

DevKit8500D/A

Integrated with LCD, USB, CCD/COMS, Audio input/output, S-video, Ethernet, Serial port,

TF card interface based on 32-bit microcontroller

User Manual

 2

COPYRIGHT

 Devkit8500D/A, CAM8000-A, CAM8000-D, GPRS8000-S, GPS8000-S, WCDMA8000-U,

CDMA8000-U, WF8000-U, CAM8100-U, VGA8000 are trademarks of Embest Info&Tech

Co.,LTD.

 AM3715, DM3730 are trademarks of TI Corporation.

 Sourcery G++ Lite for ARM GNU/Linux is a trademark of Codesourcery.

 Microsoft, MS-DOS, Windows, Windows95, Windows98, Windows2000, Windows

embedded CE 6.0 are trademarks of Microsoft Corporation.

Important Notice

Embest has ownership and rights to the use of this Document.

Information in the Document is within the protection of copyright. Unless specifically

allowed, any part of this Document should not be modified, issued or copied in any manner

or form without prior written approval of Embest Info&Tech Co.,LTD.

 3

Version update records:

Rev Date Description

1.0 2011.6.20 Initial version

1.1 2011.8.5 Parts of contents have been amended to avoid

ambiguity

1.2 2011.10.24 Modified part of name from schematic

 4

Contact:

If you want to order products from Embest, please contact Marketing Department:

Tel: +86-755-25635656 / 25636285

Fax: +86-755-25616057

E-mail: market@embedinfo.com

If you want to get technical assistance from Embest, please contact Technical Assistance

Department:

Tel: +86-755-25503401

E-mail: support@embedinfo.com

URL: http://www.armkits.com

Address: Room 509, Luohu Science&Technology Building, #85 Taining Road, Shenzhen,

Guangdong, China (518020)

mailto:market@embedinfo.com
mailto:support@embedinfo.com
http://www.armkits.com/

 5

Contents

CHAPTER 1 OVERVIEW ... 9

1.1 PRODUCT INTRODUCTION .. 9

1.2 FEATURES .. 10

CHAPTER 2 HARDWARE SYSTEM ... 13

2.1 CPU ... 13

2.1.1 CPU Introduction .. 13

2.1.2 CPU Features .. 13

2.2 DESCRIPTION OF DIFFERENT IC BLOCKS .. 15

2.2.1 TPS65930 .. 15

2.2.2 MT29C4G96MAZAPCJA-5 .. 16

2.2.3 DM9000 .. 16

2.2.4 FE1.1 for USB 2.0 High Speed 4-Port Hub ... 16

2.2.5 TFP410 ... 17

2.2.6 MAX3232 ... 17

2.3 HARDWARE INTERFACE ... 18

2.3.1 Power Input Jack.. 18

2.3.2 Power Output Interface .. 19

2.3.3 Power Switch ... 19

2.3.4 S-VIDEO Interface ... 19

2.3.5 HDMI Interface ... 19

2.3.6 TFT_LCD Interface .. 20

2.3.7 AUDIO OUTPUT Jack .. 22

2.3.8 Camera Interface ... 22

2.3.9 MIC IN Jack .. 23

2.3.10 Keyboard Interface ... 24

2.3.11 Serial Ports ... 24

2.3.12 LAN Interface ... 25

2.3.13 USB OTG Interface .. 25

2.3.14 USB HOST Interface .. 26

 6

2.3.15 TF Card Interface ... 26

2.3.16 JTAG Interface ... 26

2.3.17 Expansion Interface ... 27

2.3.18 KEY .. 28

2.3.19 LED .. 28

CHAPTER 3 LINUX OPERATING SYSTEM ... 30

3.1 INTRODUCTION.. 30

3.2 SOFTWARE RESOURCES ... 30

3.3 SOFTWARE FEATURES .. 31

3.4 SYSTEM DEVELOPMENT .. 32

3.4.1 Establishing operating system, development environment ... 32

3.4.2 System compilation .. 33

3.4.3 System Customization ... 37

3.5 INTRODUCTION OF DRIVER ... 39

3.5.1 NAND ... 39

3.5.2 SD/MMC ... 40

3.5.3 Display interface... 41

3.5.4 Video capture ... 42

3.5.5 Audio in/out .. 44

3.6 DRIVER DEVELOPMENT ... 45

3.6.1 Driver For The gpio_keys ... 45

3.6.2 Driver for the gpio_leds .. 51

3.7 UPDATED OF SYSTEM .. 56

3.7.1 Update of TF card system image ... 56

3.7.2 Update of NAND Flash .. 60

3.8 INSTRUCTIONS .. 62

3.8.1 Various Tests senario ... 62

3.8.2 Demo .. 71

3.9 THE DEVELOPMENT OF APPLICATION ... 78

CHAPTER 4 WINCE OPERATING SYSTEM .. 80

 7

4.1 INTRODUCTION.. 80

4.2 SOFTWARE RESOURCES ... 80

4.3 FEATURES .. 81

4.4 SYSTEM DEVELOPMENT .. 82

4.4.1 Installation of IDE(Integrated Development Environment) .. 82

4.4.2 Extract BSP and project files to IDE .. 83

4.4.3 Sysgen & BSP compile .. 84

4.4.4 Introduction of driver .. 84

MICROSOFT VISUAL STUDIO 2005-> .. 86

4.5 UPDATE SYSTEM IMAGE .. 87

4.5.1 Update TF card Image ... 87

4.5.2 Update Nand flash Image .. 89

4.6 INSTRUCTIONS FOR USE .. 90

4.6.1 How to use S-Video interface .. 90

4.6.2 How to use openGL ES demo ... 90

4.6.3 How to use CAM8000-A module .. 90

4.6.4 How to use CAM8000-D module ... 91

4.7 THE DEVELOPMENT OF APPLICATION .. 91

4.7.1 Application program interfaces and examples ... 91

4.7.2 GPIO application program interfaces and examples ... 92

APPENDIX ... 95

APPENDIX I HARDWARE DIMENSIONS ... 95

APPENDIX II THE INSTALLATION OF UBUNTU .. 96

APPENDIX III DRIVER INSTALLATION OF LINUX USB ETHERNET/RNDIS GADGET 109

APPENDIX IV LINUX BOOT DISK FORMAT .. 112

APPENDIX V THE SETUP OF TFTP SERVER .. 118

APPENDIX VI WINCE SOURCE .. 120

TECHNICAL SUPPORT & WARRANTY SERVICE .. 121

TECHNICAL SUPPORT SERVICE .. 121

 8

MAINTENANCE SERVICE CLAUSE .. 122

BASIC NOTICE TO PROTECT AND MAINTENANCE LCD .. 123

VALUE ADDED SERVICES ... 123

 9

Chapter 1 Overview

1.1 Product introduction

DevKit8500D/A is based on TI DM3730/AM3715 processor. The processor integrates ARM

Cortex™-A8 kernel at 1GHz and DSP core (DM3730 only) running at 800MHz with high-level

digital signal processing functions, and provides rich peripheral interfaces. DevKit8500D/A

expands LAN port, S-VIDEO interface, audio input/output interface, USB, TF interface, serial port,

SPI interface, IIC interface, JTAG interface, CAMERA interface, TFT interface, touch screen

interface, keyboard interface and HDMI interface.

DevKit8500D/A can be used in the following applications:

 Portable Data Terminals

 Navigation

 Auto Infotainment

 Gaming

 Medical Equipment

 Home Automation

 Human Interface

 Industrial Control

 Test and Measurement

 Single board Computers

 10

DevKit8500D/A function module chart: (See Figure 1.1)

Figure 1.1

1.2 Features

DevKit8500D/A evaluation board is based on DM3730/AM3715 processor and it integrates all the

functions and features of this IC’s. The features of this board are as follows:

Mechanical Parameters

 Working temperature: -30°C ~ 70°C

 Humidity Range: 20% ~ 90%

 Dimensions: 136.2mm*105.3mm

 Input Voltage: +5V

Processor

 1GHz ARM Cortex™-A8 Core

 800-MHz TMS320C64x+™ DSP Core (DM3730 only)

 NEON™ SIMD Coprocessor

 POWERVR SGX™ Graphics Accelerator

 ARM: 32 KB I-Cache; 32 KB D-Cache; 256KB L2 Cache

 On Chip: 64KB RAM; 32KB ROM

Memory

 11

 512MB 32bit DDR SDRAM

 512MB 16bit NAND Flash

 2GB 4bit iNAND (Default: not soldered, optional, reserved for soldering)

Audio/Video Interfaces

 An S-VIDEO interface

 An HDMI (DVI-D) interface

 An audio input interface (3.5mm audio jack)

 A two-channel audio output interface (3.5mm audio jack)

LCD/Touch screen

 RGB, 24 bit colors

 Resolution up to 2048*2048

 4 line Touch Screen

Data Transfer Interface

 Serial port:

 UART1, 5 line serial port, TTL based voltage

 UART2, 5 line serial port, TTL based voltage

 UART3, 5 line serial port, RS232 based voltage

 USB port:

 1 x USB2.0 OTG, High-speed, 480Mbps

 4 x USB2.0 HOST, High-speed, 480Mbps

 TF card interface

 10/100Mbps Ethernet Interface (RJ45 jack)

 1 channel McSPI Interface (Multichannel Serial Port Interface)

 1 channel McBSP interface (Multi-Channel Buffered Serial Port)

 1 channel I2C interface

 1 channel HDQ interface (HDQ/1-Wire)

Input Interface

 1 channel Camera interface (Support CCD or CMOS camera)

 6*6 keyboard interface

 14-pin JTAG interface

 4 buttons (2 USER buttons, 1 RESET button, 1 ON/OFF button)

 12

LED

 1 Power LED

 2 System LEDs

 2 User LEDs

 4 USB Host LEDs

 1 USB Hub LED

 13

Chapter 2 Hardware System

2.1 CPU

2.1.1 CPU Introduction

As a high-performance processor for enhanced digital media, DM37x/AM37x employs TI 45nm

advanced industrial technology; this architecture has the advantage of low power consumption at

the same time of being designed for ARM and graphical demonstration.

The Texas Instruments’ DM3730 DaVinci™ digital media processor is powered by up to 1-GHz

(also supports 300, 600, and 800-MHz operation) ARM Cortex-A8 and 800-MHz (also supports

250, 520 and 660-MHz operation) C64x+ DSP core, and has integrated 3D graphics processor,

imaging and video accelerator (IVA), USB 2.0, MMC/SD memory card, UART and many more.

DaVinci DM3730 video processor is pin-to-pin compatible with Sitara AM37x devices and software

compatible with the OMAP35x processors. The C64x+ DSP and hardware video accelerator

enable audio and HD 720p video decoding and encoding independent of the ARM processor. The

programmable DSP engine allows multiple signal processing tasks such as image processing and

analysis, digital filtering, and math functions. DaVinci DM3730 video processor is suitable for 720p

HD (High Definition) video applications which require large amount of data processing.

2.1.2 CPU Features

Clock

The CPU clock includes sys_32k, sys_altclk, sys_clkout1, sys_clkout2, sys_xtalout, sys_xtalin,

sys_clkreq.

The sys_32k 32-kHz clock is used for low frequency operation. It supplies the wake-up domain

signals for operating in lowest power mode (off mode). This clock is provided through the sys_32k

pin. The 32-kHz is generated by power management.

The sys_xtalin / sys_xtalout system input clock (26 MHz) is used to generate the main source

clock for the device. It supplies the DPLLs as well to several other modules.

 14

Reset

The function of reset is decided by the SYS_NRESPWRON signal on the CPU, Reset is enabled

when LOW level signal (high to low) is given.

General-Purpose Interface

The general-purpose interface combines six general-purpose input/output (GPIO) banks.

Each GPIO bank provides 32 dedicated general-purpose pins with input and output capabilities;

thus, it supports up to 192 (6 x 32) general-purpose interface pins.

These pins can be configured for the following applications:

 Data input (capture)/output (drive)

 Keyboard interface with a debounce cell

 Interrupt generation in active mode when external events are detected.

Display Subsystem

The display subsystem provides the logic to display a video frame from the memory frame buffer

(either SDRAM or SRAM) on a liquid-crystal display (LCD) panel or a TV set. The display

subsystem integrates the following elements:

 Display controller (DISPC) module

 Remote frame buffer interface (RFBI) module

 Display serial interface (DSI) complex I/O module and a DSI protocol engine

 DSI PLL controller that drives a DSI PLL and high-speed (HS) divider.

 NTSC/PAL video encoder

The display controller and the DSI protocol engine are connected to the L3 and L4 interconnect;

the RFBI and the TV out encoder modules are connected to the L4 interconnect.

2D/3D Graphics Accelerator

The 2D/3D graphics accelerator (SGX) subsystem accelerates 2-dimensional (2D) and

3-dimensional (3D) graphics applications. The SGX subsystem is based on the POWERVR® SGX

core from Imagination Technologies. SGX is a new generation of programmable POWERVR

graphic cores. The POWERVR SGX530 v1.2.5 architecture is scalable and can target all market

segments from mainstream mobile devices to high-end desktop graphics. Targeted applications

 15

include feature phone, PDA, and hand-held games. (see Figure 2.1.1)

The SGX graphics accelerator can simultaneously process various multimedia data types:

 Pixel data

 Vertex data

 Video data

 General-purpose processing

This is achieved through a multithreaded architecture using two levels of scheduling and data

partitioning enabling zero-overhead task switching.

2.2 Description of different IC blocks

2.2.1 TPS65930

The TPS65930 devices are power-management ICs for OMAP™ and other mobile applications.

The devices include power-management, a universal serial bus (USB) high-speed (HS)

transceiver, light-emitting diode (LED) drivers, an analog-to-digital converter (ADC), a real-time

clock (RTC), and embedded power control (EPC). In addition, the TPS65930 includes a full audio

codec with two digital-to-analog converters (DACs) and two ADCs to implement dual voice

 16

channels, and a stereo downlink channel that can play all standard audio sample rates through a

multiple format inter-integrated sound (I2S™)/time division multiplexing (TDM) interface.

TPS65930（U1）is communicated with CPU through I2C protocol, the main function of this is to

provide 1.2V and 1.8V to CPU, to make CPU run normally. Besides, TPS65930 also has functions

of Audio in, Audio out, OTG PHY, Keyboard, ADC and GPIO.

2.2.2 MT29C4G96MAZAPCJA-5

As the storage chip of DevKit8500D/A, MT29C4G96MAZAPCJA-5 is a memory device used for

storage, it is integrated with NAND Flash and SDRAM DDR, its memory size is 512MB. NAND

Flash realizes data access through GPMC bus, while DDR realizes data access through SDRAM

Controller（SDRC）.

2.2.3 DM9000

The DM9000A is a fully integrated and cost-effective low pin count single chip Fast Ethernet

controller with a general processor interface, a 10/100M PHY and 4K Dword SRAM. It is designed

with low power and high performance process that support 3.3V with 5V IO tolerance.

DevKit8500D/A uses 10/100M adaptive network interface of DM9000, in which, the 10/100M

Ethernet module is built-in and is compatible to IEEE 802.3 standard protocol. The cable interface

is a standard RJ45, with a connection indicator and a transmission indicator.

DevKit8500D/A can be connected to network hub through a direct cable, also can be directly

connected with a computer through a crossover cable.

2.2.4 FE1.1 for USB 2.0 High Speed 4-Port Hub

The FE1.1 is a highly integrated, high quality, high performance, low power consumption, yet low

cost solution for USB 2.0 High Speed 4-Port Hub.

It adopts Multiple Transaction Translator (MTT) architecture to explore the maximum possible

throughput. Six, instead of two, non-periodic transaction buffers are used to minimize potential

traffic jamming.

FE1.1 is link out the 4 channel USB interface via the USB3320, share one channel 480Mbps as

four channel 120Mbps. Support High-Speed (480MHz), Full-Speed (12MHz), and Low-Speed

(1.5MHz) modes.

 17

2.2.5 TFP410

The TFP410 is a Texas Instruments PanelBus flat panel display product, part of a comprehensive

family of end-to-end DVI 1.0-compliant solutions, targeted at the PC and consumer electronics

industry.

