the ADC is then presented on an 8-bit or 16-bit wide bus. Internal control registers determine the configuration of the device, including the bias, offsets and gain applied on each channel. These registers are programmable via the devices' Serial Control Interface.

Internal Power-On-Reset Circuit

The internal POR Circuit power is supplied on AV_{DD} and is used to reset digital logic into a default state after power-up. The POR circuit is active from a voltage equal to $0.6V_{Typ.}$ of AV_{DD} and is released when the voltage reaches $1.2V_{Typ.}$ of AV_{DD} . (or $0.7V_{Typ.}$ of DV_{DD} if AV_{DD} powers up before DV_{DD}). When AV_{DD} or DV_{DD} returns to $0.6V_{Typ.}$ the POR will again reactive. To ensure the control registers contents are at their default values before carrying out any other register writes it is recommended that a software reset is issued each time the power is cycled.

Power Management

After the device is powered up, the register bit, PDNB, allows the device to be fully powered down when cleared to zero. Individual blocks can be powered down using the bits in System Setup Register 1.

References

The ADC reference voltages are derived from an internal bandgap reference and buffered to pins REFT and REFB, where they must be decoupled to ground. Pin CML is driven by a similar buffer and also requires decoupling. The output buffer from the CLP DAC also requires decoupling on pins BIAS1 and BIAS2.

S/H Processing

The video level is processed with respect to the voltage on pins BIAS1 and BIAS2. BIAS1 and BIAS2 voltage are sampled at the same time as SH samples the video level.

Bias and Clamping

External Bias

The S/H circuit reference levels are supplied by the BIAS1 and BIAS2 pins.

Internal Bias

The S/H circuit reference level is supplied by the CLP DAC when CDACB=1. The level is programmed by the CDAC[3:0] bits. The operation is shown in Figure 1.

Line Clamping

In situations where the input video signal does not have a stable reference level it may be necessary to clamp only when those pixels which have a known state (e.g. the dummy, or black pixels at the start or end of a line of most image sensors). Use the CLP pin to identify the black pixels and enable the clamp at the same time as when the input is being sampled (i.e. when SH is high and CLP is high). This mode is enabled by setting CLPEN=1. The operation is shown in Figure 2.

Analog Input Signal Sampling

There is only one S/H mode supported by the device. The ADCK:SH ratio is maintained at 3:1.

For AFE #1, VIR1, VIG1 and VIB1 video inputs are sampled at the same time and converted by a highspeed A/D converter to multiplexed digital data. The AFE #2 video inputs, VIR2, VIG2 and VIB2 are also sampled at the same time. The reference timing diagram is shown in Figure 3.

Output Formats

The device output can be presented in several different formats under control of the ODFM[1:0] register bits as shown in Figure 3.

The device supports 8-bit (ODFM[1:0]=[0,0]) resolution when AFE #1 and AFE #2 are operated at the same time during video signal processing. For DC level calibration, 16-bit resolution is enabled by setting ODFM[1:0] = [0, 1] or [1, 0] for AFE #1 or AFE #2.

Offset Adjust and Programmable Gain

An 8-bit Offset DAC is provided to compensate for offsets and then amplified by a 9-bit PGA. The gain and offset for each channel are independently programmable by control bits OSXY[7:0] and PGAXY[7:0].

ADC Input Black Level Adjust

The output from the PGA can be offset to match the full-scale range of the differential $ADC(2\times(V_{RT}-V_{RB}))$.

Serial Control Interface

SCK, SD and SEB are used both for register writing and reading. The R/WB bit for SD is used to determine whether the control is data write (R/WB=0) or data read (R/WB=1). The procedure is initiated on an SEB falling edge. For a register write, an address A[4:0] is clocked in through SD, followed by 2 dummy clocks and a data word D[7:0]. Each bit is latched on the SCK rising edge. The dummy clocks are used for internal address data latch and decoding.

For a register read-back operation, the SD address and dummy clocks are the same as for the register write procedure. Here SD will change from an input to an output port and send out an output data word D[7:0] on the SCK falling edge after the end of a dummy clock. Then SD will change from an output to an input port after an SEB rising edge.

Figure 1 Bias and Clamping Configuration

Figure 2 Clamping Operation

Where LB(or HB) denote low-byte(or high-byte), "R(or G, B)" denote channel R(or G, B), "1(or 2)" denote AFE #1(or #2), "L(or H)" denote low-byte (or high-byte) data and "n" denote pixel number.

Figure 3 S/H and Data Output Control Timing

Figure 4 Serial Control Interface Timing

Control Registers

Register Mapping

Here X denotse AFE #1 and AFE #2; Y denotse channel R, channel G and channel B

Address	Description	POR	D7	D6	D5	D4	D3	D2	D1	D0
00h	System Setup Register 1	07h	ODFN	И[1:0]	0	0	60M	AFE2B	AFE1B	PDNB
01h	AFE Setup Register 1	00h		CDA	C[3:0]		CLPEN	CRNG	CDACB	LOR
02h	AFE 1 CH P DCA goin	00h					PGA1R[7:	0]		
03h		00h				_	_			PGA1R[8]
04h	AFE 1 CH C DCA gain	00h					PGA1G[7:	:0]		
05h	AFE_1 CH_G FGA gain	00h				_	_			PGA1G[8]
06h	AFE 1 CH B BCA gain	00h					PGA1B[7:	0]		
07h		00h				_	_			PGA1B[8]
08h		00h	PGA2R[7:0]							
09h	AFE_2 CH_K FGA gain	00h	_						PGA2R[8]	
0Ah		00h	PGA2G[7:0]							
0Bh	AFE_2 CH_G FGA gain	00h				_	_			PGA2G[8]
0Ch		00h	PGA2B[7:0]							
0Dh	AFE_2 CH_B FGA yan	00h				_	_			PGA2B[8]
0Eh	AFE_1 CH_R Offset value	00h					OS1R[7:0	0]		
0Fh	AFE_1 CH_G Offset value	00h					OS1G[7:0)]		
10h	AFE_1 CH_B Offset value	00h					OS1B[7:0)]		
11h	AFE_2 CH_R Offset value	00h	OS2R[7:0]							
12h	AFE_2 CH_G Offset value	00h	OS2G[7:0]							
13h	AFE_2 CH_B Offset value	00h					OS2B[7:0)]		
14h	Reserved	50h								

