BCD-to-Seven Segment Latch/Decoder/Driver for Liquid Crystals

The MC14543B BCD-to-seven segment latch/decoder/driver is designed for use with liquid crystal readouts, and is constructed with complementary MOS (CMOS) enhancement mode devices. The circuit provides the functions of a 4-bit storage latch and an 8421 BCD-to-seven segment decoder and driver. The device has the capability to invert the logic levels of the output combination. The phase (Ph), blanking (BI), and latch disable (LD) inputs are used to reverse the truth table phase, blank the display, and store a BCD code, respectively. For liquid crystal (LC) readouts, a square wave is applied to the Ph input of the circuit and the electrically common backplane of the display. The outputs of the circuit are connected directly to the segments of the LC readout. For other types of readouts, such as light-emitting diode (LED), incandescent, gas discharge, and fluorescent readouts, connection diagrams are given on this data sheet.

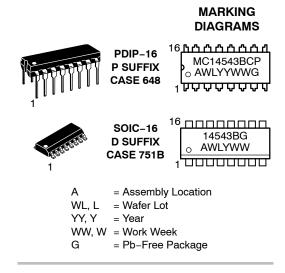
Applications include instrument (e.g., counter, DVM etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

Features

- Latch Storage of Code
- Blanking Input
- Readout Blanking on All Illegal Input Combinations
- Direct LED (Common Anode or Cathode) Driving Capability
- Supply Voltage Range = 3.0 V to 18 V
- Capable of Driving 2 Low–power TTL Loads, 1 Low–power Schottky TTL Load or 2 HTL Loads Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4056A (with Pin 7 Tied to V_{SS}).
- Chip Complexity: 207 FETs or 52 Equivalent Gates
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

, <u> </u>			
Parameter	Symbol	Value	Unit
DC Supply Voltage Range	V _{DD}	-0.5 to +18.0	V
Input Voltage Range, All Inputs	V _{in}	-0.5 to V _{DD} +0.5	V
DC Input Current per Pin	l _{in}	±10	mA
Power Dissipation per Package (Note 1)	PD	500	mW
Operating Temperature Range	T _A	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Maximum Continuous Output Drive Current (Source or Sink)	I _{OHmax} I _{OLmax}	10 (per Output)	mA
Maximum Continuous Output Power (Source or Sink) (Note 2)	P _{OHmax} P _{OLmax}	70 (per Output)	mW


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Temperature Derating: Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C
- 2. $P_{OHmax} = I_{OH} (V_{OH} V_{DD})$ and $P_{OLmax} = I_{OL} (V_{OL} V_{SS})$

ON

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

• NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

LD [1•	16	D V _{DD}
С	2	15] f
в[3	14] g
D	4	13] e
A	5	12] d
РН [6	11] c
BI [7	10	b
v _{ss} [8	9	a

		lı	nput	s			Outputs							
LD	BI	Ph*	D	С	в	Α	а	b	с	d	е	f	g	Display
Х	1	0	Х	Х	Х	Х	0	0	0	0	0	0	0	Blank
1	0	0	0	0	0	0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	1	1	0	0	0	0	1
1	0	0	0	0	1	0	1	1	0	1	1	0	1	2
1	0	0	0	0	1	1	1	1	1	1	0	0	1	3
1	0	0	0	1	0	0	0	1	1	0	0	1	1	4
1	0	0	0	1	0	1	1	0	1	1	0	1	1	5
1	0	0	0	1	1	0	1	0	1	1	1	1	1	6
1	0	0	0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	0	0	1	1	1	1	1	0	1	1	9
1	0	0	1	0	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	0	1	1	0	0	0	0	0	0	0	Blank
1	0	0	1	1	0	0	0	0	0	0	0	0	0	Blank
1	0	0	1	1	0	1	0	0	0	0	0	0	0	Blank
1	0	0	1	1	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	1	1	1	0	0	0	0	0	0	0	Blank
0	0	0	Х	Х	Х	Х				**				**
†	†	†		†			Inverse of Output Display Combinations as above Above							

X = Don't care

† = Above Combinations

* = For liquid crystal readouts, apply a square wave to Ph For common cathode LED readouts, select Ph = 0For common anode LED readouts, select Ph = 1

** = Depends upon the BCD code previously applied when LD = 1

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14543BCPG	PDIP-16 (Pb-Free)	500 Units / Rail
MC14543BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14543BDR2G	SOIC-16	2500 / Tape & Reel
NLV14543BDR2G*	(Pb-Free)	2500 / Tape & Neel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

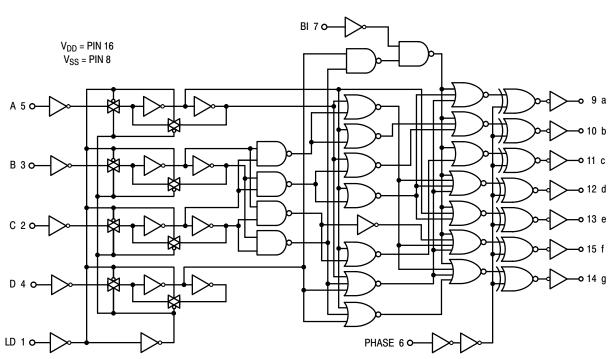
Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