The TFP410 provides a universal interface to allow a glue-less connection to most commonly

available graphics controllers. Some of the advantages of this universal interface include

selectable bus widths, adjustable signal levels, and differential and single-ended clocking. The

adjustable 1.1-V to 1.8-V digital interface provides a low-EMI, high-speed bus that connects

seamlessly with 12-bit or 24-bit interfaces. The DVI interface supports flat panel display

resolutions up to UXGA at 165 MHz in 24-bit true color pixel format.

2.2.6 MAX3232

The function of MAX3232 is mainly to translate TTL logic level signal into RS232 logic level, which

helps in communicating the board with PC.

DevKit8500D/A uses UART3 as debugging serial port; as the default voltage of UART3 is 1.8V, it

is necessary to convert this voltage to 3.3V in order to connect to eternal world.

 18

2.3 Hardware interface

Figure 2.3 DevKit8500D/A Hardware Interface Diagram

The following section gives in detail about the pin numbers and its function description of various

different IC’s blocks present in DevKit8500D/A.

2.3.1 Power Input Jack

J19

Pin Signal Function

1 GND GND

2 +5V Power supply (+5V) 2A (Type)

Table 2-3-1 power input interface

 19

2.3.2 Power Output Interface

J4

Pin Signal Function

1 VDD50 5V output

2 NC NC

3 VDD33 3.3V output

4 ADCIN ADC input

5 GND GND

Table 2-3-2 power output interface

2.3.3 Power Switch

SW1

Pin Signal Function

1 DC IN VDD Input

2 VDD50 +5V

3 NC NC

Table 2-3-3 power switch

2.3.4 S-VIDEO Interface

J4

Pin Signal Function

1 GND GND

2 GND GND

3 OUTPUT1 VIDEO Y

4 OUTPUT2 VIDEO C

Table 2-3-4 S-VIDEO interface

2.3.5 HDMI Interface

J12

 20

Pin Signal Function

1 DAT2+ TMDS data 2+

2 DAT2_S TMDS data 2 shield

3 DAT2- TMDS data 2-

4 DAT1+ TMDS data 1+

5 DAT1_S TMDS data 1 shield

6 DAT1- TMDS data 1-

7 DAT0+ TMDS data 0+

8 DAT0_S TMDS data 0 shield

9 DAT0- TMDS data 0-

10 CLK+ TMDS data clock+

11 CLK_S TMDS data clock shield

12 CLK- TMDS data clock-

13 CEC Consumer Electronics Control

14 NC NC

15 SCL IIC master serial clock

16 SDA IIC serial bidirectional data

17 GND GND

18 5V 5V

19 HPLG Hot plug and play detect

Table 2-3-5 HDMI interface

2.3.6 TFT_LCD Interface

J12

Pin Signal Function

1 DSS_D0 LCD Pixel data bit 0

2 DSS_D1 LCD Pixel data bit 1

3 DSS_D2 LCD Pixel data bit 2

4 DSS_D3 LCD Pixel data bit 3

5 DSS_D4 LCD Pixel data bit 4

6 DSS_D5 LCD Pixel data bit 5

7 DSS_D6 LCD Pixel data bit 6

 21

8 DSS_D7 LCD Pixel data bit 7

9 GND GND

10 DSS_D8 LCD Pixel data bit 8

11 DSS_D9 LCD Pixel data bit 9

12 DSS_D10 LCD Pixel data bit 10

13 DSS_D11 LCD Pixel data bit 11

14 DSS_D12 LCD Pixel data bit 12

15 DSS_D13 LCD Pixel data bit 13

16 DSS_D 14 LCD Pixel data bit 14

17 DSS_D15 LCD Pixel data bit 15

18 GND GND

19 DSS_D16 LCD Pixel data bit 16

20 DSS_D17 LCD Pixel data bit 17

21 DSS_D18 LCD Pixel data bit 18

22 DSS_D19 LCD Pixel data bit 19

23 DSS_D20 LCD Pixel data bit 20

24 DSS_D21 LCD Pixel data bit 21

25 DSS_D22 LCD Pixel data bit 22

26 DSS_D23 LCD Pixel data bit 23

27 GND GND

28 DEN AC bias control (STN) or pixel data enable (TFT)

29 HSYNC LCD Horizontal Synchronization

30 VSYNC LCD Vertical Synchronization

31 GND GND

32 CLK LCD Pixel Clock

33 GND GND

34 X+ X+ Position Input

35 X- X- Position Input

36 Y+ Y+ Position Input

37 Y- Y- Position Input

38 SPI_CLK SPI clock

39 SPI_MOSI Slave data in, master data out

 22

40 SPI_MISO Slave data out, master data in

41 SPI_CS SPI enable

42 IIC_CLK IIC master serial clock

43 IIC_SDA IIC serial bidirectional data

44 GND GND

45 VDD18 1.8V

46 VDD33 3.3V

47 VDD50 5V

48 VDD50 5V

49 RESET Reset

50 PWREN Power on enable

Table 2-3-6 TFT_LCD interface

2.3.7 AUDIO OUTPUT Jack

J7

Pin Signal Function

1 GND GND

2 NC NC

3 Right Right output

4 NC NC

5 Left Left output

Table 2-3-7 Audio out interface

2.3.8 Camera Interface

J14

Pin Signal Function

1 GND GND

2 D0 Digital image data bit 0

3 D1 Digital image data bit 1

4 D2 Digital image data bit 2

5 D3 Digital image data bit 3

6 D4 Digital image data bit 4

 23

7 D5 Digital image data bit 5

8 D6 Digital image data bit 6

9 D7 Digital image data bit 7

10 D8 Digital image data bit 8

11 D9 Digital image data bit 9

12 D10 Digital image data bit 10

13 D11 Digital image data bit 11

14 GND GND

15 PCLK Pixel clock

16 GND GND

17 HS Horizontal synchronization

18 VDD50 5V

19 VS Vertical synchronization

20 VDD33 3.3V

21 XCLKA Clock output a

22 XCLKB Clock output b

23 GND GND

24 FLD Field identification

25 WEN Write Enable

26 STROBE Flash strobe control signal

27 SDA IIC master serial clock

28 SCL IIC serial bidirectional data

29 GND GND

30 VDD18 1.8V

Table 2-3-8 camera interface

2.3.9 MIC IN Jack

J6

Pin Signal Function

1 GND GND

2 NC NC

3 MIC MAIN P Right input

 24

4 NC NC

5 MIC MAIN N Left input

Table 2-3-9 MIC IN interface

2.3.10 Keyboard Interface

J5

Pin Signal Function

1 KC0 Keypad matrix column 0 output

2 KR0 Keypad matrix row 0 input

3 KC1 Keypad matrix column 1 output

4 KR1 Keypad matrix row 1 input

5 KC2 Keypad matrix column 2 output

6 KR2 Keypad matrix row 2 input

7 KC3 Keypad matrix column 3 output

8 KR3 Keypad matrix row 3 input

9 KC4 Keypad matrix column 4 output

10 KR4 Keypad matrix row 4 input

11 KC5 Keypad matrix column 5 output

12 KR5 Keypad matrix row 5 input

13 VDD18 1.8V

14 GND GND

Table 2-3-10 keyboard interface

2.3.11 Serial Ports

J15

Pin Signal Function

1 NC NC

2 RXD Receive data

3 TXD Transit data

4 NC NC

5 GND GND

 25

6 NC NC

7 RTS Request To Send

8 CTS Clear To Send

9 NC NC

Table 2-3-11 serial port

2.3.12 LAN Interface

J13

Pin Signal Function

1 TX+ TX+ output

2 TX- TX- output

3 RX+ RX+ input

4 VDD25 2.5V Power for TX/RX

5 VDD25 2.5V Power for TX/RX

6 RX- RX- input

7 NC NC

8 NC NC

9 VDD 3.3V Power for LED

10 LED1 Speed LED

11 LED2 Link LED

12 VDD 3.3V Power for LED

Table 2-3-12 LAN interface

2.3.13 USB OTG Interface

J16

Pin Signal Function

1 VBUS +5V

2 DN USB Data-

3 DP USB Data+

4 ID USB ID

5 GND GND

Table 2-3-13 USB OTG interface

 26

2.3.14 USB HOST Interface

J17

Pin Signal Function

1 VBUS +5V

2 DN USB Data-

3 DP USB Data+

4 ID USB ID

Table 2-3-14 USB HOST interface

2.3.15 TF Card Interface

J3

Pin Signal Function

1 DAT2 Card data 2

2 DAT3 Card data 3

3 CMD Command Signal

4 VDD VDD

5 CLK Clock

6 VSS VSS

7 DAT0 Card data 0

8 DAT1 Card data 1

9 CD Card detect

Table 2-3-15 TF interface

2.3.16 JTAG Interface

J2

Pin Signal Function

1 TMS Test mode select

2 NTRST Test system reset

3 TDI Test data input

4 GND GND

5 VIO 1.8V

6 NC NC

7 TDO Test data output

8 GND GND

 27

9 RTCK Receive test clock

10 GND GND

11 TCK Test clock

12 GND GND

13 EMU0 Test emulation 0

14 EMU1 Test emulation 1

Table 2-3-16 JTAG interface

2.3.17 Expansion Interface

J8

Pin Signal Function

1 GND GND

2 BSP1_DX Transmitted serial data 1

3 BSP1_DR Received serial data 1

4 BSP1_CLK

R

Received clock 1

5 BSP1_FSX Transmit frame synchronization 1

6 BSP1_CLK

X

Transmit clock 1

7 BSP1_CLK

S

External clock input 1

8 BSP1_FSR Receive frame synchronization 1

9 UART1_CT

S

UART1 clear to send

10 UART1_RT

S

UART1 request to send

11 UART1_RX UART1 receive data

12 UART1_TX UART1 transmit data

13 GND GND

14 GPIO_136 GPIO_136

15 GPIO_126 GPIO_126

16 GPIO_137 GPIO_137

17 GPIO_129 GPIO_129

18 GPIO_138 GPIO_138

19 GPIO_55 GPIO_55

20 GPIO_139 GPIO_139

21 GPIO_56 GPIO_56

22 GPIO_61 GPIO_61

23 GPIO_65 GPIO_65

24 BSP3_DX Transmitted serial data 3

25 BSP3_DR Received serial data 3

 28

26 BSP3_CLK

X

Transmit clock 3

27 BSP3_FSX Transmit frame synchronization 3

28 GND GND

29 IIC3_SCL IIC3 master serial clock

30 IIC3_SDA IIC3 serial bidirectional data

31 SPI1_SIMO Slave data in, master data out

32 SPI1_SOMI Slave data out, master data in

33 SPI1_CLK SPI1 clock

34 SPI1_CS0 SPI enable 0

35 SPI1_CS3 SPI enable 3

36 HDQ_SIO Bidirectional HDQ

37 VDD33 3.3V

38 VDD18 1.8V

39 VDD50 5V

40 GND GND

Table 2-3-17 expansion interface

2.3.18 KEY

J8

Pin Signal Function

1 ON/OFF System ON/OFF key

2 RESET System reset key

3 USER1 User-defined key 1

4 USER2 User-defined key 2

Table 2-3-18 KEY

2.3.19 LED

LED 1-10

Pin Signal Function

LED1 3V3 3.3V power indicator

LED 2 SYS System LED

LED 3 LEDB System LED

LED 4 LED1 User-defined key 1

LED 5 LED2 User-defined key 2

 29

LED 6 USB1 USB indicator 1

LED 7 USB2 USB indicator 2

LED 8 USB3 USB indicator 3

LED 9 USB4 USB indicator 4

LED 10 HUB USB HUB indicator

Table 2-3-19 LED

 30

Chapter 3 Linux Operating System

3.1 Introduction

This section is intended to provide detailed instruction on Operating System Software

development of DevKit8500D/A board.

1) Describes the Software Resources provided by DevKit8500D/A.

2) Describes the software feature.

3) Explains the software Development including how to set up the development environment, the

building guidance of the boot loader, kernel and file system, and the development of device driver.

4) Provides flashing methods using boot loader commands.

5) Shows the usage of DevKit8500D/A

6) Shows the application development.

In this part, it is suggested to:

1) Install Ubuntu Linux in advance, please refer to Appendix II for details;

2） Master relative embedded Linux development technology.

3.2 Software Resources

This chapter provides an overview of software system components of DevKit8500D/A. A basic

software system consists of four parts: x-loader, u-boot, kernel and rootfs. The Figure 3.2.1 shows

the structure of the system:

Figure 3.2.1

Features and functions of each part of the system are given below:

 31

1) X-loader is a first level bootstrap program. After the system start-up, the ROM inside the CPU

will copy the x-loader to internal RAM and perform its routine work. Its main function is to initialize

the CPU, copy u-boot into the memory and give the control to u-boot;

2) U-boot is a second level bootstrap program. It is used for interacting with users and updating

images and leading the kernel;

3) The latest 2.6.x kernel is employed here and it can be customized based on DevKit8500D/A;

4) Rootfs employs Open-source system. It is small in capacity and powerful, very suitable for

embedded systems;

3.3 Software Features

Item Note

BIOS

x-loader

NAND / ONENAND

MMC/SD

FAT

u-boot

NAND / ONENAND

MMC/SD

FAT

NET

Kernel Linux-2.6.x
Supports ROM/CRAM/EXT2/EXT3/FAT/NFS/

JFFS2/UBIFS and various file systems

Device Driver

Serial Series driver

Rtc Hardware clock driver

Net 10/100M Ethernet card DM9000 driver

Flash nand flash driver (supports nand boot)

LCD TFT LCD driver

Touch

screen
Touch screen controller ads7846 driver

mmc/sd mmc/sd controller driver

usb otg
usb otg 2.0 driver (can be configured as slave

device currently)

 32

usb ehci usb ehci driver

Dvi Supports dvi-d signal output

s-video Supports s-video signal output

Audio Audio driver

Camera Camera driver

Keypad 6x6 matrix keyboard driver

Led User led lamp driver

Demo
Android android 2.2 system

DVSDK DVSDK 4_00_00_22

Table 3-3-1

3.4 System Development

3.4.1 Establishing operating system, development environment

Before executing software development on DevKit8500D/A, the user has to establish a Linux

cross development environment and install it in computer. How to establish a cross development

environment will be introduced below by taking Ubuntu operating system as an example.

3.4.1.1 Installation of cross compilation tools

Installation of cross compilation tools is done by using the software CD provided along with this kit,

to start the process insert the CD and allow it for auto run, Ubuntu will mount the disc under the

directory /media/cdrom, the cross compilation tools are saved under the directory

/media/cdrom/linux/tools.

The following instructions are executed at the Ubuntu terminal to decompress the cross

compilation tools under the directory /home/embest:

cd /media/cdrom/linux/tools

tar xvf arm-eabi-4.4.0.tar.bz2 -C /home/embest

tar xvf arm-2007q3.tar.bz2 -C /home/embest

Some of the other development tools used for source code compilation are present in the directory

linux/tools of the disc; the user can execute the following commands to copy them to local folder:

mkdir /home/embest/tools

 33

cp /media/cdrom/linux/tools/mkimage /home/embest/tools

cp /media/cdrom/linux/tools/signGP /home/embest/tools

cp /media/cdrom/linux/tools/mkfs.ubifs /home/embest/tools

cp /media/cdrom/linux/tools/ubinize /home/embest/tools

cp /media/cdrom/linux/tools/ ubinize.cfg /home/embest/tools

It is defaulted to install it under the user directory that is subject to

/home/embest in the text; the user can change it to his directory properly.

3.4.1.2 Addition of environment variables

After all above tools are installed, it is necessary to use the following commands to add them in the

temporary environment variables:

export PATH=/home/embest/arm-eabi-4.4.0/bin:/home/embest/tools:$PATH

3.4.2 System compilation

3.4.2.1 Preparation

Source codes of all components of the system are under the directory linux/source in the disc;

user has to decompress them to the Ubuntu system before executing development:

mkdir /home/embest/work

cd /home/embest/work

tar xvf /media/cdrom/linux/source/x-loader-03.00.02.07.tar.bz2

tar xvf /media/cdrom/linux/source/u-boot-03.00.02.07.tar.bz2

tar xvf /media/cdrom/linux/source/linux-2.6.32-devkit8500.tar.bz2

tar xvf

/media/cdrom/linux/demo/Android/source/rowboat-android-froyo-devkit8500.tar.bz2

sudo tar xvf /media/cdrom/linux/source/rootfs.tar.bz2

The user can write it in the .barsrc file under the user directory, such that

the addition of environment variables will be finished automatically when

the system is booted; command echo $PATH can be used to check the

path.

