1 MEGA BIT (65,536 WORD × 16 BIT) CMOS ONE TIME PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION

The TC54Hl024P/F is a 65,536 word \times 16 bit one time programmable read only memory. and molded in a 40 pin plastic package.

TC54Hl024P/F is fabricated with the CMOS technology. Advanced circuit techniques provide both high speed and low power features with a maximum operating current of 40mA/1MHz.

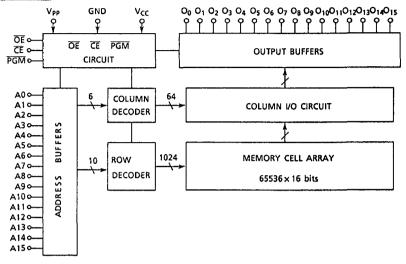
The electrical characteristics and programming method are the same as U.V.EPROM TC57H1024D. Once programmed, the TC54H1024P/F cannot be erased because of using plastic package without transparent window.

FEATURES

- Peripheral circuit : CMOS Memory cell : N-MOS
- Fast access time TC54Hl024P/F-85 : 85ns TC54Hl024P/F-10 : 100ns
- Low power dissipation

Active : 40mA/1MHz Standby : 100µA

•	Single	5V	power	supply
---	--------	----	-------	--------


- Full static operation
- High speed programming operation : tpw 0.1ms
- Input and output TTL compatible
- JEDEC standard 40 pin
- TC54Hl024P:standard 40pin plastic package
- TC54Hl024F: 40pin plastic package

PIN CONNEC	TION (TOP VIEW)
	40] V _{cc} 39] 8GM
<u>⊂</u> E []2 015 []3	38 NC
D14 []4	37 AIS
D13 []5	36 AI4
D12 06	35] A13
D11 07	34] A12
D10 08	33] A11
D9 09	32] A10
D8 []10	31] A9
V _{SS} []11	30] V ₅₅
D7 []12	29] A8
D6 [] 13	28] ^{A7}
D5 [] 14	27] A6
D4 [] 15	26 A5
D3 [] 16	25 A4
D2 17	24 A3
D1 []18	23 A2
D0 []19	22 A1
ठह [] 20	21) A0

PIN NAMES

A0~A15	Address Inputs
D0~D15	Outputs (Inputs)
टह	Chip Enable Input
ŌĒ	Output Enable Input
PGM	Program Control Input
V _{cc}	V _{CC} Supply Voltage
Vpp	Program Supply Voltage
V _{SS}	Ground
NC	No Connection

BLOCK DIAGRAM

MODE SELECTION

MODE	IN CE	DE	PGM	Vpp	Vcc	D0~D15	Power	
Read	ι	L	н			Data Out	Active	
Output Deselect	*	н	*	5∨	5∨	litek terandanan	Acuve	
Standby	н *		*			High Impedance	Standby	
Program	L	*	Ĺ			Data In		
Program Inhibit	н	*	*			18-h Incodeses	Active	
	L	н	н	12.75V 6.25V		High Impedance	Active	
Program Verify	L	L	н]		Data Out]	

* H or L

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	V _{CC} Power Supply Voltage	- 0.6~7.0	v
V _{PP}	Program Supply Voltage	- 0.6~14.0	v
VIN	input Voltage	- 0.6~7.0	v
V _{IN} (A9)	Input Voltage (A9)	- 0.6~13.5	v
V _{I/O}	Input/Output Voltage	- 0.6~V _{CC} + 0.5	v
PD	Power Dissipation	1.5	w
TSOLDER	Soldering Temperature Time	260 • 10	°C · sec
T _{strg}	Storage Temperature	- 65~125	•C
Topr	Operating Temperature	0~70	•C

READ OPERATION

AC/DC RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	TC54H1024P/F-85/10
Та	Ambient Temperature	0~70°C
Vcc	V _{CC} Power Supply Voltage	5V ± 5%
Vpp	V _{PP} Power Supply Voltage	0V~V _{CC} + 0.6V