Register Description

Register	Bit	Name	POR	Description					
	0	PDNB	1	0=fully power down 1=fully active					
	1	AFE1B	1	0=AFE #1 power down 1=AFE #1 active					
	2	AFE2B	1	0=AFE #2 power down 1=AFE #2 active					
System Setup Register 1	3	60M	0	Maximum operating speed 0=50Msps 1=60Msps					
	4	Reserved	0	—					
	5	Reserved	0	—					
	7:6	ODFM[1:0]	00b	Output data format 0,0=D[15:8] : AFE #2 high-byte data; D[7:0] : AFE #1 high-byte data 0,1=D[15:8] : AFE #1 high-byte data; D[7:0] : AFE #1 low-byte data 1,0=D[15:8] : AFE #2 high-byte data; D[7:0] : AFE #2 low-byte data					
	0	LOR	0	Reduces the ADC reference range 2×(V _{RT} - V _{RB}), thus changing the max/min input voltages. 0=ADC reference range=2V 1=ADC reference range=1.2V					
AFE Setup	1	CDACB	0	0=CLP DAC power down 1=CLP DAC active					
Register 1	2	CRNG	0	Sets CLP DAC output range 0=CLP DAC ranges from 0 to AVDD 1=CLP DAC ranges from 0 to V _{RT}					
	3	CLPEN	0	Enable clamping function. Clamping switch is controlled by CLP pin.					
	7:4	CDAC[3:0]	0	Controls CLP DAC driving BIAS1/BIAS2 pins to define voltage or clamping voltage.					
AFE #1 CH_R PGA gain	0 7·0	PGA1A[8] PGA1A[7 [.] 0]	0 00h	AFE #1 channel R PGA gain setting					
AFE #1 CH G	0	PGA1B[8]	0						
PGA gain	7:0	PGA1B[7:0]	00h	AFE #1 channel G PGA gain setting.					
AFE #1 CH B	0	PGA1C[8]	0						
PGA gain	7:0	PGA1C[7:0]	00h	AFE #1 channel B PGA gain setting.					
AFE #2 CH_R	0	PGA1A[8]	0	AFE #2 shannel P PCA gain setting					
PGA gain	7:0	PGA2A[7:0]	00h						
AFE #2 CH_G	0	PGA2B[8]	0	AFE #2 channel G PGA gain setting					
PGA gain	7:0	PGA2B[7:0]	00h						
AFE #2 CH_B	0	PGA2C[8]	0	AFE #2 channel B PGA gain setting.					
	7:0	PGA2C[7:0]	00h						
Offset value	7:0	OS1A[7:0]	00h	AFE #1 channel R offset DAC value.					
AFE_1 CH_G Offset value	7:0	OS1B[7:0]	00h	AFE #1 channel G offset DAC value.					
AFE_1 CH_B Offset value	7:0	OS1C[7:0]	00h	AFE #1 channel B offset DAC value.					
AFE_2 CH_R Offset value	7:0	OS2R[7:0]	00h	AFE #2 channel R offset DAC value.					
AFE_2 CH_G Offset value	7:0	OS2G[7:0]	00h	AFE #2 channel G offset DAC value.					
AFE_2 CH_B Offset value	7:0	OS2B[7:0]	00h	AFE #2 channel B offset DAC value.					
	3:0			Reserved					
Reserved	5:4	TEST0[1:0]	01b	Test Mode					
	7:6	TEST1[1:0]	01b	Test Mode					

Application Circuits

- Notes: 1. All decoupling capacitors should be located as close as possible to the HT82V48 AFE.
 - 2. AVSS and DVSS should be connected as close as possible to the HT82V48 AFE.
 - 3. Any exposed pads should be connected to DVSS.

Package Information

Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/</u> <u>Carton Information</u>.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- Packing Meterials Information
- Carton information

48-pin LQFP-EP (7mm×7mm) Outline Dimensions

Symbol	Dimensions in inch		
	Min.	Nom.	Max.
A	_	0.354 BSC	—
В	_	0.276 BSC	—
С	_	0.354 BSC	—
D	_	0.276 BSC	—
D2	0.079	_	_
E	_	0.020 BSC	—
E2	0.079	_	_
F	0.007	0.009	0.011
G	0.053	0.055	0.057
Н	—	—	0.063
I	0.002	—	0.006
J	0.018	0.024	0.030
K	0.004	_	0.008
α	0°	_	7°

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	_	9.00 BSC	—
В	—	7.00 BSC	—
С	—	9.00 BSC	—
D	_	7.00 BSC	—
D2	2.00	_	_
E	_	0.50 BSC	—
E2	2.00	—	—
F	0.17	0.22	0.27
G	1.35	1.40	1.45
Н	—	—	1.60
I	0.05	—	0.15
J	0.45	0.60	0.75
K	0.09		0.20
α	0°	_	7°

Copyright[©] 2020 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.