 34

When the above steps are finished, the current directory will generate linux-2.6.32-devkit8500,

u-boot-03.00.02.07, x-loader-03.00.02.07, rootfs and rowboat-android-froyo-devkit8500

directories.

3.4.2.2 X-loader image generation

DevKit8500 supports TF Card boot or NAND boot. The burned x-loader image files are different

with the different boot modes, and the corresponding methods for mapping are different too.

We will introduce the generation of x-loader image file under different boot modes.

1) To generate x-loader image file MLO used for SD card start-up

cd x-loader-03.00.02.07

make distclean

make devkit8500_config

make

signGP x-load.bin

mv x-load.bin.ift MLO

When the above steps are finished, the current directory will generate the file MLO which we need.

2) To generate the x-load.bin.ift_for_NAND start-up

To alter the file x-loader-03.00.02.07/include/configs/devkit8500.h and annotate the following:

vi x-loader-03.00.02.07/include/configs/devkit8500.h

// #define CONFIG_MMC 1

Cross compilation:

cd x-loader-03.00.02.07

make distclean

make devkit8500_config

make

signGP x-load.bin

mv x-load.bin.ift x-load.bin.ift_for_NAND

When the above steps are finished, the current directory will generate the file

x-load.bin.ift_for_NAND which we need.

3.4.2.3 U-boot image generated

cd u-boot-03.00.02.07

 35

make distclean

make devkit8500_config

make

When the above steps are finished, the current directory will generate the file u-boot.bin which we

need.

3.4.2.4 Kernel compilation

Before kernel compilation, the user has to select correct display according to the customize menu

of kernel:

For Linux system, the output operation is as follows:

cd linux-2.6.32-devkit8500

make distclean

make devkit8500_defconfig

make uImage

For Android system, the iutput operation is as follows:

cd linux-2.6.32-devkit8500

make distclean

make devkit8500_android_defconfig

make menuconfig

If an error occurs in the system when make menuconfig is input, it is

necessary to install ncurse in the Ubuntu system; ncurse library is a

character graphic library, used for make menuconfig of kernel; the specific

installation instruction is:

sudo apt-get install ncurses-dev

Enter the kernel customize menu now, enter “PANEL_TYPE” according to the following pointing

paths:

 36

Select under “PANEL_TYPE” according to actually displayed screen size:

After determining “PANEL_TYPE”, jump to parent directory, select “Exit” to exit, until the following

picture appears, then select “Yes”:

make uImage

After above operations are executed, the required uImage file will be generated under the

directory arch/arm/boot.

3.4.2.5 Generation of file system

1) Ramdisk file making

For Ramdisk making, please refer to http://he3.dartmouth.edu/old/VME-Linux/RamDisk.html.

It will not be described in this document.

2) UBI file making

cd /home/embest/work

sudo /home/embest/tools/mkfs.ubifs -r rootfs -m 2048 -e 129024 -c 1996 -o ubifs.img

http://he3.dartmouth.edu/old/VME-Linux/RamDisk.html

 37

sudo /home/embest/tools/ubinize -o ubi.img -m 2048 -p 128KiB -s 512

/home/embest/tools/ubinize.cfg

After above operations are executed, the required ubi.img file will be generated under the current

directory.

3.4.2.6 Android compilation

1) Input the following commands to compile Android:

cd rowboat-android-froyo-devkit8500

make

2) Modified script file build_ubi.sh:

vi build_ubi.sh

Changed “/home/embest” as “$HOME”:

MKFSUBI=/home/embest/tools/mkfs.ubifs

MKFSUBI_ARG="-r ${ROOT_DIR} -m 2048 -e 129024 -c 4063 -o temp/ubifs.img"

UBINIZE=/home/embest/tools/ubinize

UBINIZECFG=/home/embest/tools/ubinize.cfg

UBINIZE_ARG="-o ubi.img -m 2048 -p 128KiB -s 512 ${UBINIZECFG}"

Modified as:

MKFSUBI=$HOME/tools/mkfs.ubifs

MKFSUBI_ARG="-r ${ROOT_DIR} -m 2048 -e 129024 -c 4063 -o temp/ubifs.img"

UBINIZE=$HOME/tools/ubinize

UBINIZECFG=$HOME/tools/ubinize.cfg

UBINIZE_ARG="-o ubi.img -m 2048 -p 128KiB -s 512 ${UBINIZECFG}"

3) Input the following commands to build file system:

./build_ubi.sh

File ubi.img will output under the folder out/target/product/devkit8500/rootfs.

3.4.3 System Customization

As Linux kernel has many kernel configuration options, the user can increase or reduce the driver

or some kernel features based on the default configuration to meet the demands in better ways.

The general process of system customization will be described with examples below.

 38

3.4.3.1 Modification of kernel configuration

A default configuration file is provided in the factory kernel source codes:

arch/arm/configs/devkit8500_defconfig

User can carry out system customization on this basis:

cd linux-2.6.32-devkit8500

cp arch/arm/configs/devkit8500_defconfig .config

make menuconfig

The system customization will be described below by taking usb gadget and usb mass storage

device as an example:

Select the configuration below:

-> Device Drivers

-> USB support

-> USB Gadget Support

-> USB Gadget Drivers

Select “File-backed Storage Gadget” as <M>, exit, and finally select Save to recompile kernel.

3.4.3.2 Compilation

Save configuration, execute the following commands to recompile kernel:

make uImage

make modules

After above operations are executed, a new kernel image uImage will be generated under the

directory arch/arm/boot, and a module file g_file_storage.ko will be generated under the directory

 39

drivers/usb/gadget.

3.5 Introduction of driver

3.5.1 NAND

Figure 3.5.1 Modular structure for NAND

Solid-state memory used in embedded systems is mainly flash; it is NAND flash in this system.

NAND flash is used as a block device, on which the file system is arranged; interaction between

user and NAND flash is mainly realized by a specific file system. In order to shield difference in

different flash memories, kernel inserts an MTD subsystem between the file system and the

specific flash driver for management.

Therefore, the user accesses NAND flash through the following process:

User->System Call->VFS->Block Device Driver->MTD->NAND Flash Driver->NAND Flash。

App, System call

VFS

MTD user module

JFFS2 JFFS Char device Block device

Memory technology device

Generic NAND driver

MTD chip driver

NAND flash

chip

driver

CFI flash

driv

er

RAM，ROM

Chips

etc

GPMC module NAND flash

User

Kernel

Hardware

 40

Kernel Driver reference path:

linux-2.6.32-devkit8500/drivers/mtd/nand/

linux-2.6.32-devkit8500/drivers/mtd/nand/omap2.c

3.5.2 SD/MMC

Figure 3.5.2 Modular structure for SD/MMC

SD/MMC card drivers under Linux mainly include SD/MMC core, mmc_block, mmc_queue and

SD/MMC driver four parts:

1) SD/MMC core realizes core codes unlated to structure in the SD/MMC card operation.

2) mmc_block realizes driver structure when SD/MMC card is used as a block device.

3) mmc_queue realizes management of request queue.

4) SD/MMC driver realizes specific controller driver.

Kernel Driver reference path:

linux-2.6.32-devkit8500/drivers/mmc/

linux-2.6.32-devkit8500/drivers/mmc/host/omap_hsmmc.c

App, System call

Kernel (Generic disk handler, File system)

BUFFER_CACHE

MMC_QUEUE

MMC/SD CORE MMC_BLOCK

MMC/SD CONTROLLER DRIVER

HARDWARE (MMC/SD/SDIO CONTROLLER)

Use

r

Kernel

Hardware

 41

3.5.3 Display interface

Figure 3.7.3 Modular structure for display

Display Sub-System hardware integrates one graphics pipeline, two video pipelines, and two

overlay managers (one for digital and one for analog interface). Digital interface is used for LCD

and DVI output and analog interface is used for TV out.

The primary functionality of the display driver is to provide interfaces to user level applications and

managing of Display Sub-System hardware.

Kernel Driver reference path:

linux-2.6.32-devkit8500/drivers/video/omap2/

linux-2.6.32-devkit8500/drivers/video/omap2/omapfb/omapfb-main.c

DSS Library

Control
Application

GUI
Application

Streamimg
Application

sysfs
Interface

/dev/fb0
FBDEV Driver

/dev/v4l2/video1
/dev/v4l2/video2

V4L2 Driver

Graphics

overlay

Video1

overlay

Video2

overlay

User

Kernel

Hardware

LCD

Manag

er

TV

Manag

er

DSS Library

LCD Control Video
Encoder

 42

3.5.4 Video capture

Figure 3.5.4 Modular structure for video capture

V4L2 Subsystem:

The Linux V4L2 subsystem is used as an infrastructure to support the operation of the Camera

Driver. Camera applications mainly use the V4L2 API to access the Camera Driver functionality. A

Linux 2.6 V4L2 implementation is used in order to support the standard features that are defined in

the V4L2 specification.

Video Buffer Library:

This library comes with V4L2. It provides helper functions to cleanly manage the video buffers

through a video buffer queue object.

Camera Driver:

The Camera Driver allows capturing video through an external decoder. The camera driver is

registered to the V4L2 layer as a master device driver. Any slave decoder driver added to the

V4L2 layer will be attached to this driver through the new V4L2 master-slave interface layer. The

current implementation supports only one slave device.

Video capture application

V4L2 LAYER

CAMERA DRIVER

CCDC DRIVER DECODER DRIVER

HARDWARE

Use

r

Kernel

Hardware

 43

Decoder Driver:

A decoder driver must implement the new V4L2 master-slave interface. It should register to the

V4L2 layer as a slave device. Changing a decoder requires implementation of a new decoder

driver; it does not require changing the Camera Driver. Each decoder driver exports a set of

IOCTLs to the master device through function pointers.

CCDC library:

CCDC is a HW block in which acts as a data input port. It receives data from the sensor/decoder

through parallel interface. The CCDC library exports API to configure CCDC module. It is

configured by the master driver based on the sensor/decoder attached and desired output from

the camera driver.

Kernel Driver reference path:

linux-2.6.32-devkit8500/drivers/media/video/

linux-2.6.32-devkit8500/drivers/media/video/omap34xxcam.c

linux-2.6.32-devkit8500/drivers/media/video/tvp514x-int.c

 44

3.5.5 Audio in/out

Figure 3.5.5 Modular structure for Audio

ASoC basically splits an embedded audio system into three components:

 Codec driver: The codec driver is platform independent and contains audio controls,

audio interface capabilities, codec dapm definition and codec IO functions.

 Platform driver: The platform driver contains the audio dma engine and audio interface

drivers (e.g. I2S, AC97, PCM) for that platform.

 Machine driver: The machine driver handles any machine specific controls and audio

events i.e. turning on an amp at start of playback.

Kernel Driver reference path:

linux-2.6.32-devkit8500/sound/soc/

linux-2.6.32-devkit8500/sound/soc/omap/devkit8500.c

linux-2.6.32-devkit8500/sound/soc/codecs/twl4030.c

Native ALSA application

ALSA KERNEL API

ALSA SOC CORE

CODEC

DRIV

ER

PLATFORM

DRIVE

R

HARDWARE

Use

r

Kernel

Hardware

ALSA LIBRARY

PCM CONTROL

MACHINE

DRIVER

 45

3.6 Driver Development

3.6.1 Driver For The gpio_keys

1) Device Definition

linux-2.6.32-devkit8500/arch/arm/mach-omap2/board-devkit8500.c

Setup GPIO 26 as “menu” key, return value as “KEY_F1”, triggered on low level; gpio 29

as”back”key, return value as ”KEY_ESC”, triggered on low level. The structure template is shown

below.

static struct gpio_keys_button gpio_buttons[] = {

 {

 .code = KEY_F1,

 .gpio = 26,

 .desc = "menu",

 .active_low = true,

 },

 {

 .code = KEY_ESC,

 .gpio = 29,

 .desc = "back",

 .active_low = true,

 },

};

static struct gpio_keys_platform_data gpio_key_info = {

 .buttons = gpio_buttons,

 .nbuttons = ARRAY_SIZE(gpio_buttons),

};

static struct platform_device keys_gpio = {

 .name = "gpio-keys",

 46

 .id = -1,

 .dev = {

 .platform_data = &gpio_key_info,

 },

};

2) GPIO pinmux Configuration

Setup the GPIO 26, 29 as M4 (GPIO mode), IEM (Input enable).

u-boot-03.00.02.07/board/devkit8500.h

/*

 * IEN - Input Enable

 * IDIS - Input Disable

 * PTD - Pull type Down

 * PTU - Pull type Up

 * DIS - Pull type selection is inactive

 * EN - Pull type selection is active

 * M0 - Mode 0

 * The commented string gives the final mux configuration for that pin

*/

MUX_VAL(CP(ETK_D12_ES2), (IEN | PTU | DIS | M4)) /*GPIO_26*/\

MUX_VAL(CP(ETK_D15_ES2), (IEN | PTU | DIS | M4)) /*GPIO_29*/\

3) Driver Design

linux-2.6.32-devkit8500/drivers/input/keyboard/gpio_keys.c

a) Structure for platform_driver_register to register gpio_keys driver.

static struct platform_driver gpio_keys_device_driver = {

 .probe = gpio_keys_probe,

 .remove = __devexit_p(gpio_keys_remove),

 .driver = {

 .name = "gpio-keys",

 .owner = THIS_MODULE,

#ifdef CONFIG_PM

 .pm = &gpio_keys_pm_ops,

 47

#endif

 }

};

static int __init gpio_keys_init(void)

{

 return platform_driver_register(&gpio_keys_device_driver);

}

static void __exit gpio_keys_exit(void)

{

 platform_driver_unregister(&gpio_keys_device_driver);

}

module_init(gpio_keys_init);

module_exit(gpio_keys_exit);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("Phil Blundell <pb@handhelds.org>");

MODULE_DESCRIPTION("Keyboard driver for CPU GPIOs");

MODULE_ALIAS("platform:gpio-keys");

b) Structure for input_register_device to register input driver.

static int __devinit gpio_keys_probe(struct platform_device *pdev)

{

…

 input = input_allocate_device();

…

 for (i = 0; i < pdata->nbuttons; i++) {

 struct gpio_keys_button *button = &pdata->buttons[i];

 struct gpio_button_data *bdata = &ddata->data[i];

 unsigned int type = button->type ?: EV_KEY;

 48

 bdata->input = input;

 bdata->button = button;

 error = gpio_keys_setup_key(dev, bdata, button);

 if (error)

 goto fail2;

 if (button->wakeup)

 wakeup = 1;

 input_set_capability(input, type, button->code);

 }

 error = input_register_device(input);

…

c) Apply GPIO and setup the GPIO as the input, registration gpio interrupt.

static int __devinit gpio_keys_setup_key(struct device *dev,

 struct gpio_button_data *bdata,

 struct gpio_keys_button *button)

{

 char *desc = button->desc ? button->desc : "gpio_keys";

 int irq, error;

 setup_timer(&bdata->timer, gpio_keys_timer, (unsigned long)bdata);

 INIT_WORK(&bdata->work, gpio_keys_work_func);

 error = gpio_request(button->gpio, desc);

 if (error < 0) {

 dev_err(dev, "failed to request GPIO %d, error %d\n",

 button->gpio, error);

 49

 goto fail2;

 }

 error = gpio_direction_input(button->gpio);

 if (error < 0) {

 dev_err(dev, "failed to configure"

 " direction for GPIO %d, error %d\n",

 button->gpio, error);

 goto fail3;

 }

 irq = gpio_to_irq(button->gpio);

 if (irq < 0) {

 error = irq;

 dev_err(dev, "Unable to get irq number for GPIO %d, error %d\n",

 button->gpio, error);

 goto fail3;