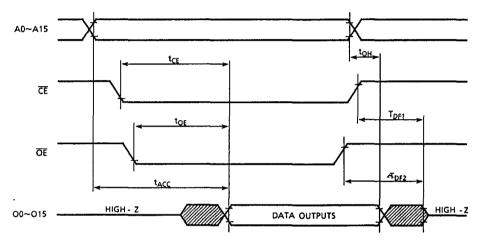
DC and OPERATING CHARACTERISTICS

SYMBOL	PARAMETER	TEST CO	NDITION	MIN.	TYP.	MAX.	UNIT
lu	Input Current	V _{IN} = 0~V _{CC}		-		± 10	μA
lcco	Operating Current	CE = 0V I _{OUT} = 0mA	t _{cycle} = 1µs	-	-	40	mA
Iccs1	Standby Current	CE = VIH		-	-	1	mA
lccs2	stanuby current	$\vec{CE} = V_{CC} - 0.2V$		-	-	100	μA
ViH	Input High Voltage			2.2	~	V _{CC} +0.3	v
VIL	Input Low Voltage		- 1	- 0.3	-	0.8	V
VOH	Output High Voltage	l _{OH} = - 400μA		2.4	-	-	V
V _{OL}	Output Low Voltage	1 _{OL} = 2.1mA			-	0.4	V
lpp1	V _{PP} Current	$V_{PP} = V_{CC} \pm 0.6^{1}$	v	-	-	± 10	μA
ILO	Ouptut Leakage Current	V _{OUT} = 0.4V~V	'cc	-	-	↑ ±10	μΑ

AC CHARACTERISTICS (VPP=0V~VCC+0.6V)

SYMBOL	PARAMETER	TC54H10	024P/F-85	TC54H10	UNIT	
	PARAMICIEN	MIN.	MAX.	MIN.	MAX.	
t _{ACC}	Address Access Time	-	85	-	100	
t _{CE}	CE to Output Valid	-	85	-	100]
toe	OE to Output Valid	0	45	-	50]
t _{DF1}	CE to Output in High-Z	0	30	0	50	- ns
t _{DF2}	OE to Output in High-Z	0	30	0	50]
tон	Output Data Hold Time	5	-	10	50	

AC TEST CONDITIONS


Ouput Load	:	1 TTL Gate and C _L =100pF
Input Pulse Rise and Fall Time	:	10ns Max.
Input Pulse Levels	:	0.45V to 2.4V
Timing Measurement Reference Level	:	Inputs 0.8V and 2.2V Outputs 0.8V and 2.0V

SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
C _{IN}	Input Capacitance	V _{IN} = 0V	-	6	10	-
С _{ОUT}	Output Capacitance	V _{OUT} = 0V	-	10	12	pt

CAPACITANCE *(Ta=25°C, f=1MHz)

* This parameter is periodically sampled and is not 100% tested.

TIMING WAVEFORMS (READ)

HIGH SPEED PROGRAM OPERATION

DC RECOMMENDED OPERATING CONDITIONS

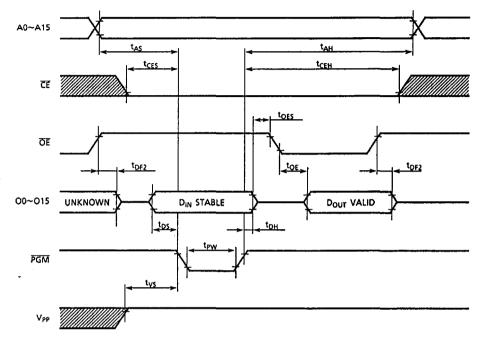
SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	2.2		V _{CC} +0.3	v
VIL	Input Low Voltage	- 0.3	-	0.8	v
Vcc	V _{CC} Power Supply Voltage	6.00	6.25	6.50	v
Vpp	V _{PP} Power Supply Voltage	12.50	12.75	13.00	v

DC AND OPERATING CHARACTERISTICS($Ta=25\pm5^{\circ}C$, VCC=6.25V $\pm0.25V$, VPP=12.75V $\pm0.25V$)

SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
I _{LI}	Input Current	V _{IN} = 0~V _{CC}	-	-	± 10	μΑ
V _{OH}	Output High Voltage	I _{OH} = - 400µA	2.4	-	-	v
Vol	Output Low Voltage	l _{OL} = 2.1mA	-	-	0.4	v
lcc	V _{CC} Supply Current	-	-	-	50	mA
IPP2	V _{PP} Supply Current	V _{PP} = 13.0V	-	-	100	mA