			- 5	5°C		25°C		125	õ°C	
Characteristic	Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 3)	Max	Min	Max	Unit
Output Voltage "0" Level V _{in} = V _{DD} or 0	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
"1" Level V_{in} = 0 or V_{DD}	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
"1" Level (V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	V _{IH}	5.0 10 15	3.5 7.0 11	_ _ _	3.5 7.0 11	2.75 5.50 8.25	_ _ _	3.5 7.0 11	- - -	Vdc
$\begin{array}{l} \mbox{Output Drive Current} \\ (V_{OH} = 2.5 \mbox{ Vdc}) \\ (V_{OH} = 4.6 \mbox{ Vdc}) \\ (V_{OH} = 0.5 \mbox{ Vdc}) \\ (V_{OH} = 9.5 \mbox{ Vdc}) \\ (V_{OH} = 13.5 \mbox{ Vdc}) \end{array}$	I _{OH}	5.0 5.0 10 10 15	- 3.0 - 0.64 - - 1.6 - 4.2	- - - -	- 2.4 - 0.51 - - 1.3 - 3.4	- 4.2 - 0.88 - 10.1 - 2.25 - 8.8	- - - -	- 1.7 - 0.36 - - 0.9 - 2.4	- - -	mAdc
$\begin{array}{ll} (V_{OL} = 0.4 \; Vdc) & Sink \\ (V_{OL} = 0.5 \; Vdc) & \\ (V_{OL} = 9.5 \; Vdc) & \\ (V_{OL} = 1.5 \; Vdc) & \end{array}$	I _{OL}	5.0 10 10 15	0.64 1.6 - 4.2	- - - -	0.51 1.3 - 3.4	0.88 2.25 10.1 8.8	- - - -	0.36 0.9 - 2.4		mAdc
Input Current	l _{in}	15	-	±0.1	-	±0.00001	±0.1	-	±1.0	μAdc
Input Capacitance	C _{in}	-	-	-	-	5.0	7.5	-	-	pF
	I _{DD}	5.0 10 15	- - -	5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μAdc
Total Supply Current (Note 4, 5) (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching)	IT	5.0 10 15	0 $I_{T} = (3.1 \mu\text{A/kHz}) \text{ f} + I_{DD}$					μAdc		

3. Noise immunity specified for worst-case input combination.

Noise Margin for both "1" and "0" level = $1.0 \text{ V} \text{ min} @ \text{V}_{\text{DD}} = 5.0 \text{ V}$


2.0 V min @ $V_{DD} = 10$ V 2.5 V min @ $V_{DD} = 15$ V

To calculate total supply current at loads other than 50 pF: I_T(C_L) = I_T(50 pF) + 3.5 x 10⁻³ (C_L - 50) V_{DD}f where: I_T is in μA (per package), C_L in pF, V_{DD} in V, and f in kHz is input frequency.
 The formulas given are for the typical characteristics only at 25°C.

Characteristic	Symbol	V _{DD}	Min	Тур	Max	Unit
Output Rise Time $t_{TLH} = (3.0 \text{ ns/pF}) C_L + 30 \text{ ns}$ $t_{TLH} = (1.5 \text{ ns/pF}) C_L + 15 \text{ ns}$ $t_{TLH} = (1.1 \text{ ns/pF}) C_L + 10 \text{ ns}$	tтLH	5.0 10 15	- - -	100 50 40	200 100 80	ns
Output Fall Time $t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$ $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$ $t_{THL} = (0.55 \text{ ns/pF}) C_L + 12.5 \text{ ns}$	t _{THL}	5.0 10 15	- - -	100 50 40	200 100 80	ns
$\begin{array}{l} \text{Turn-Off Delay Time} \\ t_{PLH} = (1.7 \text{ ns/pF}) C_L + 520 \text{ ns} \\ t_{PLH} = (0.66 \text{ ns/pF}) C_L + 217 \text{ ns} \\ t_{PLH} = (0.5 \text{ ns/pF}) C_L + 160 \text{ ns} \end{array}$	t _{PLH}	5.0 10 15	- - -	605 250 185	1210 500 370	ns
Turn–On Delay Time $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 420 \text{ ns}$ $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 172 \text{ ns}$ $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 130 \text{ ns}$	t _{PHL}	5.0 10 15	- - -	505 205 155	1650 660 495	ns
Setup Time	t _{su}	5.0 10 15	350 450 500		- - -	ns
Hold Time	t _h	5.0 10 15	40 30 20		- - -	ns
Latch Disable Pulse Width (Strobing Data)	twн	5.0 10 15	250 100 80	125 50 40	- - -	ns

SWITCHING CHARACTERISTICS (Note 6) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$)