 }

 error = request_irq(irq, gpio_keys_isr,

 IRQF_SHARED |

 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,

 desc, bdata);

 if (error) {

 dev_err(dev, "Unable to claim irq %d; error %d\n",

 irq, error);

 goto fail3;

 }

 return 0;

 50

fail3:

 gpio_free(button->gpio);

fail2:

 return error;

}

d) Interrupt handling,

Button is pressed, an interrupt is generated, reporting key

static irqreturn_t gpio_keys_isr(int irq, void *dev_id)

{

…

schedule_work(&bdata->work);

…

}

static void gpio_keys_work_func(struct work_struct *work)

{

…

gpio_keys_report_event(bdata);

…

}

static void gpio_keys_report_event(struct gpio_button_data *bdata)

{

 struct gpio_keys_button *button = bdata->button;

 struct input_dev *input = bdata->input;

 unsigned int type = button->type ?: EV_KEY;

 int state = (gpio_get_value(button->gpio) ? 1 : 0) ^ button->active_low;

 input_event(input, type, button->code, !!state);

 input_sync(input);

}

 51

3.6.2 Driver for the gpio_leds

1) Device Definition

linux-2.6.32-devkit8500/arch/arm/mach-omap2/board-devkit8500.c

The driver main() will introduce how to create the driver on the kernel and enable the LED2, LED3,

LED4, LED5, the kernel configuration respectively are: user_ledb (GPIO186), sys_led (twl4030

LEDB), user_led1 (twl4030 GPIO2), user_led2 (twl4030 GPIO15), low level is enable:

static struct gpio_led gpio_leds[] = {

 {

 .name = "sys_led",

 .default_trigger = "heartbeat",

 .gpio = 186,

 .active_low = true,

 },

 {

 .name = "user_ledb",

 .gpio = -EINVAL,

 .active_low = true,

 },

 {

 .name = "user_led1",

 .gpio = -EINVAL,

 .active_low = true,

 },

 {

 .name = "user_led2",

 .gpio = -EINVAL,

 .active_low = true,

 },

};

 52

static struct gpio_led_platform_data gpio_led_info = {

 .leds = gpio_leds,

 .num_leds = ARRAY_SIZE(gpio_leds),

};

static struct platform_device leds_gpio = {

 .name = "leds-gpio",

 .id = -1,

 .dev = {

 .platform_data = &gpio_led_info,

 },

};

static int devkit8500_twl_gpio_setup(struct device *dev,

 unsigned gpio, unsigned ngpio)

{

…

 /* TWL4030_GPIO_MAX + 1 == ledB, PMU_STAT (out, active low LED) */

 gpio_leds[1].gpio = gpio + TWL4030_GPIO_MAX + 1;

 gpio_leds[2].gpio = gpio + 2;

 gpio_leds[3].gpio = gpio + 15;

…

}

2) GPIO pinmux Setup:

u-boot-03.00.02.07/board/devkit8500.h

Configure GPIO 186 as M4(MODE 4 = GPIO), IDIS(Input not allowed)

/*

 * IEN - Input Enable

 * IDIS - Input Disable

 * PTD - Pull type Down

 53

 * PTU - Pull type Up

 * DIS - Pull type selection is inactive

 * EN - Pull type selection is active

 * M0 - Mode 0

 * The commented string gives the final mux configuration for that pin

 */

MUX_VAL(CP(SYS_CLKOUT2), (IDIS | PTU | EN | M4)) /*GPIO_186*/\

3) Driver design:

linux-2.6.32-devkit8500/drivers/leds/leds-gpio.c

a) Structure for platform_driver_register to register gpio_leds.

static struct platform_driver gpio_led_driver = {

 .probe = gpio_led_probe,

 .remove = __devexit_p(gpio_led_remove),

 .driver = {

 .name = "leds-gpio",

 .owner = THIS_MODULE,

 },

};

static int __init gpio_led_init(void)

{

 int ret;

#ifdef CONFIG_LEDS_GPIO_PLATFORM

 ret = platform_driver_register(&gpio_led_driver);

 if (ret)

 return ret;

#endif

#ifdef CONFIG_LEDS_GPIO_OF

 ret = of_register_platform_driver(&of_gpio_leds_driver);

#endif

 54

#ifdef CONFIG_LEDS_GPIO_PLATFORM

 if (ret)

 platform_driver_unregister(&gpio_led_driver);

#endif

 return ret;

}

static void __exit gpio_led_exit(void)

{

#ifdef CONFIG_LEDS_GPIO_PLATFORM

 platform_driver_unregister(&gpio_led_driver);

#endif

#ifdef CONFIG_LEDS_GPIO_OF

 of_unregister_platform_driver(&of_gpio_leds_driver);

#endif

}

module_init(gpio_led_init);

module_exit(gpio_led_exit);

MODULE_AUTHOR("Raphael Assenat <raph@8d.com>, Trent Piepho

<tpiepho@freescale.com>");

MODULE_DESCRIPTION("GPIO LED driver");

MODULE_LICENSE("GPL");

b) Called platform_driver_register to register gpio_leds. Apply GPIO and called

led_classdev_regisiter to register led_classdev.

static int __devinit gpio_led_probe(struct platform_device *pdev)

{

…

 leds_data = kzalloc(sizeof(struct gpio_led_data) * pdata->num_leds,

 55

 GFP_KERNEL);

…

 for (i = 0; i < pdata->num_leds; i++) {

 ret = create_gpio_led(&pdata->leds[i], &leds_data[i],

 &pdev->dev, pdata->gpio_blink_set);

 if (ret < 0)

 goto err;

 }

…

}

static int __devinit create_gpio_led(const struct gpio_led *template,

 struct gpio_led_data *led_dat, struct device *parent,

 int (*blink_set)(unsigned, unsigned long *, unsigned long *))

{

…

 ret = gpio_request(template->gpio, template->name);

…

 ret = gpio_direction_output(led_dat->gpio, led_dat->active_low ^ state);

…

 ret = led_classdev_register(parent, &led_dat->cdev);

…

}

c) User can access brightness file on the directory of /sys/class/leds/xxx/, called function

gpio_led_set to configure led states.

static void gpio_led_set(struct led_classdev *led_cdev,

 enum led_brightness value)

{

…

 gpio_set_value(led_dat->gpio, level);

}

 56

3.7 Updated of system

3.7.1 Update of TF card system image

1) The formatting of MMC/SD card

HP USB Disk Storage Format Tool 2.0.6 is recommended:

The software is downloading from

http://www.embedinfo.com/english/download/SP27213.exe .

a) Insert TF card into the card reader in PC.

b) Open the HP USB Disk Storage Format Tool, the following steps will show in detail:

c) Select “FAT32”.

d) Click “Start”.

e) When formatting is completed, click “OK”.

http://www.embedinfo.com/english/download/SP27213.exe

 57

HP USB Disk Storage Format Tool will clear partitions of the TF card.

Please use the formatting software provided in the computer system

2) Update of images

Copy all files under the directory linux/image to the TF card, and rename uImage_xx as uImage

according to the used display device LCD (4.3"，7") or VGA. Connect the TF card, power on and

boot it, the serial port information will be displayed as follows:

60

Texas Instruments X-Loader 1.47 (Sep 27 2011 - 15:53:45)

DevKit8500 xM Rev A

Starting X-loader on MMC

Reading boot sector

1153680 Bytes Read from MMC

Starting OS Bootloader from MMC...

Starting OS Bootloader...

U-Boot 2010.06-rc1-svn (Sep 27 2011 - 14:54:40)

OMAP34xx/35xx-GP ES2.1, CPU-OPP2 L3-165MHz

OMAP3 DevKit8500 board + LPDDR/NAND

I2C: ready

DRAM: 512 MiB

NAND: 512 MiB

*** Warning - bad CRC or NAND, using default environment

In: serial

Out: serial

 58

Err: serial

DevKit8500 xM Rev A

Die ID #065400029e3800000168263d0600900a

Net: dm9000

Hit any key to stop autoboot: 0

mmc1 is available

reading boot.scr

** Unable to read "boot.scr" from mmc 0:1 **

reading uImage

2551588 bytes read

reading ramdisk.gz

7686374 bytes read

Booting from mmc ...

Booting kernel from Legacy Image at 80300000 ...

 Image Name: Linux-2.6.32

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 2551524 Bytes = 2.4 MiB

 Load Address: 80008000

 Entry Point: 80008000

 Verifying Checksum ... OK

 Loading Kernel Image ... OK

OK

Starting kernel ...

Uncompressing

Linux..

............. done, booting the kernel.

Linux version 2.6.32 (luofc@TIOP) (gcc version 4.4.0 (GCC)) #1 Mon Mar 14 10:08:34 CST

 59

2011

………

………

Remounting root file system...

mount: mounting /dev/root on / failed: Invalid argument

mount: mounting /dev/root on / failed: Invalid argument

root: mount: mounting rootfs on / failed: No such file or directory

root: mount: mounting usbfs on /proc/bus/usb failed: No such file or directory

Setting up IP spoofing protection: rp_filter.

Configuring network interfaces... udhcpc (v1.11.3) started

Sending discover...

udhcpc: sendto: Network is down

Sending discover...

udhcpc: sendto: Network is down

INIT: Entering runlevel: 5

Starting syslogd/klogd: done

.-------.

| | .-.

| | |-----.-----.-----.| | .----..-----.-----.

| | | __ | ---'| '--.| .-'| | |

| | | | | |--- || --'| | | ' | | | |

'---'---'--'--'--. |-----''----''--' '-----'-'-'-'

 -' |

 '---'

The Angstrom Distribution DevKit8500 ttyS2

Angstrom 2008.1-test-20090127 DevKit8500 ttyS2

DevKit8500 login:

HyperTerminal displays above information to indicate that it is successful to boot Linux system

from TF card.

 60

3.7.2 Update of NAND Flash

Update of Nand boot image is finished in aid with u-boot. No matter whether NAND FLASH has

data or not, u-boot of the TF card can be used to update NAND FLASH images.

1) Preparation

a) Format the TF card to FAT or FAT32 file system through HP USB Disk Storage Format

Tool 2.0.6

b) Copy x-load.bin.ift_for_NAND, flash-uboot.bin, uImage_xx and ubi.img image files in the

disc to the TF card, and rename uImage_xx as uImage according to the display device

LCD (4.3", 7") or VGA you used.

2) Update

a) Insert the TF card with the system images into the development board, power on and

boot it, and press any key on the PC keyboard to enter the u-boot according to the

following clock prompts:

Texas Instruments X-Loader 1.47 (Sep 27 2011 - 15:53:45)

DevKit8500 xM Rev A

Starting X-loader on MMC

Reading boot sector

1153680 Bytes Read from MMC

Starting OS Bootloader from MMC...

Starting OS Bootloader...

U-Boot 2010.06-rc1-svn (Sep 27 2011 - 14:54:40)

OMAP34xx/35xx-GP ES2.1, CPU-OPP2 L3-165MHz

OMAP3 DevKit8500 board + LPDDR/NAND

I2C: ready

DRAM: 512 MiB

NAND: 512 MiB

 61

*** Warning - bad CRC or NAND, using default environment

In: serial

Out: serial

Err: serial

DevKit8500 xM Rev A

Die ID #22e800211e3000000158ed8408008020

Net: dm9000

Hit any key to stop autoboot: 0 （Here press any key to enter u-boot）

b) After entering the u-boot command line, input “run updatesys” from the PC keyboard, to

start to update the system automatically:

OMAP3 devkit8500 # run updatesys

NAND erase: device 0 whole chip

Skipping bad block at 0x1c9c0000

Erasing at 0x1ffe0000 -- 100% complete.

OK

mmc1 is available

reading x-load.bin.ift_for_NAND

11000 bytes read

HW ECC selected

NAND write: device 0 offset 0x0, size 0x2af8

 12288 bytes written: OK

reading flash-uboot.bin

230764 bytes read

SW ECC selected

NAND write: device 0 offset 0x80000, size 0x3856c

 231424 bytes written: OK

 62

reading uImage

2561868 bytes read

SW ECC selected

NAND write: device 0 offset 0x280000, size 0x27174c

 2562048 bytes written: OK

reading ubi.img

7602176 bytes read

SW ECC selected

NAND write: device 0 offset 0x680000, size 0x740000

 7602176 bytes written: OK

OMAP3 DevKit8500 #

c) At this time, flickering of LED lamp on the board indicates that update has been finished;

you just need to reboot it.

3.8 Instructions

3.8.1 Various Tests senario

3.8.1.1 LED Testing

SYS_LED, USER_LEDB, USER_LED1 and USER_LED2 in the board is user’ led lamp.

The following operation carried out in HyperTerminal:

1) Control sys_led:

root@DevKit8500:# echo 1 > /sys/class/leds/sys_led/brightness

root@DevKit8500:# echo 0 > /sys/class/leds/sys_led/brightness

2) Control user_ledb:

root@DevKit8500:# echo 1 > /sys/class/leds/user_ledb/brightness

root@DevKit8500:# echo 0 > /sys/class/leds/user_ledb/brightness

3) Control user_led1:

 63

root@DevKit8500:# echo 1 > /sys/class/leds/user_led1/brightness

root@DevKit8500:# echo 0 > /sys/class/leds/user_led1/brightness

4) Control user_led2:

root@DevKit8500:# echo 1 > /sys/class/leds/user_led2/brightness

root@DevKit8500:# echo 0 > /sys/class/leds/user_led2/brightness

The user pushes a LED with operation are to kill bright.

3.8.1.2 KEYPAD Testing

Board has two users keyboard USER1 USER2, users can and perform the following command

testing:

root@DevKit8500:~# evtest /dev/input/event0

Input driver version is 1.0.0evdev.c(EVIOCGBIT): Suspicious buffer size 511, limiting output

to 64 bytes. See http://userweb.kernel.org/~dtor/eviocgbit-bug.html

Input device ID: bus 0x19 vendor 0x1 product 0x1 version 0x100

Input device name: "gpio-keys"

Supported events:

 Event type 0 (Sync)

 Event type 1 (Key)

 Event code 1 (Esc)

 Event code 59 (F1)

Testing ... (interrupt to exit)

Event: time 44.232697, type 1 (Key), code 59 (F1), value 1

Event: time 44.232697, -------------- Report Sync ------------

Event: time 44.396515, type 1 (Key), code 59 (F1), value 0

Event: time 44.396515, -------------- Report Sync ------------

Event: time 45.219238, type 1 (Key), code 1 (Esc), value 1

Event: time 45.219268, -------------- Report Sync ------------

Event: time 45.358306, type 1 (Key), code 1 (Esc), value 0

Event: time 45.358306, -------------- Report Sync ------------

 64

Press CONTROL+C to quit the test. The back of the test is the same.

3.8.1.3 Touch Screen Testing

This testing requires Linux boot from NAND FLASH

1) Run the command to test the touch screen.

root@DevKit8500: # ts_calibrate

Then follow the LCD prompt, click the "+" icon 5 times to complete the calibration

2) Calibration is complete, enter the following commands for Touch Panel Test:

root@DevKit8500: # ts_test

Follow the LCD prompts to choose draw point, draw line test.

3.8.1.4 RTC Testing

The development board contains hardware clock for save and synchronize the system time. Test

can be made with the following steps:

1) Set the system time as Fri Aug 8 20:00:00 2011

root@DevKit8500: # date 011820002011

Fri Aug 8 20:00:00 UTC 2011

2) Write the system clock into RTC

root@DevKit8500: # hwclock -w

3) Read the RTC

root@DevKit8500: # hwclock

Fri Aug 8 20:00:00 UTC 2011

We can see that the RTC clock has been set as August, 8, 2008; the system clock will be saved in

the hardware clock.

4) Restart the system, enter the following commands to renew the system clock

root@DevKit8500: # hwclock -s

root@DevKit8500: # date

Fri Aug 8 20:00:00 UTC 2011

We can see the system time is set as hardware time.

 65

The DevKit8500D/A Development board RTC battery can use model

CR1220, user needs to prepare themselves.