AC PROGRAMMING CHARACTERISTICS (Ta = $25 \pm 5^{\circ}$ C, VCC = $6.25V \pm 0.25V$, VPP = $12.75V \pm 0.25V$)

SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
t _{AS}	Address Setup Time		2	-	-	μs	
t _{AH}	Address Hold Time	-	2	-	-	μs	
t _{CES}	CE Setup Time	-	2	-	-	μs	
t _{CEH}	CE Hold Time	-	2	-	-	μs	
t _{DS}	Data Setup Time	-	2	-	-	μs	
t _{DH}	Data Hold Time	-	2	-	-	μs	
t _{vs}	V _{PP} Setup Time	-	2	-	-	μs	
t _{PW}	Program Pulse Width	-	0.095	0.1	0.105	ms	
t _{OE}	OE to Output Valid		-	-	500	ns	
t _{DF2}	OE to Output in High-Z		-	-	150	ns	
tOES	OE Setup Time	-	2	-	-	μs	


AC TEST CONDITIONS

• Output Load

- : 1 TTL Gate and C_L (100pF)
- Input Pulse Rise and Fall Time : 10ns Max.
- Input Pulse Levels : 0.45V and 2.4V
- Timing Measurement Reference Level : Input 0.8V and 2.2V, Ouptut 0.8V and 2.0V

HIGH SPEED PROGRAM OPERATION

TIMING CHART

V_{CC} must be applied simultaneously or before V_{PP} and cut off simultaneously or after V_{PP}.
Removing the device from socket and setting the device in socket with V_{PP} = 12.75V may cause permanent damage to the device.

3. The V_{PP} supply voltage is permitted up to 14V for program operation, so the voltage over 14V should not be applied to the V_{PP} terminal.

When the switching pulse voltage is applied to the V_{PP} terminal, the overshoot voltage of its pulse should not be exceeded 14V.

OPERATION INFORMATION

The TC54H1024P/F's six operation modes are listed in the following table. Mode selection can be achieved by applying TTL level signal to all inputs.

MODE		PIN	ĈĒ	ŌĒ	PGM	V _{PP}	Vcc	D0~D15	Power	
	Read		L	L	н			Data Out	- Active	
READ	Output Deselet		*	Н	*	5V	5V	High Impedance		
OPERATION ·	Standby		н	*	*			High Impedance	Standby	
	Program		ι	*	L			Data in	_	
PROGRAM OPERATION	Program Inhibit		н	*	*	12.75V	6.25V			
$(Ta = 25 \pm 5^{\circ}C)$			L	н	н			High Impedance	Active	
(Program Verify		ι	L	н]		Data Out	1	

Note : H ; V_{IH}, L : V_{IL}, * : V_{IH} or V_{IL}

READ MODE

The TC54H1024P/F has three control functions. The chip enable (\overline{CE}) controls the operation power and should be used for device selection.

The output enable (\overline{OE}) control the output buffers, independent of device selection. Assuming in that $\overline{CE} = \overline{OE} = V_{IL}$ and $\overline{PGM} = V_{IH}$, the output data is valid at the output after address access time from stabilizing of all addresses.

The \overline{CE} to output valid (t_{CE}) is equal to the address access time (t_{ACC}).

Assuming that $\overline{CE} = V_{IL}$, $\overline{PGM} = V_{IH}$ and all addresses are valid, the output data is valid at the outputs after to_E from the falling edge of \overline{OE} .

OUTPUT DESELECT MODE

Assuming that $\overline{CE} = V_{IH}$ or $\overline{OE} = V_{IH}$, the outputs will be in a high impedance state. So two or more ROMs can be connected together on a common bus line.

When \overline{CE} is decoded for device selection, all deselected devices are in low power standby mode.

STANDBY MODE

The TC54H1024P/F has a low power standby mode controlled by the CE signal.

By applying a high level to the \overline{CE} input, the TC54H1024P/F is placed in the standby mode which reduce the operating current to 100µA by applying MOS-high level (V_{CC}) and then the ouptuts are in a high impedance state, independent of the \overline{OE} inputs.

PROGRAM MODE

Initially, when received by customers, all bits of the TC54H1024P/F are in the "1" state which is erased state.

Therefore the program operation is to introduce O'S data into the desired bit locations by electrically programming.