6. The formulas given are for the typical characteristics only.

LOGIC DIAGRAM

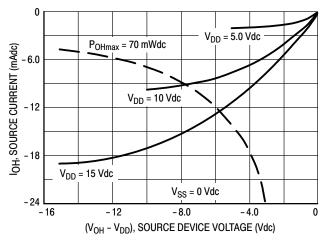


Figure 1. Typical Output Source Characteristics

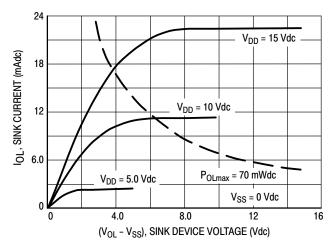
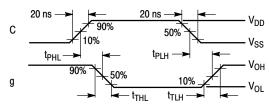
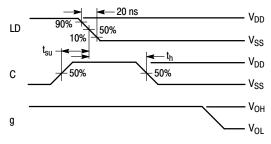




Figure 2. Typical Output Sink Characteristics

(a) Inputs D, Ph, and BI low, and Inputs A, B, and LD high.

(b) Inputs D, Ph, and BI low, and Inputs A and B high.

(c) Data DCBA strobed into latches

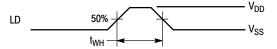
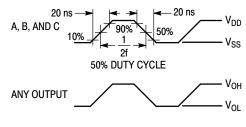
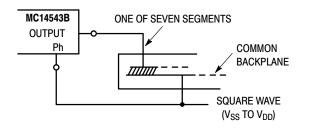
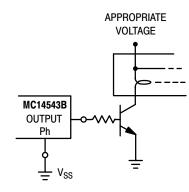



Figure 4. Dynamic Signal Waveforms

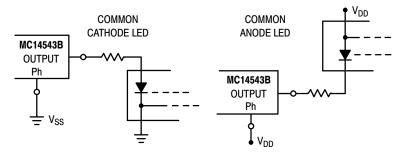
Inputs BI and Ph low, and Inputs D and LD high. f in respect to a system clock.

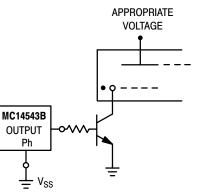

All outputs connected to respective CL loads.



CONNECTIONS TO VARIOUS DISPLAY READOUTS

LIQUID CRYSTAL (LC) READOUT

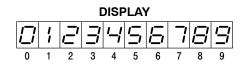




INCANDESCENT READOUT

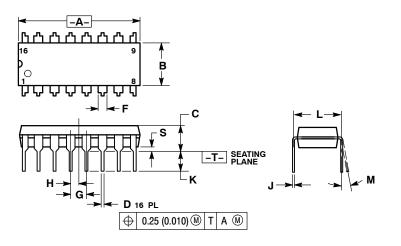
LIGHT EMITTING DIODE (LED) READOUT

GAS DISCHARGE READOUT



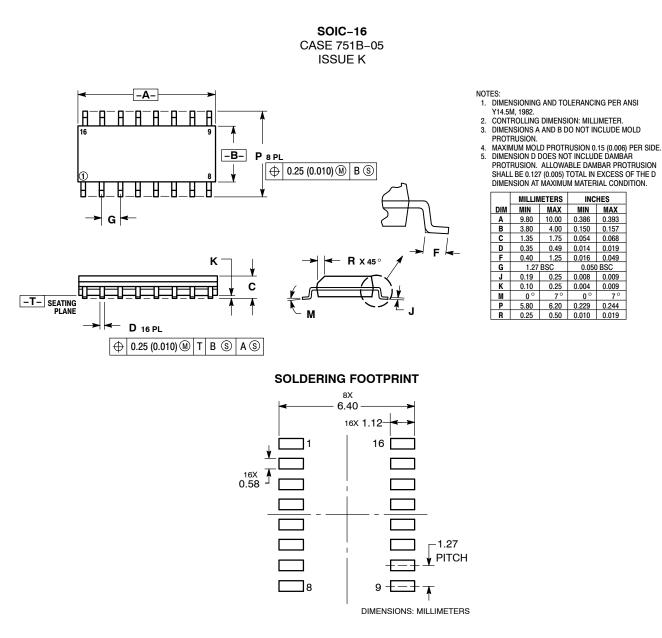
NOTE: Bipolar transistors may be added for gain (for $V_{DD}\,\leq\,10$ V or $I_{out}\,{\geq}\,10$ mA).

CONNECTIONS TO SEGMENTS



V_{DD} = PIN 16 V_{SS} = PIN 8

PACKAGE DIMENSIONS


PDIP-16 CASE 648-08 ISSUE T

- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION I TO CENTER OF LEADS WHEN FORMED PARALLEL.
 DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100	BSC	2.54	BSC
н	0.050	BSC	1.27	BSC
J	0.008	0.015	0.21	0.38
Κ	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
М	0 °	10 °	0 °	10 °
S	0.020	0.040	0.51	1.01

PACKAGE DIMENSIONS

ON Semiconductor and **ON** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.om/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components insystems intended for sugrical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and easonable attorney fees arising out of, directly or indirectly any claim of personal injury or death associated with such uninte

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: MC14543BCP MC14543BCPG MC14543BD MC14543BDR2 MC14543BF