3.8.1.5 TF Card Testing

1) After connecting TF card, the system will mount the file system of the TF card under the

directory /media automatically:

root@DevKit8500:~# cd /media/

root@DevKit8500:/media# ls

card hdd mmcblk0p1 ram union

cf mmc1 net realroot

2) Enter the following command , you can see the contents inside the TF card:

root@DevKit8500:/media# ls mmcblk0p1/

flash-uboot.bin u-boot.bin x-load.bin.ift_for_NAND

mlo uImage

ramdisk.gz ubi.img

3.8.1.6 USB Devices Testing

 In the USB DEVICE testing, a conenction line is used to connect the miniUSB interface of the

development board and the USB interface at the computer end; for the computer end, the

development board is recognized as a network device to realize ping communication of two ends.

1) After booting the system, a USB mini B to USB A transfer line is used to connect the

development board and the computer end, wherein USBmini B interface is connected with the

development board, and the USB A interface is connected with the computer end. At this time, the

computer needs to be installed with Linux USB Ethernet driver. Please refer to Appendix III for

detailed installation method.

2) The following commands are input at the HyperTerminal, for example:

root@DevKit8500:~# ifconfig usb0 192.168.1.115

root@DevKit8500:~# ifconfig

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 66

 RX packets:26 errors:0 dropped:0 overruns:0 frame:0

 TX packets:26 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:2316 (2.2 KiB) TX bytes:2316 (2.2 KiB)

usb0 Link encap:Ethernet HWaddr 5E:C5:F6:D4:2B:91

 inet addr:192.168.1.115 Bcast:192.168.1.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:253 errors:0 dropped:0 overruns:0 frame:0

 TX packets:43 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:35277 (34.4 KiB) TX bytes:10152 (9.9 KiB)

3) After the development board is configured, please click My Computer-Network

Neighborhood-Check Network Connection； a virtual network adapter will be added at the PC end.

4) Right-click virtual network adapter at the computer end, left-click “Attribute”, double-left-click

to enter the “Internet Protocol (TCP/IP)” to configure the IP address of the virtual network adapter:

 67

5) Use ping command in the HyperTerminal to test whether the settings of the development

board are successful:

root@DevKit8500:~# ping 192.168.1.15

PING 192.168.1.15 (192.168.1.15): 56 data bytes

64 bytes from 192.168.1.15: seq=0 ttl=128 time=0.885 ms

64 bytes from 192.168.1.15: seq=1 ttl=128 time=0.550 ms

6) Occurrence of above serial port information indicates that the testing is successful.

IP address of the network adapter configured in OTG cannot be the same

as that of Ethernet interface.

3.8.1.7 USB HOST Testing

1) After connecting USB flash disk, the system will mount the file system of the USB flash disk

under the directory /media automatically:

root@DevKit8500:~# cd /media/

root@DevKit8500:/media# ls

card hdd mmcblk0p1 ram sda1

cf mmc1 net realroot union

2) Contents in the USB flash disk will be seen after the following instruction is input:

root@DevKit8500:/media# ls sda1/

flash-uboot.bin u-boot.bin x-load.bin.ift_for_NAND

mlo uImage

ramdisk.gz ubi.img

3.8.1.8 Audio Testing

The board has audio input and output interface, and we have alsa-utils audio test tools in the file

system, users can enter the following commands for a test:

1) Recording Test：

Plug in a microphone, you can test recording.

root@DevKit8500:~# arecord -t wav -c 1 -r 44100 -f S16_LE -v k

Recording WAVE 'k' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo

Plug PCM: Hardware PCM card 0 'omap3evm' device 0 subdevice 0

 68

Its setup is:

 stream : CAPTURE

 access : RW_INTERLEAVED

 format : S16_LE

 subformat : STD

 channels : 2

 rate : 44100

 exact rate : 44100 (44100/1)

 msbits : 16

 buffer_size : 22052

 period_size : 5513

 period_time : 125011

 tstamp_mode : NONE

 period_step : 1

 avail_min : 5513

 period_event : 0

 start_threshold : 1

 stop_threshold : 22052

 silence_threshold: 0

 silence_size : 0

 boundary : 1445199872

 appl_ptr : 0

 hw_ptr : 0

2) Playback Testing：

Plug in the headphones, you can hear what you have just recorded.

root@DevKit8500:~# aplay -t wav -c 2 -r 44100 -f S16_LE -v k

Playing WAVE 'k' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo

Plug PCM: Hardware PCM card 0 'omap3evm' device 0 subdevice 0

Its setup is:

 stream : PLAYBACK

 access : RW_INTERLEAVED

 69

 format : S16_LE

 subformat : STD

 channels : 2

 rate : 44100

 exact rate : 44100 (44100/1)

 msbits : 16

 buffer_size : 22052

 period_size : 5513

 period_time : 125011

 tstamp_mode : NONE

 period_step : 1

 avail_min : 5513

 period_event : 0

 start_threshold : 22052

 stop_threshold : 22052

 silence_threshold: 0

 silence_size : 0

 boundary : 1445199872

 appl_ptr : 0

 hw_ptr : 0

3.8.1.9 Network Testing

1) The board has a 10/100M self-adapting network card DM9000; users can connect the board

to the LAN and enter the following commands for a test:

root@DevKit8500:~# ifconfig eth0 192.192.192.200

eth0: link down

eth0: link up, 100Mbps, full-duplex, lpa 0x41E1

root@DevKit8500:~# ping 192.192.192.90

PING 192.192.192.90 (192.192.192.90): 56 data bytes

64 bytes from 192.192.192.90: seq=0 ttl=128 time=1.007 ms

 70

64 bytes from 192.192.192.90: seq=1 ttl=128 time=0.306 ms

64 bytes from 192.192.192.90: seq=2 ttl=128 time=0.397 ms

64 bytes from 192.192.192.90: seq=3 ttl=128 time=0.367 ms

--- 192.192.192.90 ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss

round-trip min/avg/max = 0.306/0.519/1.007 ms

[root@DevKit8500 /]# ping 192.192.192.170

PING 192.192.192.170 (192.192.192.170): 56 data bytes

64 bytes from 192.192.192.170: seq=0 ttl=128 time=4.486 ms

64 bytes from 192.192.192.170: seq=1 ttl=128 time=0.336 ms

2) Occurrence of above serial port information indicates that the testing is successful.

3.8.1.10 Camera Testing

1) If you have bought the specific camera module of DevKit8500D/A, after connecting CAMERA

module and CCD camera, connect LCD screen; carry out the testing by executing the following

commands:

root@DevKit8500:~# saMmapLoopback

tvp514x 2-005d: tvp5146m2 found at 0xba (OMAP I2C adapter)

Capture: Opened Channel

Capture: Current Input: COMPOSITE

Capture: Current standard: PAL

Capture: Capable of streaming

Capture: Number of requested buffers = 3

Capture: Init done successfully

Display: Opened Channel

Display: Capable of streaming

Display: Number of requested buffers = 3

Display: Init done successfully

 71

Display: Stream on...

Capture: Stream on...

2) At this time, LCD display screen will display images collected by the CCD camera.

3.8.1.11 GPRS8000-S module

If the camera modules are from Embest then you can donload the module material from below

link:

http://www.timll.com/chinese/uploadFile/GPRS8000.rar

3.8.1.12 GPS8000-S module

If the camera modules are from Embest then you can donload the module material from below

link:

http://www.timll.com/chinese/uploadFile/GPS8000.rar

3.8.1.13 CDMA8000-U module

If the camera modules are from Embest then you can donload the module material from below

link:

http://www.timll.com/chinese/uploadFile/cdma8000.rar

3.8.1.14 WCDMA8000-U module

If the camera modules are from Embest then you can donload the module material from below

link:

http://www.timll.com/chinese/uploadFile/WCDMA8000-110113.zip

3.8.2 Demo

3.8.2.1 Android system demonstration

DevKit8500D/A provides Android system demonstration, please follow below steps:

1) Copy all files under the directory CD\linux\demo\Android\image to the TF card, select

according to the size of LCD you have bought, and rename uImage_xx as uImage;

2) Put the TF card in the development card, and directly power it on; the debugging tool will

display the following information:

http://www.timll.com/chinese/uploadFile/GPRS8000.rar
http://www.timll.com/chinese/uploadFile/GPS8000.rar
http://www.timll.com/chinese/uploadFile/cdma8000.rar
http://www.timll.com/chinese/uploadFile/WCDMA8000-110113.zip

 72

60

Texas Instruments X-Loader 1.47 (Sep 20 2011 - 16:18:31)

DevKit8500 xM Rev A

Starting X-loader on MMC

Reading boot sector

1153712 Bytes Read from MMC

Starting OS Bootloader from MMC...

Starting OS Bootloader...

U-Boot 2010.06-rc1-svn (Sep 27 2011 - 14:57:19)

OMAP34xx/35xx-GP ES2.1, CPU-OPP2 L3-165MHz

OMAP3 DevKit8500 board + LPDDR/NAND

I2C: ready

DRAM: 512 MiB

NAND: 512 MiB

*** Warning - bad CRC or NAND, using default environment

In: serial

Out: serial

Err: serial

DevKit8500 xM Rev A

Die ID #3a7e00229e3800000168263d0402302f

NAND erase: device 0 whole chip

Erasing at 0x1ffe0000 -- 100% complete.

OK

mmc1 is available

 73

reading x-load.bin.ift_for_NAND

10892 bytes read

HW ECC selected

NAND write: device 0 offset 0x0, size 0x2a8c

 12288 bytes written: OK

reading flash-uboot.bin

1152260 bytes read

SW ECC selected

NAND write: device 0 offset 0x80000, size 0x119504

 1153024 bytes written: OK

reading uImage

2572792 bytes read

SW ECC selected

NAND write: device 0 offset 0x280000, size 0x2741f8

 2574336 bytes written: OK

reading ubi.img

79036416 bytes read

SW ECC selected

NAND write: device 0 offset 0x680000, size 0x4b60000

 79036416 bytes written: OK

3) LED lamp sys on the board will flicker to prompt after programming is finished, at this time,

please pull the TF card out.

4) Power it on again and boot to enter the android operating system.

 74

3.8.2.2 DVSDK System Demonstration

DVSDK (Digital Video Software Development Kit) is software developed by TI Company, the

function of which is to establish a connection between ARM and DSP.

The application program runs at the ARM end, and ARM processes IO interface and the

application program. ARM uses VISA APIs interface provided by Codec Engine to process video,

image and voice signals. Codec Engine then uses DSP/BIOS Link and xDIAS as well as xDM

protocol to communicate with the Codec Engine server. DSP processes these signals and puts

results of processing in the memory space shared by ARM, such that the ARM end can obtain

these results.

 The computer end has to be installed with Linux operating system in

advance; and the instruction in Step 1 is finished in PC.

 uImage_4.3 mentioned in the following context means 4.3-inch

screen; please use uImage_7 if the user uses 7-inch screen.

1) Divide the TF card into two partitions (please refer to Appendix IV for specific operation),

connect the TF card to PC, and then execute the following commands:

cp /media/cdrom/linux/demo/dvsdk/image/MLO /media/LABEL1

cp /media/cdrom/linux/demo/dvsdk/image/u-boot.bin /media/LABEL1

cp /media/cdrom/linux/demo/dvsdk/image/uImage_4.3 /media/LABEL1/uImage

rm -rf /media/LABEL2/*

sudo tar jxvf linux/demo/dvsdk/image/ dvsdk-dm37x-evm-rootfs.tar.bz2 -C

/media/LABEL2

sync

umount /media/LABEL1

umount /media/LABEL2

2) Prepare TF card, insert it in the development board, and turn the power switch on; it is

necessary to configure parameters of u-boot; the boot-up serial port information is as follows:

(boldface letters are character contents to be input)

60

 75

Texas Instruments X-Loader 1.47 (Sep 27 2011 - 15:53:45)

DevKit8500 xM Rev A

Starting X-loader on MMC

Reading boot sector

1153680 Bytes Read from MMC

Starting OS Bootloader from MMC...

Starting OS Bootloader...

U-Boot 2010.06-rc1-svn (Sep 27 2011 - 14:54:40)

OMAP34xx/35xx-GP ES2.1, CPU-OPP2 L3-165MHz

OMAP3 DevKit8500 board + LPDDR/NAND

I2C: ready

DRAM: 512 MiB

NAND: 512 MiB

In: serial

Out: serial

Err: serial

DevKit8500 xM Rev A

Die ID #3a7e00229e3800000168263d0402302fNet: dm9000

Hit any key to stop autoboot: 0 (herein input any key)

OMAP3 DevKit8500 # setenv bootargs console=ttyS2,115200n8 root=/dev/mmcblk0p2

rootfstype=ext3 rw rootwait mpurate=1000 mem=99M@0x80000000

mem=128M@0x88000000 omapdss.def_disp=lcd omap_vout.vid1_static_vrfb_alloc=y

omapfb.vram=0:3M

OMAP3 devkit8500 # setenv bootcmd 'mmc init;fatload mmc 0 80300000 uImage;bootm

80300000'

OMAP3 devkit8500 # saveenv

 76

OMAP3 devkit8500 # boot

mmc1 is available

reading uImage

2547428 bytes read

Booting kernel from Legacy Image at 80300000 ...

 Image Name: Linux-2.6.32

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 2547364 Bytes = 2.4 MiB

 Load Address: 80008000

 Entry Point: 80008000

 Verifying Checksum ... OK

 Loading Kernel Image ... OK

OK

Starting kernel...

……

Arago Project http://arago-project.org dm37x-evm ttyS2

Arago 2010.07 dm37x-evm ttyS2

dm37x-evm login: root

3) DVSDK file system has some preinstalled application programs, which can be executed by

the user; running This pipeline decodes H.264 of GStreamer pipelines will be taken as shown

example below:

root@dm37x-evm:cd /usr/share/ti/gst/omap3530

root@dm37x-evm:/usr/share/ti/gst/omap3530# ./loadmodules.sh

cmemk unregistered

CMEMK module: built on Oct 14 2010 at 13:14:41

 Reference Linux version 2.6.32

 77

 File

/sdk/build/DVSDK_4_00/4_00_00_22/arago-install/arago-tmp/work/dm37x-evm-none-linux-gnuea

bi/ti-linuxutils-1_2_25_05_11-r89d/linuxutils_2_25_05_11/packages/ti/sdo/linuxutils/cmem/src/mo

dule/cmemk.c

allocated heap buffer 0xc9000000 of size 0x53d000

cmemk initialized

DSPLINK Module (1.65.00.02) created on Date: Oct 14 2010 Time: 13:21:09

SDMAK module: built on Oct 14 2010 at 13:14:44

 Reference Linux version 2.6.32

 File

/sdk/build/DVSDK_4_00/4_00_00_22/arago-install/arago-tmp/work/dm37x-evm-none-linux-gnuea

bi/ti-linuxutils-1_2_25_05_11-r89d/linuxutils_2_25_05_11/packages/ti/sdo/linuxutils/sdma/src/mod

ule/sdmak.c

root@dm37x-evm:/usr/share/ti/gst/omap3530# gst-launch filesrc

location=/usr/share/ti/data/videos/davincieffect_480p30.264 \! typefind ! TIViddec2 !

TIDmaiVideoSink rotation=270 -v

Setting pipeline to PAUSED ...

/GstPipeline:pipeline0/GstTypeFindElement:typefindelement0.GstPad:src: caps =

video/x-h264

Pipeline is PREROLLING ...

/GstPipeline:pipeline0/GstTIViddec2:tividdec20.GstPad:sink: caps = video/x-h264

/GstPipeline:pipeline0/GstTIViddec2:tividdec20.GstPad:src: caps = video/x-raw-yuv,

format=(fourcc)UYVY, framerate=(fraction)30000/1001, width=(int)720, height=(int)576

/GstPipeline:pipeline0/GstTIViddec2:tividdec20.GstPad:src: caps = video/x-raw-yuv,

format=(fourcc)UYVY, framerate=(fraction)30000/1001, width=(int)720, height=(int)480

/GstPipeline:pipeline0/GstTIDmaiVideoSink:tidmaivideosink0.GstPad:sink: caps =

video/x-raw-yuv, format=(fourcc)UYVY, framerate=(fraction)30000/1001, width=(int)720,

height=(int)480

Pipeline is PREROLLED ...