The levels required for all inputs are TTL. The TC54H1024P/F can be programmed any location at anytime -- either individually, sequentially, or at random.

PROGRAM VERIFY MODE

The verify mode is to check that the desired data is correctly programmed on the programmed bits.

The verify is accomplished with \overline{OE} and \overline{CE} at V_{IL} and \overline{PGM} at V_{IH}.

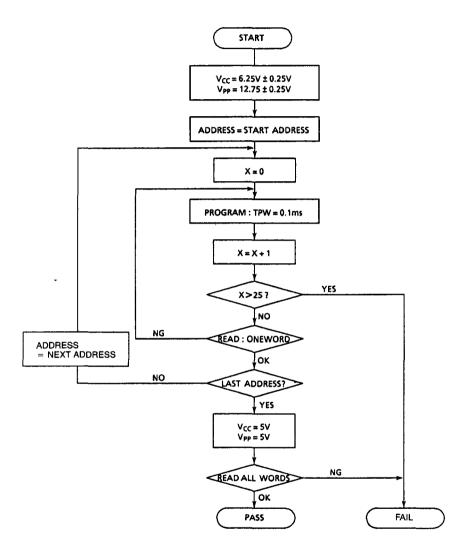
PROGRAM INHIBIT MODE

Under the condition that the program voltage (+12.75V) is applied to Vpp terminal, a high level \overline{CE} or \overline{PGM} input inhibits the TC54H1024P/F from being programmed.

Programming of two or more EPROMs in parallel with different data is easily accomplished. That is, all inputs except for \overline{CE} or \overline{PGM} may be commonly connected, and a \underline{TTL} low level program pulse is applied to the \overline{CE} and \overline{PGM} of the desired device only and \underline{TTL} high level signal is applied to the other devices.

HIGH SPEED PROGRAM OPERATION

The device is set up in the high speed programming mode when the programming voltage (+12.75V) is applied to the Vpp terminal with V_{CC}=6.25V and $\overline{PGM}=V_{IH}$.


The programming is achieved by applying a single TTL low level 0.1ms pulse the PGM input after addresses and data are stable. Then the programmed data is verified by using Program Verify Mode.

If the programmed data is not correct, another program pulse of 0.1ms is applied and then programmed data is verified. This should be repeated unit the program operates correctly (max. 25 times).

When programming has been completed, the data in all addresses should be verified with $V_{CC} = V_{PP} = 5V$.

HIGH SPEED PROGRAM OPERATION

FLOW CHART

TC54H1024P/F-85 TC54H1024P/F-10

ELECTRIC SIGNATURE MODE

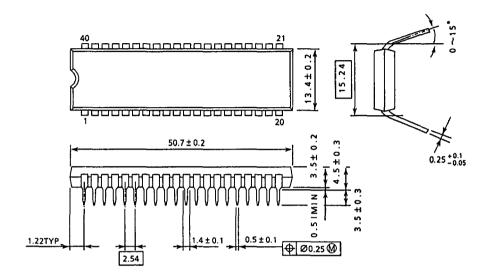
Electric signature mode allows to read out a code from TC54H1024P/F which identifies its manufacturer and device type.

The programming equipment may read out manufacturer code and device code from TC54H1024P/F by using this mode before program operation and automatically set program voltage (Vpp) and algorithm.

Electric Signature mode is set up when 12V is applied to address line A9 and the rest of address lines is set to V_{IL} in read operation. Data output in this condition is manufacturer code. Device code is identified when address A0 is set to V_{IH} .

These two codes possess an odd parity with the parity bit of (O7).

The following table shows electric signature of TC54H1024P/F.


PINS	Ao	015	014	013	012	011	010	09	08	07	06	05	04	03	02	01	00	HEX DATA
Manufacturer Code	VIL		*	*	*	٠	•	•	*	1	0	0	1	1	Ō	0	0	**98
Device Code	V _{tH}	*	*	•1	+	+	•	•	•	1	0	0	0	1	0	0	1	**89

Notes: $A9 = 12V \pm 0.5V$, $A_1 - A_8$, $A_{10} - A_{15}$, \overline{CE} , $\overline{OE} = V_{1L}$, $\overline{PGM} = V_{1H}$

+: Don't care

OUTLINE DRAWINGS DIP40-P-600

Unit : mm