Setting pipeline to PLAYING ...

New clock: GstSystemClock

 78

4) At this time, the screen will play a video clip.

For detailed information please reference DVSDK TI main page, or

TMS320DM3730_Software_Developers_Guide.PDF document.

3.9 The Development Of Application

This section mainly introduces to development of application programs, and illustrates the general

process of development of application programs with cases.

Development example of LED application program

1) To Edit code

led_acc.c source code: control three LED lamps on the development board to flicker in a way of

accumulator.

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/ioctl.h>

#include <fcntl.h>

#define LED1 "/sys/class/leds/user_ledb/brightness"

#define LED2 "/sys/class/leds/user_led1/brightness"

#define LED3 "/sys/class/leds/user_led2/brightness"

int main(int argc, char *argv[])

{

 int f_led1, f_led2, f_led3;

 unsigned char i = 0;

 unsigned char dat1, dat2, dat3;

 if((f_led1 = open(LED1, O_RDWR)) < 0){

 printf("error in open %s",LED1);

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/dvsdk/DVSDK_3_00/latest/index_FDS.html

 79

 return -1;

 }

 if((f_led2 = open(LED2, O_RDWR)) < 0){

 printf("error in open %s",LED2);

 return -1;

 }

 if((f_led3 = open(LED3, O_RDWR)) < 0){

 printf("error in open %s",LED3);

 return -1;

 }

 for(;;){

 i++;

 dat1 = i&0x1 ? '1':'0';

 dat2 = (i&0x2)>>1 ? '1':'0';

 dat3 = (i&0x4)>>2 ? '1':'0';

 write(f_led1, &dat1, sizeof(dat1));

 write(f_led2, &dat2, sizeof(dat2));

 write(f_led3, &dat3, sizeof(dat3));

 usleep(300000);

 }

}

2) To Cross-compile

arm-none-linux-gnueabi-gcc led_acc.c -o led_acc

3) Download and run

Upload to the development board system through TF card, USB flash disk or network, enter the

directory with the led_acc file, input the following commands and press Enter, to run led_acc in the

background.

./led_acc &

 80

Chapter 4 WinCE Operating System

4.1 Introduction

This section mainly introduces DevKit8500D/A system and application development of Windows

Embedded CE 6.0 R3, as well as software resources in disc, software features, establishment of

development environment, and how to compile and port BSP (board support package) and so on

4.2 Software Resources

BSP (Board Support Package)

CD\wince_6\BSP\DevKit8500.rar

CD\wince_6\BSP\OMAP35XX_TPS659XX_TI_V1.rar

CD\ wince_6\PowerVR\wince_gfx_sgx_01_01_00_patch_01_setup.exe

Windows Embedded CE 6.0 R3 sample project

CD\wince_6\prj\DevKit8500.rar

Sample application

CD\wince_6\app\GPIOAppDemo.rar

Pre-compile image

CD\wince_6\Image\

MLO First bootloader for SD card boot

Xldrnand.nb0 First bootloader for nand boot

Ebootsd.nb0 Second bootloader for SD card boot

Ebootnand.nb0 Second bootloader for nand boot

Nk.bin WinCE runtime image

 81

4.3 Features

Resources of BSP:

Catalog Item
Source code /

binary

X-Loader

(First boot loader)

NAND Source

ONENAND source

SD Source

EBOOT

(Second boot

loader)

NAND Source

ONENAND Source

SD source

OAL

KILT(USB RNDIS) Source

REBOOT Source

Watchdog Source

RTC Source

System timer Source

Interrupt controll Source

Low power suspend Source

Driver

NLED driver Source

GPIO/I2C/SPI/MCBSP driver Source

Serial port driver Source

6X6 keyboard driver Source

Audio driver Source

NAND driver Source

Display driver(LCD/DVI. S

-Video/Composite Video)/ TOUCH driver
Source

SD/MMC/SDIO driver Source

DM9000 network card driver Source

USB OTG driver Source

USB EHCI driver Source

 82

VRFB driver Source

DSPLINKK/CMEMK driver Binary

AAC/MPEG2/MPEG4/H264 DSP Hardware

decode fitler
Binary

GPIO keyboard driver Source

PWM(TPS65930)driver Source

ADC(TPS65930)driver Source

ONENAND driver Source

Camera driver Source

DMA driver Source

RTC driver Source

Backlight driver Source

Battery driver Source

Sleep / wakeup button driver Source

DVFS/Smart Reflex Source

SDK powerVR DDK & SDK Binary & Source

4.4 System Development

4.4.1 Installation of IDE(Integrated Development Environment)

Please install items below to windows XP/Vista by step:

1) Visual Studio 2005

2) Visual Studio 2005 SP1

3) Visual Studio 2005 SP1 Update for Vista (vista system require)

4) Windows Embedded CE 6.0 Platform Builder

5) Windows Embedded CE 6.0 SP1

6) Windows Embedded CE 6.0 R2

7) Windows Embedded CE 6.0 Product Update Rollup 12/31/2008

8) Windows Embedded CE 6.0 R3

9) Windows Embedded CE 6.0 Product Update Rollup 12/31/2009

10) ActiveSync 4.5

 83

11) Windows Mobile 6 Professional SDK

4.4.2 Extract BSP and project files to IDE

The following preparations should be made:

1) Extract [\wince_6\bsp\DevKit8500.rar] to [C:\WINCE600\PLATFORM] directory.

2) Extract [\wince_6\bsp\OMAP35XX_TPS659XX_TI_V1.rar] to

[C:\WINCE600\PLATFORM\COMMON\SRC\SOC].

3) Double click [CD\wince_6\powerVR\wince_gfx_sgx_01_01_00_patch_01_setup.exe] to

install powerVR DDK and SDK, default install path is C:\TI\wince_gfx_sgx_01_01_00_patch_01,

copy C:\TI\wince_gfx_sgx_01_01_00_patch_01\poweVR directory to C:\wince600\public.

4) Copy CD directory [CDROM\wince_6\prj\DevKit8500] to [C:\WINCE600\OSDesigns]

directory。

5) Please modify the LCD or DVI config beford build solution.

For the 4.3” LCD

Modify platform/DevKit8500/src/drivers/lcd/vga/lcd_vga.c

#define LCD_4_3_INCH 1

//#define LCD_5_6_INCH 1

//#define LCD_7_INCH 1

For the 7” LCD

Modify platform/DevKit8500/src/drivers/lcd/vga/lcd_vga.c

//#define LCD_4_3_INCH 1

//#define LCD_5_6_INCH 1

#define LCD_7_INCH 1

For DVI output

Modify DevKit8500.bat

set BSP_DVI_1280W_720H=1

set BSP_NOTOUCH=1

 84

The default installation path of the Windows Embedded CE 6.0 in this

context is [C:\WINCE600].

4.4.3 Sysgen & BSP compile

Below are the steps given for Sysgen and BSP build

1) Open the existing project file DevKit8500.sln[C:\WINCE600\OSDesigns\DevKit8500]

2) Select [Build-> Build Solution] in vs2005 to sysgen and build BSP.

3) Images including MLO, EBOOTSD.nb0, NK.bin will be created after sysgen phase and build

phase finished successfully, Copy the files MLO, EBOOTSD.nb0 and NK.bin

under[C:\WINCE600\OSDesigns\DevKit8500\DevKit8500\RelDir\DevKit8500_ARMV4I_Release]

to the SD card.

4) Insert the SD card into the device and boot the device for a test.

4.4.4 Introduction of driver

The following picture shows the BSP architecture of DevKit8500D/A:

Source code path of all drivers of BSP:

NLED driver bsp\DevKit8500\SRC\DRIVERS\NLED

 85

GPIO
bsp\DevKit8500\SRC\DRIVERS\GPIO

bsp\OMAP35XX_TPS659XX_TI_V1\omap35xx\GPIO

I2C

bsp\OMAP35XX_TPS659XX_TI_V1\omap35xx\OAL\I2C

bsp\DevKit8500\SRC\OAL\OALI2C

bsp\OMAP35XX_TPS659XX_TI_V1\omap35xx\CEDDK\I2C

SPI bsp\OMAP35XX_TPS659XX_TI_V1\omap35xx\SPI

MCBSP driver bsp\OMAP35XX_TPS659XX_TI_V1\omap35xx\MCBSP

Serial port driver

bsp\OMAP35XX_TPS659XX_TI_V1\omap\COM_MDD2

bsp\OMAP35XX_TPS659XX_TI_V1\omap35xx\UART

6X6 keyboard driver
bsp\OMAP35XX_TPS659XX_TI_V1\omap\GPIO_KEYPAD

bsp\DevKit8500\SRC\DRIVERS\KEYPAD

Audio driver

bsp\DevKit8500\SRC\DRIVERS\CESYSGEN\WAVE

bsp\OMAP35XX_TPS659XX_TI_V1\omap\TPS659XX\WAV

E

bsp\OMAP35XX_TPS659XX_TI_V1\omap35xx\WAVE

NAND driver
bsp\OMAP35XX_TPS659XX_TI_V1\omap35xx\BLOCK

bsp\DevKit8500\SRC\DRIVERS\BLOCK\NAND

Display driver(LCD/DVI. S

-Video/Composite Video)

bsp\DevKit8500\SRC\DRIVERS\DISPLAY

bsp\DevKit8500\SRC\DRIVERS\LCD

bsp\OMAP35XX_TPS659XX_TI_V1\omap35xx\DISPLAY

TOUCH driver bsp\DevKit8500\SRC\DRIVERS\TOUCH

SD/MMC/SDIO driver

bsp\DevKit8500\SRC\DRIVERS\SDBUS

bsp\DevKit8500\SRC\DRIVERS\SDHC

bsp\DevKit8500\SRC\DRIVERS\SDMEMORY

bsp\OMAP35XX_TPS659XX_TI_V1\omap35xx\SDHC

DM9000 network card

driver
bsp\DevKit8500\SRC\DRIVERS\DM9000

USB OTG driver
bsp\DevKit8500\SRC\DRIVERS\MUSB

bsp\OMAP35XX_TPS659XX_TI_V1\omap35xx\musb

USB EHCI driver bsp\OMAP35XX_TPS659XX_TI_V1\omap35xx\USB\EHCIP

 86

DD

VRFB driver bsp\OMAP35XX_TPS659XX_TI_V1\omap35xx\VRFB

DSPLINKK/CMEMK
bsp\DevKit8500\FILES\ cmemk.dll

bsp\DevKit8500\FILES\ dsplinkk.dll

AAC/MPEG2/MPEG4/H2

64 DSP

Hardware decode fitler

bsp\DevKit8500\FILES\ MPEG2VideoDecoder.dll

bsp\DevKit8500\FILES\ MPEG4VideoDecoder.dll

bsp\DevKit8500\FILES\ H264VideoDecoder.dll

bsp\DevKit8500\FILES\ AACAudioDecoder.dll

GPIO keyboard driver
bsp\OMAP35XX_TPS659XX_TI_V1\omap\GPIO_KEYPAD

bsp\DevKit8500\SRC\DRIVERS\KEYPAD

PWM(TPS65930)driver bsp\OMAP35XX_TPS659XX_TI_V1\omap\TLED

ADC(TPS65930)driver
bsp\OMAP35XX_TPS659XX_TI_V1\omap\TPS659XX\MAD

C

ONENAND drive bsp\DevKit8500\SRC\DRIVERS\BLOCK\ONENAND

Camera driver
bsp\DevKit8500\SRC\DRIVERS\CAMERA_MDC

bsp\DevKit8500\SRC\DRIVERS\CAMERA_D

Backlight driver bsp\DevKit8500\SRC\DRIVERS\BACKLIGHT

Battery driver bsp\DevKit8500\SRC\DRIVERS\BATTERY

Sleep / wake-up button

driver

bsp\DevKit8500\SRC\DRIVERS\PWRKEY

DVFS/Smart Reflex
bsp\OMAP35XX_TPS659XX_TI_V1\omap\PM

bsp\DevKit8500\SRC\DRIVERS\PM

DMA driver bsp\OMAP35XX_TPS659XX_TI_V1\omap35xx\DMA

RTC driver bsp\OMAP35XX_TPS659XX_TI_V1\omap\RTC

If the user wants to refer to more WinCE driver development, please refer to the specific reference

document of the Windows Embedded CE 6.0 compilation tool,

Start->

All programs->

Microsoft Visual Studio 2005->

 87

MicroSoft Visual Studio Document->

Content(C)->

Windows Embedded CE 6.0->Develop a Device Driver.

4.5 Update System Image

DevKit8500D/A supports boot-up from TF card and NAND; this section will respectively introduce

two different system update ways.

4.5.1 Update TF card Image

1) Format TF card

Please refer to contents of 3.7.1 Update of TF card system image.

2) Copy runtime image

navigate to sub-directory lcd_800x480, lcd_480x272 and DVI_1280x720 under directory

wince_6/image. You can select a specific sub-directory according to your display device,

lcd_480x272 for LCD 4.3", lcd_800x480 for LCD 7", and DVI_1280x720 for VGA.

Copy MLO, EBOOTSD.nb0 and NK.bin image files to the TF card root directory.

3) Boot system

Insert TF card and reboot the system. At this time, the system boots from TF card. The

HyperTerminal will display boot message as below:

60

Texas Instruments Windows CE SD X-Loader for EVM 3730

Built Mar 23 2011 at 08:31:15

Version 6.15.00

open ebootsd.nb0 file

Init HW: controller RST

SDHC: 1 bit mode

SDCARD: reqested speed 1000000, actual speed 1000000

Using 4 bit mode

SDHC: 4 bit mode

SDCARD: reqested speed 25000000, actual speed 24000000

read ebootsd.nb0 file

 88

jumping to ebootsd image

Microsoft Windows CE Bootloader Common Library Version 1.4 Built Mar 22 2011 18:45:08

Texas Instruments Windows CE EBOOT for Mistral OMAP EVM, Built Mar 23 2011 at

08:31:11

EBOOT Version 1.1, BSP 6.15.00

TI DM3730 Version 0x2b89102f (unknown)

TPS659XX Version 0x10 (ES1.1)

System ready!

Preparing for download...

INFO: Predownload....

WARN: Boot config wasn't found, using defaults

INFO: SW4 boot setting: 0x2f

>>> Forcing cold boot (non-persistent registry and other data will be wiped) <<<

Hit space to enter configuration menu 1...

Init HW: controller RST

SDHC: 1 bit mode

SDCARD: reqested speed 1000000, actual speed 1000000

Using 4 bit mode

SDHC: 4 bit mode

SDCARD: reqested speed 25000000, actual speed 24000000

BL_IMAGE_TYPE_BIN

Download file information:

[0]: Address=0x80101000 Length=0x022a14e4 Save=0x80001000

 89

Download file type: 1 (You may wait for a longer time here as the system boots from TF

card)

rom_offset=0x0.

ImageStart = 0x80101000, ImageLength = 0x22A14E4, LaunchAddr = 0x8010F82C

Completed file(s):

[0]: Address=0x80101000 Length=0x22A14E4 Name="" Target=RAM

ROMHDR at Address 80101044h

Launch Windows CE image by jumping to 0x8000f82c...

Windows CE Kernel for ARM (Thumb Enabled) Built on Oct 20 2009 at 18:39:19

OAL: CPU revision 0xffffffff

OAL: CPU L2 Aux register 0x400042

--- High Performance Frequecy is 32768 khz---

To this point, the system has entered the calibration screen of WinCE, after finish of calibration, the

system enters the desktop system of WinCE.

4.5.2 Update Nand flash Image

1) Format TF card

Please refer to contents of 3.7.1 Update the image for TF card

2) Copy runtime image

 Position to sub-catalogue lcd_800x480, lcd_480x272 and DVI_1280x720 under

catalogue wince_6/image. You can select a specific sub-catalogue according to your

display device, lcd_480x272 for LCD 4.3", lcd_800x480 for LCD 7", and DVI_1280x720

for VGA.

 Copy MLO, EBOOTNAND.nb0, NK.bin and XLDRNAND.nb0 image files in the selected

folder to the TF card, and rename EBOOTNAND.nb0 as EBOOTSD.nb0.

3) Flashing image file

 Insert TF card and reboot the system. At this time, the system boots from TF card. The

 90

HyperTerminal will display boot message, you can press [SPACE] to enter the EBOOT

menu. Flashing image to NAND flash according to the following steps:

 Press [5] to enter the Flash menu.

 Press [a], [b] and [c] to write XLDR, EBOOT and NK images respectively.

 Then press [0] to return to main menu, and respectively press [2], [4], [7] and [y] to

change the boot setting.

remove TF card and then reboot the system. And then, the system will boot from NAND Flash.

4.6 Instructions for use

4.6.1 How to use S-Video interface

In the WinCE operating system

1) Launch Start->Program->Command Prompt in windows CE

2) Type in the line below and enter in Command Prompt

do tvout on

4.6.2 How to use openGL ES demo

Copy C:\TI\wince_gfx_sgx_01_01_00_patch_01 \PowerVR-SDK\OGLES1.1\Binaries\Demos or

C:\WINCE600\PUBLIC\PowerVR\oak\target\Rev125\ARMV4I\retail*.exe to DevKit8500 wince

system. And double click the demos to test.

Known problem: Some demos are unable to work normally when DVI is

used as output. This problem will be solved in the next release version.

4.6.3 How to use CAM8000-A module

1) Modify the lines below in DevKit8500.bat

set BSP_NOCAMERA=

set BSP_NOCAMERA_MDC=

set BSP_NODIGITALCAMERA=1

2) Rebuild solution in VS2005 to create nk.bin

3) Connect camera8000-A module to DEVKIDevKitT8500 and boot with updated nk.bin.

 91

4) Copy C:\wince600\platform\DevKit8500\files\CameraDshowApp_analog.exe to target system

and then launch.

Knowing issue: CAM8000-A cannot work well on DVI display mode. This

problem would be solved in next release edition, so it is recommend that

use the 4.3/7 inch LCD when use cam8000-a module currently.

4.6.4 How to use CAM8000-D module

1) Modify the lines below in DevKit8500.bat

set BSP_NOCAMERA=

set BSP_NOCAMERA_MDC=1

set BSP_NODIGITALCAMERA=

2) Add the line below in the file locate in C:\wince600\platform\DevKit8500\src\driver\dirs

camera

3) Rebuild solution in vs 2005 to create nk.bin

4) Connect camera8000-D module to DevKit8500D/A and boot with updated nk.bin.

5) Copy C:\wince600\platform\DevKit8500\files\CameraDshowApp_digital.exe to target system

and then launch.

4.7 The development of application

This chapter introduces how to develop Windows Embedded CE 6.0 application program in

DevKit8500D/A.

Before development, it is necessary to install Windows Mobile 6 Professional SDK. Please refer to

Appendix VI for download path.

It is necessary to establish Windows Embedded CE 6.0 development

platform in order to develop Windows Embedded CE 6.0 operating system.

The development case in this Manual is based on development of

Windows Mobile 6 Professional SDK.

4.7.1 Application program interfaces and examples

API used for development of DevKit8500D/A application programs employs Microsoft Windows

 92

Embedded CE 6.0 standard application program interface definition, DevKit8500D/A only expands

interface definition of GPIO based on standard API. Please refer to the CD\wince_6\app for the

application program representatives that control the status of LED through GPIO pin.

Please check relative Help documents of MSDN Windows Embedded CE 6.0 API for Windows

Embedded CE 6.0 standard application program interface definition.

There are some use routines of standard API in the chapter GPIO

Application Program Development Case for reference of users. Some

interfaces exported by drivers can only be used by drivers; the application

programs have no permission to call them.

4.7.2 GPIO application program interfaces and examples

GPIO device name is L"GIO1:", corresponding device IOCTL code includes:

IOCTL Code Description

IOCTL_GPIO_SETBIT Set GPIO pin as 1

IOCTL_GPIO_CLRBIT Set GPIO pin as 0

IOCTL_GPIO_GETBIT Read GPIO pin

IOCTL_GPIO_SETMODE Set the working mode of GPIO pin

IOCTL_GPIO_GETMODE Read the working mode of GPIO pin

IOCTL_GPIO_GETIRQ
Read the corresponding IRQ of GPIO

pin

Operation example is showed below:

1) Open GPIO device

 HANDLE hFile = CreateFile(_T("GIO1:”), (GENERIC_READ|GENERIC_WRITE),

(FILE_SHARE_READ|FILE_SHARE_WRITE), 0, OPEN_EXISTING, 0, 0);

2) Set read the working mode of GPIO

 DWORD id = 0, mode = 0;

3) Set the working mode of GPIO:

 DWORD pInBuffer[2];

 pInBuffer[0] = id;

 pInBuffer[1] = mode;

 93

 DeviceIoControl(hFile, IOCTL_GPIO_SETMODE, pInBuffer, sizeof(pInBuffer), NULL, 0, NULL, NULL);

4) Read the working mode of GPIO:

 DeviceIoControl(hFile, IOCTL_GPIO_GETMODE, &id, sizeof(DWORD), &mode, sizeof(DWORD), NULL,

NULL);

"id" is GPIO Pin number, "mode" is GPIO mode, including:

Mode definition Description

GPIO_DIR_OUTPUT Output mode

GPIO_DIR_INPUT Input mode

GPIO_INT_LOW_HIGH Rising edge trigger mode

GPIO_INT_HIGH_LOW Falling edge trigger mode

GPIO_INT_LOW low level trigger mode

GPIO_INT_HIGH high level trigger mode

GPIO_DEBOUNCE_ENABLE Jumping trigger enable

5) The operation of GPIO Pin

 DWORD id = 0, pin = 0;

6) Output high level:

 DeviceIoControl(hFile, IOCTL_GPIO_SETBIT, &id, sizeof(DWORD), NULL, 0, NULL, NULL);

7) Output low level:

 DeviceIoControl(hFile, IOCTL_GPIO_CLRBIT, &id, sizeof(DWORD), NULL, 0, NULL, NULL);

8) Read the pin state

 DeviceIoControl(hFile, IOCTL_GPIO_GETBIT, &id, sizeof(DWORD), &pin, sizeof(DWORD), NULL, NULL);

"id" is GPIO pin number, "pin" returns to pin state

9) Other optional operation

Read the corresponding IRQ number of GPIO pin

 DWORD id = 0, irq = 0;

 DeviceIoControl(hFile, IOCTL_GPIO_GETIRQ, &id, sizeof(DWORD), &irq, sizeof(DWORD), NULL, NULL);

"id" is GPIO pin number, "irq" returns IRQ number

10) Close GPIO device

 CloseHandle(hFile);

 94

(1) Definition of GPIO pin: 0~191 MPU Bank1~6 GPIO pin, 192~209

TPS65930 GPIO 0~17.

(2) GPIO pin 0~191 has to be configured as GPIO under xldr/platform.c

and oalib/oem_pinmux.c two files.

(3) GPIO break mode can only be used by drivers; setting such mode in

application programs is invalid.

 95

Appendix

Appendix I Hardware Dimensions

Figure Appedix.1 Hardware Dimensions Diagram

 96

Appendix II The Installation Of Ubuntu

Installing Ubuntu in Windows using VirtualBox

The screenshots in this tutorial use Ubuntu 11.04, but the same principles apply also to Ubuntu

10.10, 11.04, and any future version of Ubuntu. Actually, you can install pretty much any Linux

distribution this way.

VirtualBox allows you to run an entire operating system inside another operating system. Please

be aware that you should have a minimum of 512 MB of RAM. 1 GB of RAM or more is

recommended.

Installation Process

1. Download software

Before installing Ubuntu, you must get VirtualBox software and Ubuntu disk image (ISO file).

 Available in the VirtualBox download page VirtualBox program VirtualBox-4.0.10-72479-Win.exe.

 In the Ubuntu download page to get Ubuntu disk image ubuntu-11.04-desktop-i386.iso.

2. Create New Virtual machine

Figure Appedix 2.2.1

After you launch VirtualBox from the Windows Start menu, click on New to create a new virtual

machine. When the New Virtual Machine Wizard appears, click Next.

http://www.virtualbox.org/wiki/Downloads
http://www.ubuntu.com/download/ubuntu/download

 97

Figure Appedix 2.2.2

You can call the machine whenever you want. If you're installing Ubuntu, it makes sense to call it

Ubuntu, I guess. You should also specify that the operating system is Linux.

Figure Appedix 2.2.3

VirtualBox will try to guess how much of your memory (or RAM) to allocate for the virtual machine.

If you have 1 GB or less of RAM, I would advise you stick with the recommendation. If, however,

you have over 1 GB, about a quarter your RAM or less should be fine. For example, if you have 2

GB of RAM, 512 MB is fine to allocate. If you have 4 GB of RAM, 1 GB is fine to allocate. If you

have no idea what RAM is or how much of it you have, just go with the default.

Click Next.

 98

Figure Appedix 2.2.4

If this is your first time using VirtualBox (which it probably is if you need a tutorial on how to use it),

then you do want to create new hard disk and then click Next.

Figure Appedix 2.2.5

Click Next again.

 99

Figure Appedix 2.2.6

Theoretically, a dynamically expanding virtual hard drive is best, because it'll take up only what

you actually use. I have come upon weird situations, though, when installing new software in a

virtualized Ubuntu, in which the virtual hard drive just fills up instead of expanding. So I would

actually recommend picking a Fixed-size storage.

Figure Appdix 2.2.7

Ubuntu's default installation is less than 8 GB. If you plan on adding software or downloading large

files in your virtualized Ubuntu, you should tack on some buffer.

Figure Appedix 2.2.8

 100

Figure Appedix 2.2.9

Click Finish and wait for the virtual hard drive to be created. This is actually just a very large file

that lives inside of your Windows installation.

Figure Appedix 2.2.10

Click Finish. the virtual hard drive is successfully created.

 101

3. Installing Ubuntu

Figure Appedix 2.3.1

Figure Appedix 2.3.2

Before Installing Ubuntu in a virtual machine, the first thing to do to make the (currently blank)

virtual hard drive useful is to add the downloaded Ubuntu disk image (the .iso) boot on your virtual

machine. Click on Settings and Storage. Then, under CD/DVD Device, next to Empty, you'll see a

little folder icon. Click that, and you can select the Ubuntu .iso you downloaded earlier.

 102

Figure Appedix 2.3.3

Once you've selected it, click OK.

Then double-click your virtual machine to start it up.

Figure Appedix 2.3.4

 103

Figure Appedix 2.3.5

Click OK

Figure Appedix 2.3.6

 104

Figure Appedix 2.3.7

Select language and click Install Ubuntu.

Figure Appedix 2.3.8

There is a new option in the Ubuntu 11.04 and 10.10 installers that asks if you want to install

closed source third-party software for MP3 playback and Flash, for example. I would strongly

suggest—unless you know who Richard Stallman is—that you check (or tick) this option.

http://en.wikipedia.org/wiki/Richard_stallman

 105

Figure Appedix 2.3.9

Click Forward.

Figure Appedix 2.3.10

This is the no-turning-back point. If you decide to do this, your hard drive will be repartitioned and

part or all of it will be formatted. Before you click this button “Install Now” to continue, make sure

you have everything backed up.

 106

Figure Appedix 2.3.11

While Ubuntu is preparing files to copy over for installation, it'll ask you some questions. They're

self-explanatory.

Figure Appedix 2.3.12

 107

Figure Appedix 2.3.13

Figure Appedix 2.3.14

 108

Figure Appedix 2.3.15

The installation will finish (the whole thing can take anywhere between 15 minutes and an hour,

depending on the speed of your computer).

 109

Figure Appedix 2.3.16

Afterwards, in order to use your virtualized installation (instead of continually booting the live CD),

you have to change the CD/DVD Device entry to be Empty again.

Appendix III Driver Installation Of Linux USB

Ethernet/RNDIS Gadget

1. If you don’t install driver of Linux USB Ethernet/RNDIS Gadget, PC will find the new hardware

 110

and give you a hint on the screen, please select “From list or designated location”, then click

“Next”

Figure Appedix 3.1

2. Designate a path for the usb driver, and the usb driver directory is [disk\linux\tools], then click

“Next”

Figure Appedix 3.2

3. When the following appears, select “Continue”

 111

Figure Appedix 3.3

4. Please wait until the installation is completed

Figure Appedix 3.4

 112

Appendix IV Linux Boot Disk Format

How to create a dual-partition card for DevKit8500D/A to boot Linux from first partition and have

root file system at second partition

Introduction

This guide is meant for those who are looking to create a dual-partition card, booting from a FAT

partition that can be read by the DM3 ROM bootloader and Linux/Windows, then utilizing an ext3

partition for the Linux root file system.

Text marked with [] shows user input.

1. Determine which device the SD Card Reader is your system

Plug the SD Card into the SD Card Reader and then plug the SD Card Reader into your system.

After doing that, do the following to determine which device it is on your system.

$ [dmesg | tail]

...

[6854.215650] sd 7:0:0:0: [sdc] Mode Sense: 0b 00 00 08

[6854.215653] sd 7:0:0:0: [sdc] Assuming drive cache: write through

[6854.215659] sdc: sdc1

[6854.218079] sd 7:0:0:0: [sdc] Attached SCSI removable disk

[6854.218135] sd 7:0:0:0: Attached scsi generic sg2 type 0

...

In this case, it shows up as /dev/sdc (note sdc inside the square brackets above).

2. Check to see if the automounter has mounted the SD Card

Note there may be more than one partition (only one shown in the example below).

$ [df -h]

Filesystem Size Used Avail Use% Mounted on

...

/dev/sdc1 400M 94M 307M 24% /media/disk

...

 113

Note the "Mounted on" field in the above and use that name in the umount commands below.

3. If so, unmount it

$ [umount /media/disk]

4. Start fdisk

Be sure to choose the whole device (/dev/sdc), not a single partition (/dev/sdc1).

$ [sudo fdisk /dev/sdc]

5. Print the partition record

So you know your starting point. Make sure to write down the number of bytes on the card (in this

example, 2021654528).

Command (m for help): [p]

Disk /dev/sdc: 2021 MB, 2021654528 bytes

255 heads, 63 sectors/track, 245 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System

/dev/sdc1 * 1 246 1974240+ c W95 FAT32 (LBA)

Partition 1 has different physical/logical endings:

 phys=(244, 254, 63) logical=(245, 200, 19)

6. Delete any partitions that are there already

Command (m for help): [d]

Selected partition 1

7. Set the Geometry of the SD Card

If the print out above does not show 255 heads, 63 sectors/track, then do the following expert

mode steps to redo the SD Card:

1). Go into expert mode.

 114

Command (m for help): [x]

2). Set the number of heads to 255.

Expert Command (m for help): [h]

Number of heads (1-256, default xxx): [255]

3)Set the number of sectors to 63.

Expert Command (m for help): [s]

Number of sectors (1-63, default xxx): [63]

4)Now calculate the number of Cylinders for your SD Card.

#cylinders = FLOOR (the number of Bytes on the SD Card (from above) / 255 / 63 / 512)

So for this example: 2021654528 / 255 / 63 / 512 = 245.79. So we use 245 (i.e. truncate,

don't round).

5)Set the number of cylinders to the number calculated.

Expert Command (m for help): [c]

Number of cylinders (1-256, default xxx): [enter the number you calculated]

6) Return to Normal mode.

Expert Command (m for help): [r]

8. Print the partition record to check your work

Command (m for help): [p]

Disk /dev/sdc: 2021 MB, 2021654528 bytes

255 heads, 63 sectors/track, 245 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System

 115

9. Create the FAT32 partition for booting and transferring files from Windows

Command (m for help): [n]

Command action

 e extended

 p primary partition (1-4)

[p]

Partition number (1-4): [1]

First cylinder (1-245, default 1): [(press Enter)]

Using default value 1

Last cylinder or +size or +sizeM or +sizeK (1-245, default 245): [+5]

Command (m for help): [t]

Selected partition 1

Hex code (type L to list codes): [c]

Changed system type of partition 1 to c (W95 FAT32 (LBA))

10. Mark it as bootable

Command (m for help): [a]

Partition number (1-4): [1]

11. Create the Linux partition for the root file system

Command (m for help): [n]

Command action

 e extended

 p primary partition (1-4)

[p]

Partition number (1-4): [2]

First cylinder (52-245, default 52): [(press Enter)]

Using default value 52

Last cylinder or +size or +sizeM or +sizeK (52-245, default 245): [(press Enter)]

 116

Using default value 245

12. Print to Check Your Work

Command (m for help): [p]

Disk /dev/sdc: 2021 MB, 2021654528 bytes

255 heads, 63 sectors/track, 245 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System

/dev/sdc1 * 1 51 409626 c W95 FAT32 (LBA)

/dev/sdc2 52 245 1558305 83 Linux

13. Save the new partition records on the SD Card

This is an important step. All the work up to now has been temporary.

Command (m for help): [w]

The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: Re-reading the partition table failed with error 16: Device or resource busy.

The kernel still uses the old table.

The new table will be used at the next reboot.

WARNING: If you have created or modified any DOS 6.x

partitions, please see the fdisk manual page for additional

information.

Syncing disks.

14. Format the partitions

The two partitions are given the volume names LABEL1 and LABEL2 by these commands. You

 117

can substitute your own volume labels.

$ [sudo mkfs.msdos -F 32 /dev/sdc1 -n LABEL1]

mkfs.msdos 2.11 (12 Mar 2005)

$ [sudo mkfs.ext3 -L LABEL2 /dev/sdc2]

mke2fs 1.40-WIP (14-Nov-2006)

Filesystem label=

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

195072 inodes, 389576 blocks

19478 blocks (5.00%) reserved for the super user

First data block=0

Maximum filesystem blocks=402653184

12 block groups

32768 blocks per group, 32768 fragments per group

16256 inodes per group

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912

Writing inode tables: done

Creating journal (8192 blocks): done

Writing superblocks and filesystem accounting information:

Notes: After formatting and dividing into FAT and EXT3 under ubuntu

system, the FAT needs reformatting under windows system, otherwise,

start-up with SD card can be realized.

 118

Appendix V The Setup Of TFTP Server

1. Install client

$>sudo apt-get install tftp-hpa

$>sudo apt-get install tftpd-hpa

2. Install inet

$>sudo apt-get install xinetd

$>sudo apt-get install netkit-inetd

3. Configure the server

First, create tftpboot under root directory, and set the properties as “a random user can write and

read”

$>cd /

$>sudo mkdir tftpboot

$>sudo chmod 777 tftpboot

Secondly, add in /etc/inetd.conf:

$>sudo vi /etc/inetd.conf //copy the follow word to this file

tftpd dgram udp wait root /usr/sbin/in.tftpd /usr/sbin/in.tftpd -s /tftpboot

Then, reload inetd process:

$>sudo /etc/init.d/inetd reload

Finally, enter directory /etc/xinetd.d/, and create a new file tftp and put the designated content into

file tftp:

$>cd /etc/xinetd.d/

$>sudo touch tftp

$>sudo vi tftp ////copy the follow word to tftp file

service tftp

{

 disable = no

 socket_type = dgram

 protocol = udp

 wait = yes

 user = root

 server = /usr/sbin/in.tftpd

 119

 server_args = -s /tftpboot -c

 per_source = 11

 cps = 100 2

}

4. Reboot the server:

$>sudo /etc/init.d/xinetd restart

$>sudo in.tftpd -l /tftpboot

5. Test the server

Conduct a test; create a file under folder /tftpboot

$>touch abc

Enter into another folder

$>tftp 192.168.1.15 (192.168.1.15was the server IP)

$>tftp> get abc

That download can be made means the server has been installed.

 120

Appendix VI WinCE Source

1. Visual Studio 2005 SP1 Update for Vista (if applicable)

http://download.microsoft.com/download/c/7/d/c7d9b927-f4e6-4ab2-8399-79a2d5cdfac9/VS80sp

1-KB932232-X86-ENU.exe

2. Windows Embedded CE 6.0 Platform Builder Service Pack 1

http://www.microsoft.com/downloads/details.aspx?familyid=BF0DC0E3-8575-4860-A8E3-290ADF

242678&displaylang=en

3. Windows Embedded CE 6.0 R2

http://www.microsoft.com/downloads/details.aspx?FamilyID=f41fc7c1-f0f4-4fd6-9366-b61e0ab59

565&displaylang=en

4. Windows Embedded CE 6.0 R3

http://download.microsoft.com/download/F/5/2/F5296720-250A-4055-991C-0CEA5DE11436/CE6

R3.iso

5. WinCEPB60-091231-Product-Update-Rollup-Armv4I.msi

http://download.microsoft.com/download/E/D/7/ED779010-1B2E-4ACA-BF9F-9F1D0EF8052B/Wi

nCEPB60-091231-Product-Update-Rollup-Armv4I.msi

6. Viewers for Windows Embedded CE 6.0 R3

http://download.microsoft.com/download/3/3/8/3383B6CE-F70A-4A2C-873A-8C67D3CF55F6/We

sttekFileViewers6.exe

7. Windows Mobile 6 Professional SDK Refresh.msi

http://download.microsoft.com/download/f/2/3/f232f773-7edc-4300-be07-d3b76a5b3a91/Windows

%20Mobile%206%20Professional%20SDK%20Refresh.msi

8. Windows Embedded CE 6.0 USB Camera Driver.msi

http://download.microsoft.com/download/f/a/1/fa1aaef1-6ae3-4cf3-ab95-b01d3e428403/Windows

%20Embedded%20CE%206.0%20USB%20Camera%20Driver.msi

http://download.microsoft.com/download/c/7/d/c7d9b927-f4e6-4ab2-8399-79a2d5cdfac9/VS80sp1-KB932232-X86-ENU.exe
http://download.microsoft.com/download/c/7/d/c7d9b927-f4e6-4ab2-8399-79a2d5cdfac9/VS80sp1-KB932232-X86-ENU.exe
http://www.microsoft.com/downloads/details.aspx?familyid=BF0DC0E3-8575-4860-A8E3-290ADF242678&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=BF0DC0E3-8575-4860-A8E3-290ADF242678&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=f41fc7c1-f0f4-4fd6-9366-b61e0ab59565&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=f41fc7c1-f0f4-4fd6-9366-b61e0ab59565&displaylang=en
http://download.microsoft.com/download/F/5/2/F5296720-250A-4055-991C-0CEA5DE11436/CE6R3.iso
http://download.microsoft.com/download/F/5/2/F5296720-250A-4055-991C-0CEA5DE11436/CE6R3.iso
http://download.microsoft.com/download/E/D/7/ED779010-1B2E-4ACA-BF9F-9F1D0EF8052B/WinCEPB60-091231-Product-Update-Rollup-Armv4I.msi
http://download.microsoft.com/download/E/D/7/ED779010-1B2E-4ACA-BF9F-9F1D0EF8052B/WinCEPB60-091231-Product-Update-Rollup-Armv4I.msi
http://download.microsoft.com/download/3/3/8/3383B6CE-F70A-4A2C-873A-8C67D3CF55F6/WesttekFileViewers6.exe
http://download.microsoft.com/download/3/3/8/3383B6CE-F70A-4A2C-873A-8C67D3CF55F6/WesttekFileViewers6.exe
http://download.microsoft.com/download/f/2/3/f232f773-7edc-4300-be07-d3b76a5b3a91/Windows%20Mobile%206%20Professional%20SDK%20Refresh.msi
http://download.microsoft.com/download/f/2/3/f232f773-7edc-4300-be07-d3b76a5b3a91/Windows%20Mobile%206%20Professional%20SDK%20Refresh.msi
http://download.microsoft.com/download/f/a/1/fa1aaef1-6ae3-4cf3-ab95-b01d3e428403/Windows%20Embedded%20CE%206.0%20USB%20Camera%20Driver.msi
http://download.microsoft.com/download/f/a/1/fa1aaef1-6ae3-4cf3-ab95-b01d3e428403/Windows%20Embedded%20CE%206.0%20USB%20Camera%20Driver.msi

 121

Technical support & Warranty Service

Embest Info&Tech Co.,LTD., established in March of 2000, is a global provider of embedded

hardware and software. Embest aims to help customers reduce time to market with improved

quality by providing the most effective total solutions for the embedded industry. In the rapidly

growing market of high end embedded systems, Embest provides comprehensive services to

specify, develop and produce products and help customers to implement innovative technology

and product features. Progressing from prototyping to the final product within a short time frame

and thus shorten the time to market, and to achieve the lowest production costs possible. Embest

insists on a simple business model: to offer customers high-performance, low-cost products with

best quality and service. The content below is the matters need attention for our products technical

support and warranty service:

Technical support service

Embest provides one year free technical support service for all products. Technical support service

covers:

 Embest embedded platform products software/hardware materials

 Assist customers compile and run the source code we offer.

 Solve the problems accurs on embeded software/hardware platform if users follow the

instructions in the documentation we offer.

 Judge whether the product failure exists.

Special explanation, the situations listed below are not included in the range of our free technical

support service, and Embest will handle the situation with discretion:

 Software/Hardware issues user meet during the self-develop process

 Issues happen when users compile/run the embedded OS which is tailored by users

themselves.

 User’s own applications.

 122

 Problems happen during the modification of our software source code

Maintenance service clause

1) The products except LCD, which are not used properly, will take the warranty since the day of the

sale:

PCB: Provide 12 months free maintenance service.

2) The situations listed below are not included in the range of our free maintenance service, Embest

will charge the service fees with discretion:

A. Can’t provide valid Proof-of-Purchase, the identification label is torn up or illegible, the

identification label is altered or doesn’t accord with the actual products;

B. Don’t follow the instruction of the manual in order to damage the product;

C. Due to the natural disasters (unexpected matters), or natural attrition of the components,

or unexpected matters leads to the defects of appearance/function;

D. Due to the power supply, bump, leaking of the roof, pets, moist, impurities into the

boards, all those reasons which lead the defects of appearance/function;

E. User unauthorized weld or dismantle parts leads the product’s bad condition, or let other

people or institution which are not authorized by Embest to dismantle, repair, change the

product leads the product bad connection or defects of appearance/function;

F. User unauthorized install the software, system or incorrect configuration or computer

virus leads the defects;

G. Purchase the products through unauthorized channel;

H. Those commitments which is committed by other institutions should be responsible by

the institutions, Embest has nothing to do with that;

3) During the warranty period, the delivery fee which delivery to Embest should be covered by user,

Embest will pay for the return delivery fee to users when the product is repaired. If the warranty

period is expired, all the delivery fees will be charged by users.

4) When the board needs repair, please contact technical support department.

 123

Note: Those products are returned without the permission of our technician, we will not take any

responsibility for them.

Basic notice to protect and maintenance LCD

1) Do not use finger nails or hard sharp object to touch the surface of the LCD, otherwise user can’t

enjoy the above service.

2) Embest recommend user to purchase a piece of special wiper to wipe the LCD after long time use ,

please avoid clean the surface with fingers or hands to leave fingerprint.

3) Do not clean the surface of the screen with chemicals, otherwise user can not enjoy above service.

Note: Embest do not supply maintenance service to LCDs. We suggest the customer first

check the LCD after getting the goods. In case the LCD can not run or show no display,

customer should inform Embest within 7 business days from the moment of getting the

goods.

Value Added Services

We will provide following value added services:

 Provided services of driver develop based on Embest embedded platform, like serial port, USB

interface devices, LCD screen.

 Provided the services of control system transplant, BSP drivers develop, API software develop.

 Other value added services like power adapter, LCD parts.

 Other OEM/ODM services.

 Technically training.

Please contact Embest to get technical support:

 Support Tel:+86-755-25503401

 Fax:+86-755-25616057

 124

 Pre-Sale consultation: market@embedinfo.com

 After-Sale consultation: support@embedinfo.com

mailto:market@embedinfo.com
mailto:support@embedinfo.com

	Chapter 1 Overview
	1.1 Product introduction
	1.2 Features

	Chapter 2 Hardware System
	2.1 CPU
	2.1.1 CPU Introduction
	2.1.2 CPU Features

	2.2 Description of different IC blocks
	2.2.1 TPS65930
	2.2.2 MT29C4G96MAZAPCJA-5
	2.2.3 DM9000
	2.2.4 FE1.1 for USB 2.0 High Speed 4-Port Hub
	2.2.5 TFP410
	2.2.6 MAX3232

	2.3 Hardware interface
	2.3.1 Power Input Jack
	2.3.2 Power Output Interface
	2.3.3 Power Switch
	2.3.4 S-VIDEO Interface
	2.3.5 HDMI Interface
	2.3.6 TFT_LCD Interface
	2.3.7 AUDIO OUTPUT Jack
	2.3.8 Camera Interface
	2.3.9 MIC IN Jack
	2.3.10 Keyboard Interface
	2.3.11 Serial Ports
	2.3.12 LAN Interface
	2.3.13 USB OTG Interface
	2.3.14 USB HOST Interface
	2.3.15 TF Card Interface
	2.3.16 JTAG Interface
	2.3.17 Expansion Interface
	2.3.18 KEY
	2.3.19 LED

	Chapter 3 Linux Operating System
	3.1 Introduction
	3.2 Software Resources
	3.3 Software Features
	3.4 System Development
	3.4.1 Establishing operating system, development environment
	3.4.1.1 Installation of cross compilation tools
	3.4.1.2 Addition of environment variables

	3.4.2 System compilation
	3.4.2.1 Preparation
	3.4.2.2 X-loader image generation
	3.4.2.3 U-boot image generated
	3.4.2.4 Kernel compilation
	3.4.2.5 Generation of file system
	3.4.2.6 Android compilation

	3.4.3 System Customization
	3.4.3.1 Modification of kernel configuration
	3.4.3.2 Compilation

	3.5 Introduction of driver
	3.5.1 NAND
	3.5.2 SD/MMC
	3.5.3 Display interface
	3.5.4 Video capture
	3.5.5 Audio in/out

	3.6 Driver Development
	3.6.1 Driver For The gpio_keys
	3.6.2 Driver for the gpio_leds

	3.7 Updated of system
	3.7.1 Update of TF card system image
	3.7.2 Update of NAND Flash

	3.8 Instructions
	3.8.1 Various Tests senario
	3.8.1.1 LED Testing
	3.8.1.2 KEYPAD Testing
	3.8.1.3 Touch Screen Testing
	3.8.1.4 RTC Testing
	3.8.1.5 TF Card Testing
	3.8.1.6 USB Devices Testing
	3.8.1.7 USB HOST Testing
	3.8.1.8 Audio Testing
	3.8.1.9 Network Testing
	3.8.1.10 Camera Testing
	3.8.1.11 GPRS8000-S module
	3.8.1.12 GPS8000-S module
	3.8.1.13 CDMA8000-U module
	3.8.1.14 WCDMA8000-U module

	3.8.2 Demo
	3.8.2.1 Android system demonstration
	3.8.2.2 DVSDK System Demonstration

	3.9 The Development Of Application

	Chapter 4 WinCE Operating System
	4.1 Introduction
	4.2 Software Resources
	4.3 Features
	4.4 System Development
	4.4.1 Installation of IDE(Integrated Development Environment)
	4.4.2 Extract BSP and project files to IDE
	4.4.3 Sysgen & BSP compile
	4.4.4 Introduction of driver

	Microsoft Visual Studio 2005->
	4.5 Update System Image
	4.5.1 Update TF card Image
	4.5.2 Update Nand flash Image

	4.6 Instructions for use
	4.6.1 How to use S-Video interface
	4.6.2 How to use openGL ES demo
	4.6.3 How to use CAM8000-A module
	4.6.4 How to use CAM8000-D module

	4.7 The development of application
	4.7.1 Application program interfaces and examples
	4.7.2 GPIO application program interfaces and examples

	Appendix
	Appendix I Hardware Dimensions
	Appendix II The Installation Of Ubuntu
	Appendix III Driver Installation Of Linux USB Ethernet/RNDIS Gadget
	Appendix IV Linux Boot Disk Format
	Appendix V The Setup Of TFTP Server
	Appendix VI WinCE Source

	Technical support & Warranty Service
	Technical support service
	Maintenance service clause
	Basic notice to protect and maintenance LCD
	Value Added Services

